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Control and recalibration of path integration 
in place cells using optic flow

Manu S. Madhav    1,2,3,4,5,9 , Ravikrishnan P. Jayakumar    1,3,6,9, Brian Y. Li1, 
Shahin G. Lashkari3,6, Kelly Wright1, Francesco Savelli1,8, 
James J. Knierim    1,2,7,10  & Noah J. Cowan    3,6,10 

Hippocampal place cells are influenced by both self-motion (idiothetic) 
signals and external sensory landmarks as an animal navigates its 
environment. To continuously update a position signal on an internal 
‘cognitive map’, the hippocampal system integrates self-motion signals 
over time, a process that relies on a finely calibrated path integration gain 
that relates movement in physical space to movement on the cognitive 
map. It is unclear whether idiothetic cues alone, such as optic flow, exert 
sufficient influence on the cognitive map to enable recalibration of path 
integration, or if polarizing position information provided by landmarks is 
essential for this recalibration. Here, we demonstrate both recalibration of 
path integration gain and systematic control of place fields by pure optic 
flow information in freely moving rats. These findings demonstrate that the 
brain continuously rebalances the influence of conflicting idiothetic cues to 
fine-tune the neural dynamics of path integration, and that this recalibration 
process does not require a top-down, unambiguous position signal from 
landmarks.

The spatial firing fields of hippocampal place cells are determined by 
allothetic inputs (such as visual landmarks and environmental bounda-
ries) and path integration of idiothetic inputs (such as optic flow and 
vestibular signals)1–9. Decades of research have provided detailed insight 
into how allothetic cues can exert precise control over the firing of place 
cells3,6,7,10–13. However, much less is understood about the mechanisms 
by which idiothetic cues affect place cells because, in the absence of 
landmarks, the updating of the map by path integration14,15 is unsta-
ble—when only idiothetic cues are available, the internal representation 
drifts and rapidly becomes unbound to the world frame of refs. 1,2,15,16.

Control theory provides a basis for stabilizing unstable systems and 
thus provides a powerful experimental arsenal to disentangle the ele-
ments of neural computation17–22. Famously, the voltage clamp allowed 

Hodgkin and Huxley to stabilize the membrane potential at a constant 
reference to pinpoint the roles of individual ion channels23. More recently, 
a growing body of literature has garnered new insights into neural com-
putation by using control engineering to close feedback loops on neural 
representations24–27. Here, we extend the application of control theory in 
biology18,28 to high-order spatial representations; specifically, we intro-
duce a controller that uses neural feedback to implement a ‘cognitive 
clamp’, maintaining at a desired reference an essential cognitive variable 
for forming the hippocampal cognitive map, the gain of the path integra-
tor29–31. This gain relates self-motion information from idiothetic cues to 
an updating of position on the internal hippocampal representation and 
must be fine-tuned with experience (that is, recalibrated) based on an ani-
mal’s sensorimotor experience to ensure accurate path integration6,7,31.
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tied to the movement of the rat such that the rat’s velocity with respect 
to the stripes was directly controlled by a behavioral feedback loop 
modulating the velocity of the stripes (Fig. 1c). In addition to this behav-
ioral feedback loop, our study consisted of two conditions related to 
the absence (open-loop) or presence (closed-loop) of a neural feedback 

To achieve this level of cognitive control, we used a unique, immer-
sive planetarium-style virtual reality apparatus (the ‘Dome’32; Fig. 1a) 
to provide pure optic flow input to a running rat while recording hip-
pocampal place cells. In all sessions, the movements of the optic flow 
cues (stripes; Fig. 1b) along the azimuthal periphery of the Dome were 
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Fig. 1 | Stripe presentation and gain computation. a, Virtual reality Dome 
apparatus (reproduced from ref. 32). Rats ran on a circular table surrounded by a 
hemispherical shell. A projector image reflects off a hemispherical mirror onto 
the inner surface of the shell. b, Stripes projected within the dome. c, Stripe gain, 
S, related the velocity of the rat with respect to the lab and stripe frames. In Epoch 
1, stripes were stationary (S = 1). In Epoch 2, stripes were moved in the same (S < 1) 
or opposite (S > 1) direction of the rat: the stripe velocity (1 − S)v was the 
difference between velocity of the rat in the lab and stripe frames.  
d–g, Hippocampal gain decoding. The x axis shows the number of laps the rat ran 
on the table. d, Stripe gain (S; blue) and hippocampal gain (H; dashed yellow) 
during Epochs 1 and 2 in one session. S = 1 in Epoch 1 and was ramped up to and 
held at S = 1.46 during Epoch 2. H begins only at lap 6 because of the six-lap 
window used to estimate H. e, Spikes from one unit (blue) plotted as a function of 
the rat’s angle θ (°) relative to the lab. Gray/white vertical bars denote laps in the 
lab frame. The unit fired at the same location in the lab frame (H ≃ 1) for the first 

two laps but its place field began to drift backward starting at lap 3 (H > 1).  
f, Spatial spectrogram of firing rate of this unit; the y axis denotes spatial 
frequency and color denotes power. The dominant spatial frequency H (dashed 
line) and its second harmonic are evident. g, Same spikes as e plotted in the 
hippocampal frame (Y = ∫H dθ, wrapped at 360°); gray/white bars are laps in this 
frame. Firing fields aligned in the hippocampal frame indicate accurate decoding 
of H. h, Spatial information scores in the hippocampal frame are significantly 
higher than those in laboratory and stripe frames for each rat (one-sided 
Wilcoxon signed rank tests on mean information across rats: hippocampus 
versus laboratory, rank = 15.0, P = 0.031; hippocampus versus stripes, rank = 15.0, 
P = 0.031; stripes versus laboratory, rank = 2, P = 0.94). To avoid counting the 
same cell multiple times, for each rat only the session with the greatest number of 
units (n = 43, 64, 49, 78, 28) was used in this analysis. Data are mean ± s.e.m. with 
scores from individual units shown.
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control loop. In open-loop experiments, a predetermined stripe gain 
profile controlled the stripe velocity, similar to previous behavio-
ral18,33–40 and neurophysiological41–48 experiments in humans and other 
animals. In contrast, in neurally closed-loop experiments, the stripe 
gain was modulated as a function of the real-time place cell activity 
state with respect to a desired activity state. (The terms ‘open-loop’ and 
‘closed-loop’ throughout this paper refer specifically to the absence 
or presence of this neurally closed feedback loop, as the behavioral 
feedback loop was always present.) This neural feedback stabilized the 
path integrator gain in the absence of an allothetic spatial reference 
frame that would typically be provided by landmarks. We found that 
optic flow cues, in the absence of an external, landmark-based refer-
ence frame, could exert reliable control over the hippocampal place 
cell map and could also induce a recalibration of the gain of the path 
integration system when the optic flow cues were placed in constant 
conflict with other idiothetic cues.

Results
Open-loop stripe manipulation influences hippocampal gain
Spatially alternating light and dark stripes were projected onto the 
inside of the Dome shell to provide a pure optic flow signal (Fig. 1b). 
Unlike in our previous study6, there were no salient, polarizing land-
marks in the Dome, and thus the rats were presumably forced to rely 
on idiothetic cues and path integration to maintain their internal esti-
mate of location as they ran laps. The stripes were moved according to 
a gain S, which determined the ratio of the rat’s speed relative to the 
stripes to the rat’s speed in the lab frame (Fig. 1c). The stripes moved 
only when the rat moved. When S > 1, the stripes moved in the direction 
opposite to the rat’s movement. When S < 1, the stripes moved in the 
same direction as the rat but at a lower speed. When S = 1, the stripes 
did not move at all. For example, if a rat ran counterclockwise (CCW), 
then with S = 2, the stripes moved clockwise (CW) at the same speed 
as the rat. Likewise, with S = 0.5, the stripes moved CCW at half the 
speed of the rat. Experimental sessions were segmented into epochs 
according to how the stripe gain was manipulated. During Epoch 1, rats 
ran CCW for 15 laps with S = 1 (stripes were stationary; Fig. 1d, Epoch 1).  
During Epoch 2, S diverged from 1 according to a predetermined pro-
file (stripes were rotated; Fig. 1d, Epochs 2a and 2b), segmented into 
a linear rising or falling phase and a constant plateau for S (Epochs 2a 
and 2b, respectively; Fig. 1d).

Results of a typical open-loop session are shown in Fig. 1d–g (n = 5 
rats, 40 sessions, mean 22 units per session (range 3–58 units) meeting 
place cell inclusion criteria; Methods). For the first 15 laps, place fields 
drifted backward each lap. This drift is a consequence of the error 
that accumulates every lap when the animal must rely solely on path 
integration without any landmarks to prevent and/or correct drift. 
Importantly, this drift indicates that any landmarks in the environment 
(inside or outside the Dome) were insufficient for the rat to anchor its 
map, validating our experimental strategy. On lap 16, we began to rotate 
the stripes by ramping the stripe gain S up to a value of 1.461. The place 
fields drifted more swiftly, in the same direction as the stripe move-
ment. This increased drift indicates that optic flow alone can qualita-
tively influence place fields44, similar to previous work with thalamic 
head direction cells in rats43 and retrosplenial spatial cells in mice42.

To quantify the drift of place fields over time, we estimated the 
gain of the hippocampus using an improved version of the popula-
tion decoder used in our previous study6. The hippocampal gain H 
can be thought of as the relationship between the animal’s physical 
movement through the world and the updating of its position on the 
cognitive map. When H = 1, the firing pattern of a spatial cell repeats 
precisely once per lap; when H < 1, in contrast, the pattern repeats 
less frequently than once per lap, that is, the rat’s position on its hip-
pocampal map updates more slowly than the rat’s actual movement on 
the track (and vice versa when H > 1). The population decoder worked 
by first determining the gain of each active place cell based on the 

spatial periodicity of its firing rate (Fig. 1f) and then computing the 
median gain across the population of active place cells (Methods and 
Extended Data Fig. 1). The median operation filtered out small varia-
tions in lap-to-lap firing of individual cells. The gains estimated from 
individual place cells recorded in a given session were almost always 
tightly coherent with each other during the manipulations of optic 
flow (Fig. 2g,h). Putative pyramidal cells (1,549 units) and interneurons  
(85 units) were both coherent to the overall population (Extended Data 
Fig. 2), and thus were combined in all analyses of hippocampal gain. By 
integrating the decoded value of H, we computed the position of the 
rat in its own internal reference frame, which we term the hippocampal 
frame. The rate maps of place cells calculated in the hippocampal frame 
(Fig. 1g) had greater spatial information than rate maps calculated 
in either the laboratory frame or the moving-stripe frame, whereas 
results in laboratory and stripe frames were not significantly different 
from each other (Fig. 1h). These results indicated that the decoding of 
H produced stable, internally coherent rate maps in the hippocampal 
frame of reference.

Pure optic flow cues exerted demonstrable influence over the hip-
pocampal representation in all five rats (Fig. 2a–f,i and Extended Data 
Fig. 3). Across sessions, we varied the stripe gain between 0.231 and 
1.769 to produce a parametric description of how optic flow cues influ-
enced the hippocampal spatial map. Figure 2a shows a control session 
when S was maintained at 1 (blue line) (that is, the stripes were station-
ary). The hippocampal gain H started out at approximately 1.13 in the 
first laps of Epoch 1, and this value gradually increased over the course 
of the session. Because H > 1, the place fields drifted backward on the 
track throughout the session (five place cells recorded simultaneously 
in Fig. 2b), and the rate of drift slightly increased (that is, the slopes of 
each cell’s lap-by-lap field location became steeper with increasing 
laps). This backward drift (H > 1) was present in Epochs 1 and 2b in most 
sessions (Extended Data Fig. 4a,b), indicating that the system may be 
biased to overestimate the animal’s distance traveled49,50 in the absence 
of landmarks that provide an absolute reference frame. When plotted 
in the hippocampal frame (Fig. 2b, bottom), each cell’s place field was 
stable, demonstrating that the hippocampal map drifted coherently. 
Figure 2c,d shows an example session where Sfinal = 1.46. Here, H settled 
to a relatively steady value of Hbaseline = 1.35 in Epoch 1, and then began 
to rise sharply in Epoch 2a, paralleling the rapid increase in S. When S 
reached its final value (Epoch 2b), H also stabilized, albeit at a higher 
value (Hfinal = 1.80), maintaining approximately its initial baseline off-
set. Figure 2e,f shows a final example session in which S was decreased 
below 1. As was typical, H was greater than 1 in Epoch 1 (Hbaseline = 1.09). 
When S was ramped down to 0.23 during Epoch 2a, H decreased accord-
ingly for ~20 laps, appearing to plateau to a value slightly less than 1 for 
the remainder of Epoch 2a, and then further decreased to Hfinal = 0.84 in 
Epoch 2b. Thus, the change in H followed the direction of the change in 
S but did not decrease below ~0.84, even though Sfinal was much lower. 
Within any given session, individual place cells (distinct colors) fired 
at approximately the same location within the hippocampal frame of 
reference throughout that session (Fig. 2b,d,f, lower panels) due to 
strong internal coherence of the hippocampal map (Fig. 2g,h).

Across animals and sessions, the hippocampal gain at the end of 
Epoch 2 (after baseline subtraction, that is, Hfinal − Hbaseline) was strongly 
related to the final stripe gain, Sfinal, in Epoch 2 (Fig. 2i). However, as illus-
trated by the examples in Fig. 2a–f, the relationship was not linear. For 
Sfinal > 1, the relationship was approximately linear with a slope of 0.57 
(F test versus constant model: P = 2.28 × 10−5, n = 18, d.f. = 16), showing 
that there was reliable, but incomplete, modulation of the hippocampal 
gain by optic flow cues. However, for Sfinal < 1, the slope was 0.18 (F test 
versus constant model: P = 0.036, n = 15, d.f. = 13), much less than for 
Sfinal > 1. A power law empirically provided a good fit to the data (Fig. 2i); 
this nonlinear relationship indicates an important asymmetry in the 
affordance of optic flow over the hippocampal gain in upward versus 
downward directions and is consistent with an asymmetric influence 
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of optic flow reported in associated regions42,51 (Extended Data Fig. 5 
and ‘Discussion’). This asymmetry can also cause a random drift biased 
towards higher gains in the presence of noisy velocity inputs (Extended 
Data Fig. 4c).

We also observe a consistent drift across Hbaseline sessions (Extended 
Data Fig. 4d). The baseline drift is linear and significant for all rats 
(positive for four rats and slightly negative for one rat; Extended Data 
Fig. 4e). The drift between sessions may be due to the accumulated 

biased within-session drift, but cannot be explained by the influence 
of the optic flow manipulation from the previous session (Extended 
Data Fig. 4f).

Recalibration of path integration without landmarks
Previously, we showed that imposing a sustained conflict between 
idiothetic path integration cues and movement relative to allothetic 
cues (that is, landmarks) induced recalibration of the path integration 
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Fig. 2 | Effect of stripe manipulation on place cells. a, Session with S = 1 
(stationary stripes; blue line). The hippocampal gain H (yellow line) drifted 
slightly, remaining above 1. Since H needs a six-window estimate, no value is 
plotted for the first six laps. b, Spikes from five units (distinct colors) plotted in 
the laboratory frame (top) and hippocampal frame (bottom) for the session in a. 
The hippocampal frame for each unit was computed by excluding that unit from 
the population. Units are coherent with each other, drift at the same rate and 
have aligned firing fields in the hippocampal frame. Alternating gray/white bars 
indicate laps in the respective frames. c, Session with Sfinal > 1. H initially increased 
and then settled towards the end of Epoch 1, but was driven upward when  
S increased. d, Same as b, but for the session in c. e, Session with Sfinal < 1. H was 
driven downward when S decreased, but not to the same extent as upward 
manipulation. f, Same as b, but for the session in e. g, Illustration of population 
gain coherence. Colors denote 5 d of open-loop sessions for rat 913 where 
Hfinal ≠ 1. Light traces are gains Hi decoded from each unit, and dark traces are the 

medians of these values, defined as the population gain H. Sessions are aligned 
such that 0 is the end of Epoch 2b (stripes off). Gains from different units 
maintain a tight grouping in each session, demonstrating high coherence.  
h, Quantification of population gain coherence. If unit i was part of a coherent 
population, its gain Hi should equal the population gain H. The average gain ratio 
error |1 − Hi/H| across all six-lap windows of a session is the coherence score for 
the unit (1,634 units, 65 sessions). To avoid bias, for each unit i, Hi was excluded 
from the computation of population gain H. Most units have scores close to zero 
and very few have values above 0.1 (0.10–0.42, 21 units). Most of the units fall in 
the first bin (error < 0.01, 1,128 units); they deviated no more than 2% from the 
median, likely within the range of measurement error. i, The change of H from its 
Epoch 1 baseline is a nonlinear function of the stripe manipulation, modeled by a 
power law (black line) Hfinal − Hbaseline = a+ bSmfinal (fit parameters ± 95% confidence 
interval: a = −0.16 ± 0.07, b = 0.20 ± 0.086, m = 2.05 ± 0.66; adjusted r2 = 0.86, 
n = 40, d.f. = 37).
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gain6. Thus, here we asked whether polarizing landmark information is 
necessary for this process, or if conflicting idiothetic cues alone could 
in fact induce such recalibration. Such an effect would demonstrate 
a previously unknown degree of plasticity in how various idiothetic 
pathways either mutually calibrate each other, or recalibrate a down-
stream circuit, to continuously fine-tune the path integrator without 
polarizing landmarks. At the end of Epoch 2b, during which optic flow 
was in continuous conflict with other idiothetic cues (for example, 
vestibular and motor efferent cues, whose perception is not altered 
by navigation in the Dome), we extinguished the stripes while leaving 
the overhead circular band of light to continue to illuminate the Dome 
(Epoch 3). If the manipulation of H during Epoch 2b was an immediate 
effect of cue manipulation, we would expect H to abruptly return to be 
near Hbaseline. However, if instead the sustained manipulation induced 
a plastic alteration of the path integration process, as we previously 
found with landmarks6, we would expect that, when the cues were 
removed, H would be partially recalibrated. The recalibrated gain Hrecal 
was defined as the value of the hippocampal gain computed with the 
activity of the cells in the first six laps (the size of the moving spatial 
window used in gain estimation) after the stripes were extinguished. 

Figure 3a shows an example of recalibration when S was increased 
to 1.46. The hippocampal gain H increased to Hfinal = 1.36 by the end 
of Epoch 2b. When the stripes were extinguished in Epoch 3, the hip-
pocampal gain decreased to Hrecal = 1.19, above its baseline in Epoch 1 
(Hbaseline = 1.06). Figure 3b shows an example in which S was decreased 
to 0.231. H showed a typical increase over laps in Epoch 1, which began 
to reverse when S began to decrease in Epoch 2, reaching an initial 
plateau around 0.95 in Epoch 2a and then jumping to a new plateau 
around Hfinal = 0.84 in Epoch 2b. When the stripes were extinguished 
in Epoch 3, H maintained a value around Hrecal = 0.91, below its baseline 
in Epoch 1 (Hbaseline = 1.09).

We observed modest but reliable recalibration across sessions 
(Fig. 3c). A linear mixed-effects model (LME) with (Hrecal − Hbaseline) as 
the dependent variable, (Hfinal − Hbaseline) as a fixed-effect independent 
variable and rat identity as a random-effect independent variable 
showed a significant slope of 0.32 (two-sided t-test; n = 40, d.f. = 39, 
t-statistic = 5.25, P = 5.7 × 10−6). Note that the statistical tests were per-
formed after subtracting the baseline offset from each session, to 
assess the relationship between changes in hippocampal gains. We 
also fit a model with Sfinal as the fixed-effect independent variable; the 
slope between (Hrecal − Hbaseline) and Sfinal was 0.11 (two-sided t-test; n = 40, 
d.f. = 39, t-statistic = 3.97, P = 3 × 10−4). The difference in the Bayesian 
information criterion (BIC)52 between the two models (Hfinal − Hbaseline: 
BIC = −61.28; Sfinal: BIC = −53.49) suggests that the internal hippocampal 
dynamics Hfinal was a better predictor of the hippocampal gain Hrecal 
than was the external sensory input Sfinal. Since stripe gain increased 
or decreased monotonically during each session with Sfinal ≠ 1, we also 
tested how time and distance run affected the evolution of H − Hbaseline 
(Extended Data Fig. 6b). We considered the minimum distance (49 laps) 
and the minimum time (13.1 min) that stripe manipulation lasted across 
all open-loop sessions with Sfinal ≠ 1. At 49 laps, there was no significant 
relationship between H − Hbaseline and time. At 13.1 min, there was no 
significant relationship between H − Hbaseline and distance. In both cases, 
there was a power-law relationship between H − Hbaseline and stripe gain 
S (Extended Data Fig. 6c,d).

We examined whether the recalibration effect was maintained over 
many laps by tracking the hippocampal gain across Epoch 3 (Fig. 3d). 
There was a near one-to-one correspondence between the hippocam-
pal gain at laps 6 and 12 in Epoch 3. This correspondence shows that the 
optic flow-based hippocampal gain manipulation induced a long-term 
recalibration of path integration with respect to the other idiothetic 
cues (for example, vestibular cues, proprioceptive cues or motor copy) 
that presumably drove the path integration process when the stripes 
were extinguished in Epoch 3.

Closed-loop cognitive clamp stabilizes path integration
Despite the clear, bidirectional influence of optic flow on place cells, 
the precision of its control over the place fields was variable (Extended 
Data Fig. 5b) and offset by significant shifts of the baseline gain within 
and across sessions (Extended Data Fig. 4). This imprecision contrasts 
with the powerful control typically exerted by salient landmarks in the 
environment3,6,9,10. We investigated whether we could mimic the strong 
control by landmarks with pure optic flow information by using con-
cepts from control theory to clamp the hippocampal gain to a desired 
value. Specifically, we created a neural feedback control loop in which 
CA1 place cell activity was used to adjust the experimental stripe gain, S, 
in real time to drive the hippocampal gain to an experimentally chosen 
desired value, Hdesired (Fig. 4a).

This control scheme compares a real-time, neurally decoded esti-
mate of the hippocampal gain, Ĥ , with the desired hippocampal gain, 
Hdesired, and feeds their difference back through an integral control law 
that automatically adjusts the stripe gain:

S = KI∫
θ

θ0
(Hdesired − Ĥ )d𝜗𝜗
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Fig. 3 | Recalibration of landmarks with open-loop optic flow. a, Gain curves 
for a session with Sfinal = 1.462 (S is blue line). The hippocampal gain H (yellow line) 
drifted upward during the manipulation to Hfinal = 1.36. In Epoch 3, the stripes were 
turned off (no blue line) and H dropped to 1.19, as measured by the value at the end 
of the first full six-lap window in the epoch (Hrecal; star marker). b, Same as a, but 
for a session with Sfinal = 0.231. At the end of Epoch 2b, H dropped to Hfinal = 0.844 
and, after stripes turned off, recovered to Hrecal = 0.91. c, Baseline-subtracted Hrecal 
versus Hfinal. Each data point is a session, colors denote sessions from individual 
rats and dashed lines are independent linear fits for each rat. The two sessions 
shown in a and b are enclosed in correspondingly colored boxes. Recalibration 
was significant across sessions and animals, as shown using an LME (see text). The 
individual animal fits had positive slopes for 5 of 5 rats and were significant for 3 
of 5 rats (rat = 771, 791, 883, 913, 923; slope = 0.26, 0.40, 0.13, 0.31, 0.79; r2 = 0.40, 
0.86, 0.08, 0.76, 0.79; two-sided t-test against null hypothesis of slope zero, 
t-statistic = 2.00, 6.17, 0.71, 3.98, 5.19; P = 0.093, 8.32 × 10−4, 0.507, 0.011, 1.27 × 0−3; 
n = 8, 8, 8, 7, 9; d.f. = 6, 6, 6, 5, 7; no adjustment made for multiple comparisons). 
d, Maintenance of recalibrated value. In Epoch 3, the rats ran in the continued 
absence of stripe cues. We defined Hrecal12 as the hippocampal gain value at lap 
12, computed from the second six-lap window not overlapping with the first 
one in Epoch 3. Similar to c, data points denote sessions and colors denote rats. 
Linear fit to all data has slope 1.12 (dashed line; n = 39, d.f. = 37, two-sided t-test, 
t-statistic = 32.411, P = 9.12 × 10−29), very close to slope 1 (solid line), indicating that 
the recalibrated value was maintained in the absence of stripe cues in Epoch 3.
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Here, θ denotes the cumulative, unwrapped angular displacement 
of the rat (measured in units of laps) and ϑ is a dummy variable of inte-
gration. The value of S was initialized to 1 at the beginning of Epoch 2. 
The controller constant, KI, known as the integral gain in control theory, 
was designed to stabilize the closed-loop system based on a simplified 
model that considers the six-lap windowing of our real-time hippocam-
pal gain estimate (Methods and Extended Data Fig. 7). Intuitively, an 
integral control law continuously increases or decreases the strength 
of the control signal (that is, S) until the feedback error is extinguished. 
The integral control law created smooth changes in the stripe gain; that 
is, a gradual ‘ramp’ emerged that is qualitatively similar to the prepro-
grammed stripe gain ramp presented in Epoch 2a of our open-loop 
experiments (Fig. 2). This gradual ramp avoided sudden changes in 
optic flow velocity as might result from other control schemes (for 
example, proportional or derivative controllers).

The integral controller modulated S at 1-s intervals with KI = 0.2 
(Methods). The control law was implemented on four animals across a 
total of 25 closed-loop sessions (mean 36 units per session, range 2–74 
units). Figure 4b depicts an example session in which H was initially 
greater than 1 (Hbaseline = 1.248) and Hdesired was set to 1. The controller 
gradually reduced the stripe gain based on the integral control law, 
evidently causing a percept to the animal that it was moving progres-
sively slower, until ultimately the hippocampal gain returned to unity 
(Hfinal = 1.037). In steady state, a population of simultaneously recorded 
place cells largely stabilized itself relative to the track (Fig. 4c), even in 
the absence of salient landmarks.

Our controller was successful in stabilizing the hippocampal gain 
to the desired value for a large fraction of sessions in which Hdesired > 1 
(Extended Data Fig. 8). Figure 4d depicts an example in which the hip-
pocampal gain was gradually ramped up to a desired value of 1.769 via 
the integral controller and stabilized around that value for approxi-
mately 45 laps (Hfinal = 1.784). As can be seen in Fig. 4e, a population 
of simultaneously recorded neurons became relatively stable in an 
artificial reference frame that rotated according to the desired gain, 
demonstrating the effectiveness of the control law. The control law 
was generally not successful in completely stabilizing to Hdesired < 1, 
although there was often still an influence of the control law (Fig. 4f,g). 
This result parallels the relatively modest effect for S < 1 described 
earlier in open-loop experiments (Fig. 2e,f,i and Extended Data Fig. 5a). 
To assess the overall control law’s effectiveness, we assessed Hfinal at 
the end of Epoch 2 with Hdesired, after subtracting baseline from both 
variables (Fig. 4h). Most data points were close to the unity diagonal 
between these values, demonstrating that our neurally closed-loop 
controller was able to systematically command the rate of updating of 
the hippocampal map using purely optic flow cues. Further analysis of 
the closed-loop controller’s effectiveness is shown in Extended Data 
Figs. 5c and 6a.

We next tested whether recalibration of path integration by optic 
flow was also observed in closed-loop control sessions by examining 
the path integration gain after the stripes were extinguished (Epoch 3). 
We restricted our analysis to cases where the control law was successful 
in driving H to the desired value (Methods and Extended Data Fig. 8; 
ten strongly controlled and nine modestly controlled sessions). We 
further excluded rat 923 from analysis, as the three cases of strongly 
and modestly controlled sessions from this rat came from sessions in 
which the values of (Hdesired − Hbaseline) were clustered too close to pro-
vide a meaningful measurement of trend; this exclusion produced no 
meaningful differences in the results. Two example sessions (Fig. 5a, 
strong control, and Fig. 5b, modest control) illustrate the effect of 
the recalibration, as there is a residual effect in Epoch 3 of the gain 
control manipulation carried out in Epoch 2. Similar to open-loop 
trials, a linear mixed-effects model analysis across the three animals, 
with (Hrecal − Hbaseline) as the dependent variable, (Hfinal − Hbaseline) as a 
fixed-effect independent variable and rat identity as a random-effect 
independent variable, demonstrated that there was a modest but  

reliable relationship between these variables (slope = 0.38; two- 
sided t-test; n = 16, d.f. = 15, t-statistic = 8.94, P = 2.15 × 10−7). The slope 
between (Hrecal − Hbaseline) and Sfinal was 0.12 (two-sided t-test; n = 16, 
d.f. = 15, t-statistic = 3.31, P = 4.8 × 10−3). Again, the internal dynamics 
Hfinal was a stronger predictor of Hrecal than was the sensory input Sfinal 
(Hfinal − Hbaseline: BIC = −38.4; Sfinal: BIC = −19.6)52. The value of Hrecal was 
stable across many laps in Epoch 3 (Fig. 5d). Interestingly, the hip-
pocampal gain in rat 883 showed a strong rebound when the stripes 
were extinguished, leading to a marked offset in the linear fit to the 
recalibration (Fig. 5c, yellow dots) that was similar to what occurred 
for that animal in open-loop (Fig. 3c, yellow dots). Nonetheless, this 
animal still showed a significant, positive slope between Hrecal and Hfinal.

Discussion
Optic flow is an idiothetic cue that is often hypothesized to be a major 
influence on place cells but which has not been studied extensively and 
parametrically in this regard. We used a virtual reality apparatus with a 
freely moving rat to demonstrate systematic control of place cells by 
optic flow, analogous to the well-documented control exerted by allo-
thetic cues such as landmarks3,6,7,10–13. Under natural conditions, salient 
landmarks and boundaries anchor the internal reference frame of the 
hippocampus, making it difficult to study the influence of idiothetic 
cues in isolation and almost impossible to quantify how conflicting 
idiothetic cues interact in updating the path integration computa-
tion1,2,15,53. Our previous work showed that allothetic information can 
provide a teaching signal to recalibrate the path integration system6. 
In that case, the teaching signal—the landmarks—provided an absolute 
positional signal in its frame of reference that anchored the internal, 
hippocampal frame of reference. Idiothetic cues, in contrast, can pro-
vide only relative positional signals (that is, updating a positional signal 
relative to the previous estimate of position). Does the path integration 
system require an absolute position teaching signal to calibrate its gain, 
or could relative signals from different idiothetic sources calibrate each 
other? The experiments reported here establish that manipulation of 
optic flow can induce recalibration of the path integrator in a similar 
way to what we had previously shown by landmark manipulations.

Optic flow cues exerted substantially less influence over the hip-
pocampal representation of position than landmarks in the same appa-
ratus6. With landmarks, the place cell population typically remained 
anchored to the landmark-centered reference frame6. With stripes, by 
contrast, the hippocampal representation of position drifted relative to 
a stripe frame of reference, often quite substantially, in the absence of 
stabilizing landmarks. The weaker influence of optic flow compared to 
landmarks was nevertheless sufficient for a new, model-based, neurally 
closed-loop controller to succeed in driving the hippocampal gain 
to a desired value in a majority of sessions, sometimes maintaining a 
desired value for dozens of laps (Extended Data Fig. 5c). These results 
revealed a striking degree of influence of optic flow on place cells.

The influence of optic flow cues on the hippocampal map was 
asymmetric (Fig. 2i and Extended Data Fig. 5a), in that it was easier to 
increase the hippocampal gain than reduce it. This finding is akin to our 
previous results6 with landmarks, in which the place map was unlikely to 
break away from the landmark cues when the visual gain was increased 
but was much more likely to break away from landmark cues when the 
visual cue gain was reduced. Other groups have reported similar asym-
metries in ‘up’ versus ‘down’ influence of perceptual manipulations 
over entorhinal populations51 and behavior40, but what these biases 
reveal about the nature of computations underlying path integration 
remains an open question and may play a role in the tendency for path 
integration to overestimate the distance traveled49,50.

The data and modeling efforts by Campbell and colleagues51 indi-
cate that this asymmetry might arise from a gain-dependent weighting 
of visual and locomotor speed cues in the velocity input. It is possible 
that the salience of the reduced-gain cue is less than the increased-gain 
cue because it creates a lower relative optic flow velocity, and that such a 
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decrease in salience leads to a decrease in its sensory weight within a cue 
integration framework51,54. Indeed, as the stripe gain approaches 0 (we 
never let it get to zero itself), the absolute optic flow the animal experi-
ences decreases, as the stripes are moving closer and closer to the ani-
mal’s velocity. This might result in a further threshold nonlinearity where 
the inputs are not considered optic flow at all. Additionally, there is an 
asymmetry in the experimental manipulation. For example, decreasing 

the optic flow gain from 1 to 0 eliminates stripe-based optic flow and 
would require an infinite number of steps to progress the same distance 
in visual space. By contrast, increasing the gain the same amount, from 1 
to 2, merely doubles the optic flow speed, requiring half the number of 
steps. This hyperbolic relationship between change in stripe gain and 
the required number of steps to progress in the virtual frame of refer-
ence may partially explain the asymmetric influence of optic flow gain.
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Fig. 4 | Cognitive clamp of hippocampal gain via optic flow. a, Schematic of 
closed-loop controller. Similar to Fig. 1c, except that during Epoch 2, the stripe 
gain S was continually updated using a neurally closed-loop integral controller, 
which was designed to clamp the estimated hippocampal gain Ĥ  to the desired 
value Hdesired. b, Example of closed-loop control to Hdesired = 1. The stripe gain S 
(blue), real-time hippocampal gain estimate Ĥ  (brown), offline hippocampal gain 
H decoded postexperiment (yellow) and desired hippocampal gain Hdesired 
(dashed green line) are plotted against laps the rat ran in the laboratory frame. 
Hbaseline was the hippocampal gain in Epoch 1 (before onset of the controller) and 
Hfinal was the hippocampal gain at the end of Epoch 2. In this session, Hbaseline was 
~1.25. When the controller was activated, the stripe gain became lower, driving 
the hippocampal gain to Hdesired = 1 by ~lap 40 and maintaining it there throughout 
the remainder of Epoch 2. c, Spikes from five units for the session in b. Top, 
middle and bottom graphs show the place fields in the lab, hippocampal and 
desired reference frames, respectively. The hippocampal frame was computed 

using a population gain that excluded the gain of the unit being plotted. The 
desired reference frame was computed by integration: ∫Hdesired dθ = Hdesired θ (since 
Hdesired was constant). There are no points in the desired frame in Epoch 1 as the 
controller was not activated until Epoch 2. Since Hdesired = 1, the lab and desired 
frame plots are identical during Epoch 2. d, Closed-loop control to Hdesired = 1.77.  
e, Raster plots for five place fields from the experiment in d. f, Closed-loop 
control to Hdesired = 0.85. In this example, H in Epoch 1 was only slightly higher than 
1 and rising. In Epoch 2, the controller reversed the rise in H and gradually moved 
it closer to Hdesired. Although the controller was unable to bring H to Hdesired, H was 
nonetheless driven below 1 and still decreasing at the end of Epoch 2. g, Raster 
plots for five place fields from the experiment in f. h, Hfinal versus Hdesired for all four 
rats who underwent closed-loop sessions, with Hbaseline subtracted. Most sessions 
lie close to unity (dashed diagonal), indicating control of the hippocampal gain. 
Points away from the diagonal denote uncontrolled sessions (circled) (Methods).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | August 2024 | 1599–1608 1606

Article https://doi.org/10.1038/s41593-024-01681-9

Further insight into the asymmetry might be gained from studying 
the activity in brain regions such as the anterolateral cortical field (AL) 
and the lateral posterior thalamic nucleus (LP) of rodents. The AL is a 
higher-order visual processing region with strong inputs to the dorsal 
stream55 via the posterior parietal cortex and the medial entorhinal 
cortex, while the LP (the homolog of the pulvinar in primates and a 
strong input to the AL) has been implicated in visuomotor integra-
tion. The LP contains visuomotor error signals between locomotion 
cues and optic flow56. Interestingly, the AL neurons and LP boutons 
in AL showed predominantly positive correlations with optic flow 
speed and negative correlations with running speed57, implying that 
they are activated by visual flow and suppressed by locomotion. Blot 
and colleagues57 inferred that an example case under which these 
neurons would be most active is when optic flow speed is higher than 
expected based on the animal’s running speed, a condition instanti-
ated by an increasing stripe gain in this study. Such an elevated activ-
ity might play a role in the asymmetric influence of optic flow on the  
hippocampal map.

Mixed-effects models established that the best predictor of the 
recalibrated gain was not the final stripe gain, Sfinal, but rather the final 
hippocampal gain itself, Hfinal. This finding provides evidence that, 
while the optic flow cues may substantially influence the hippocampal 
gain, they may only indirectly lead to recalibration. In other words, 
sensory perturbations (Sfinal) vary in the extent to which they alter the 
hippocampal gain (H), but as this altered gain is maintained over time, 
it is the hippocampal dynamics (Hfinal), not the sensory input, that might 
ultimately drive the persistent change in the underlying computation 
that manifests as a new, recalibrated gain after the stimulus is removed 
(Hrecal). Since stripe gain is more salient in the up sessions, it is possi-
ble that recalibration in these sessions is more directly driven by the 
sensory input. However, this effect is also difficult to isolate due to the 
linear correlation between Sfinal and the change in hippocampal gain 
(Hfinal − Hbaseline) in the up sessions.

Robust internal dynamics are a hallmark of hippocampal circuitry. 
Our research shows that the internal dynamics of the path integration 
network are constantly being fine-tuned in relation to potentially 
conflicting streams of idiothetic information. Specifically, the optic 
flow cues that we manipulated were placed in conflict with other idi-
othetic cues (for example, vestibular cues, proprioceptive cues, motor 
efference copy) that serve as inputs to the path integration system but 
were not directly affected by the optic flow changes. Our recordings 
from CA1 place cells are a reflection of the results of the path integra-
tion computation, which might occur upstream of the hippocampus14. 
Importantly, a global, top-down teaching signal that binds the hip-
pocampal frame of reference to an absolute external frame of refer-
ence is not required for recalibration. Instead, the internal dynamics 
are the reference frame against which idiothetic inputs are compared, 
providing an externally ungrounded teaching signal. Loosely speak-
ing, multimodal cue integration54,58 and recalibration of path integra-
tion are reminiscent of clock synchronization and recalibration59. In 
the presence of a trusted master timekeeper (for example, an atomic 
clock), drifting clocks are ‘latched’ onto it, and their rates of drift are 
corrected—much like visual landmarks anchor the spatial representa-
tion and induce path integrator recalibration6. In the absence of this 
master clock, synchronization algorithms rely on a network of clocks 
synchronizing and calibrating each other—much like optic flow influ-
ences (without anchoring) the spatial representation, nevertheless 
inducing recalibration.

By stabilizing the hippocampal representation in the absence of 
allothetic landmarks, the neurally closed-loop controller we developed 
opens the door for studying idiothetic inputs to the hippocampus with 
a degree of control previously reserved for studies of allothetic inputs. 
The present study used an online decoder and controller to calculate 
and manipulate the hippocampal gain, but future work will likely be 
able to decode the hippocampal representation of the actual position 
of the animal in real time60,61 and control directly the internal sense of 
location expressed by hippocampal and parahippocampal activity 
based purely on idiothetic cues. Furthermore, the relative influence 
of different idiothetic cues can be determined in ways analogous to 
classic voltage clamp studies. That is, one idiothetic input (for exam-
ple, vestibular) can be manipulated systematically, and the other (for 
example, optic flow) can be adjusted to counter the manipulation and 
clamp the hippocampal representation. The magnitude of the control-
ler input required to clamp the representation is a measure of the rela-
tive strength of the two cues’ influence on the updating of position on 
the hippocampal map, much like the current required to maintain the 
voltage clamp at a set value indicates the relative current flow through 
various ion channels23. Such neurally closed-loop experiments that 
regulate or stabilize internal variables can generalize to other fields 
of cognitive neuroscience in which high-order neural representations 
(for example, evidence accumulation, motor intentions or attention) 
are influenced by, but not necessarily bound to, external sensory input 
and are instead dynamically modulated by internal variables.
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Fig. 5 | Recalibration of path integration gain via the cognitive clamp.  
a, Recalibration to H > 1. The closed-loop controller drove the hippocampal 
gain H to Hdesired = 1.25. When the stripes were turned off at lap 75, H was reduced 
to ~1.06, which was higher than the baseline gain in Epoch 1 (Hbaseline = 1.00). 
b, Recalibration to H < 1. This example comes from the same animal as in a on 
the previous day, in which Hdesired was set at 0.87. The hippocampal gain was 
maintained at H = 1 for 15 laps in the absence of landmarks, and the gain was 
reduced to slightly below 1 for ~20 laps when the controller was activated. 
At lap 45, the hippocampal gain started to decrease further and reached 
Hdesired = 0.92. When the stripes were turned off at lap 75, the hippocampal 
gain was maintained near this value (Hrecal = 0.95). c, Hippocampal gain after 
recalibration (Hrecal − Hbaseline) as a function of the final hippocampal gain 
(Hfinal − Hbaseline) for the sessions from three rats (data points denote sessions, 
colors denote rats) in which the stripes strongly controlled the hippocampal 
gain in Epoch 2. For all three rats, there was a significant, linear relationship 
between Hrecal and Hfinal (with Hbaseline subtracted from both variables), as 
measured using an LME (see text). Modestly controlled sessions are circled in 
gray. Linear fits (dashed lines) were positive and significant for 2 of 3 animals 
(rat = 791, 883, 913; slope = 0.42, 0.33, 0.42; r2 = 0.80, 0.92, 0.86; two-sided t-test 
against null hypothesis of slope 0, t-statistic = 2.86, 4.86, 6.06; P = 0.104, 0.040, 
0.001; n = 4, 4, 8; d.f. = 2,2,6; no adjustment made for multiple comparisons).  
d, Maintenance of Hrecal over laps. Data points denote sessions and colors 
denote rats, similar to c. Across sessions, there was a strong relationship close 
to unity between the values of Hrecal measured 6 laps and 12 laps after the stripes 
were turned off (slope = 1.007, r2 = 0.98; two-sided t-test, t-statistic = 32.371, 
P = 1.02 × 10−16, n = 19, d.f. = 17).
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Methods
Subjects
Five Long–Evans rats (Envigo Harlan; three males (numbers 771, 791 and 
883) and two females (numbers 913 and 923)) were housed individu-
ally on a 12/12-h light/dark cycle. There were no obvious differences in 
results between male and female rats, and the data are reported by rat as 
appropriate in the results. All training and experiments were conducted 
during the dark portion of the cycle. The rats were 5–8 months old and 
weighed 300–450 g at the time of surgery. All animal care and housing 
procedures complied with National Institutes of Health guidelines and 
followed protocols approved by the Institutional Animal Care and Use 
Committee at Johns Hopkins University.

Dome apparatus
To present visual landmarks and optic flow cues to the rat, we used our 
custom planetarium-like virtual reality apparatus, the Dome (see ref. 
32 for details on the design and construction). Briefly, rats locomoted 
near the outer periphery of an annular table (152.4-cm outer diameter, 
45.7-cm inner diameter) centered within the dome. The image from a 
projector (G7500UNL, Epson) fitted with a long-throw lens (ELPLM11, 
Epson) was reflected off a plane mirror (152 × 152 × 12.7 mm3, First Sur-
face Mirror) and a hemispherical mirror (254-mm diameter, 150-mm 
radius of curvature, 40/20 surface quality, 1/4-wave accuracy, pro-
tected aluminum coating, Cumberland Optical) mounted at the center 
of the Dome. The resulting image covered the inside surface of the 
Dome shell, providing a projected view to the rat 360° in azimuth and 
almost 90° in elevation. A near-infrared camera (GS3-U3–41C6NIR-C, 
FLIR; 2,048 × 2,048 pixels, 45 frames per second) with a wide-field 
lens (NMV-6M1, 6 mm, F1.8, Navitar) provided an overhead view of 
the experiment. The three-dimensional position and orientation of 
the head of the rat were detected in real time (45 frames per s) through 
single-camera tracking62 of a set of markers mounted on the rat’s 
neural recording implant. The central rotating pillar of the dome was 
mounted on bearings. An enclosure, attached to the central pillar via 
radial boom arms, covered a 45° region around the rat. The central 
pillar along with the enclosure were moved using a motor in response 
to the rat’s position, such that the rat was kept near the center of the 
enclosure. The enclosure was moved only when the rat moved forward 
(CCW) and not when it went backwards (CW)—this encouraged con-
tinuous forward running. A micro-peristaltic pump (RP-Q1, Taskago 
Fluidics) on the central pillar dropped liquid reward (50% diluted 
Ensure®) through a feed tube routed to the front of the enclosure.  
A plastic spreader and paper towels were attached to a third radial 
boom arm mounted to the central pillar opposite from the enclo-
sure. This cleaning arm wiped up or spread out the scent of urine and 
uneaten food, as well as pushed feces off the table, reducing the sali-
ence and stability of local olfactory cues. All the nonprojected visual 
cues available to the rat were either circularly symmetric (nonpolar-
izing) or moved along with the rat.

Projected visual cues
During Epochs 1 and 2, a set of 80 equally spaced white stripes was 
projected into the dome to form the optic flow cue. The stripes were 
each 1.5° wide and 40° high, centered at 45° elevation. The spacing 
between the stripes was 360°/80 = 4.5°. The stripes were set to 50% 
brightness. Stripes were present in all except the last epoch in both 
open- and closed-loop experiments. A circular band (elevation 65°, 
brightness 40%) was projected in all epochs to provide circularly sym-
metric illumination inside the dome. During the first 15 laps, before 
Epoch 1, a set of stationary landmarks—identical to those used in ref. 6 — 
were superimposed over the stripes, and both stripes and landmarks 
were also stationary. Because this overlay of landmarks and stripes did 
not reliably provide strong cue control, likely because of the lack of 
visual salience of the landmarks against the striped background, this 
pre-Epoch-1 landmark condition was excluded from further analysis.

Training
Over 2–3 d, we familiarized the rats to human contact and trained them 
to wear a body harness (Coulbourn Instruments). The rats were placed 
on a controlled feeding schedule to reduce their weights to approxi-
mately 80% of their ad libitum weight, whereupon they were trained 
to run for a food reward (50% diluted Ensure®) on a training table in a 
different room from the experimental room. The training table had the 
same dimensions as the table inside the dome, but no enclosure or other 
automated systems. Reward droplets were manually placed at arbitrary 
locations on the track in the path of the running rat, and the experi-
menter attempted to lengthen the average interval between rewards  
to maintain behavior while delaying satiation. Training continued until 
the rats consistently ran 40 laps without intervention or encourage-
ment from the experimenters. Training usually took 2–3 weeks.

Electrode implantation and adjustment
After training, rats underwent stereotactic surgery where they were 
implanted with hyperdrives containing 16 independently movable 
nichrome tetrodes, the tips of which were gold-plated to an impedance 
of ~150 kΩ using a nanoZ electroplating system (White Matter). The 
hyperdrives were fabricated in the laboratory using an in-house design 
and used a 72-channel interface board (EIB-72-QC, Neuralynx). Follow-
ing surgery, 30 mg of tetracycline and 0.15 ml of a 22.7% solution of the 
antibiotic enrofloxacin were administered orally to the rats each day. 
After at least 4 d of recovery, we began slowly advancing the tetrodes 
and resumed food restriction and training within 7 d of surgery. Once 
the tetrodes were close to CA1, they were advanced less than 40 µm per 
day. The location of each tetrode relative to the CA1 pyramidal cell layer 
was judged using the polarity of sharp waves and intensity of ripples in 
the electroencephalogram (EEG) signal captured on one electrode of 
each tetrode, as per well-established procedures. Tetrodes were judged 
to be placed correctly when ripples were intense and multiple units 
were visible on the pairwise electrode projections of spike amplitudes.

Postsurgery training
During days of electrode advancement, we simultaneously 
food-restricted the rats. On (typically) day 3 of food restriction, we 
placed them into the Dome while wearing the body harness. A mag-
netic pad attached to the harness was used to mount a 6.4-mm marker 
(Optitrack) to track the position of the rat and actuate the enclosure 
surrounding the rat in real time, so that the rat remained near the center 
of the enclosure. To encourage movement in only one angular direction, 
the enclosure was never moved CW. Thus, as the rat approached the front 
(CCW end) of the enclosure, it moved forward. When the rat approached 
the back (CW end) of the enclosure, it did not move, thereby blocking the 
path of the rat. A pump dropped liquid reward in front of the running rat, 
which prompted the rat to move forward and thus move the enclosure. 
Reward was dropped at a spatial interval picked from a uniform distribu-
tion around a mean interval that varied across days depending on the 
rat’s performance. Within a few days after surgery, rats learned to run 
continuously and obtain food reward. The mean interval of reward was 
gradually increased to maintain running performance until the presur-
gery performance criterion was reached once again (typically 7–10 d).

Neural recording
Once the tetrodes were judged to be in CA1 and the rat was again run-
ning at least 40 laps inside the dome, the experimental sessions began. 
During sessions, a unity-gain neural recording headstage (EIB-72-QC, 
Neuralynx) was attached to the implanted hyperdrive. The neural sig-
nals passed through a commutator and were filtered (600–6,000 Hz), 
digitized at 30 kHz and recorded on a computer running the Neuralynx 
Cheetah 5 recording software. Simultaneously, EEG data from one 
channel of each tetrode were filtered (1–475 Hz), digitized at 30 kHz 
and stored on the computer. Pulses sent from the experiment-control 
computer were time-stamped and recorded as events on the neural 
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recording computer to enable the post hoc synchronization of the data 
streams recorded on the two computers. Procedures for synchronizing 
and associating signals to the behavioral data are detailed in ref. 32. For 
experimental sessions, instead of the single large marker attached to 
the body harness, a set of smaller (3 mm, 4 mm) markers were placed in 
a rigid arrangement around the recording headstage. This allowed our 
custom algorithm to track the three-dimensional position and orienta-
tion of the constellation of markers with higher accuracy and robust-
ness62. Thus, the rat did not need to wear the harness during sessions.

Experimental control
Three computers were used to run the experiment. Their purposes 
were: (1) general experiment control, (2) neural recording and  
(3) video tracking and neural recording. Multiple independent pro-
grams, called nodes, performed each of these tasks and communicated 
to a master node running on computer no. 1 and to each other through 
a software framework called Robot Operating System (ROS)63. Details 
on the hardware and software integration and experimental control 
are available in ref. 32.

Real-time firing rate computation
A python ROS node on the neural recording computer used the NetCom 
Application Programming Interface (API) to receive real-time neural 
data, and ROS APIs to receive tracked rat positions. Occupancy of the 
rat and spike counts from each tetrode were collected into 5° spatial 
bins covering a region six laps before the current angular position of 
the rat (6 × 360/5 = 432 bins). Rat velocities were computed at 100 Hz, 
and a count was added to the current occupancy spatial bin if the velo-
city was above 5° s−1 (≈5 cm s−1). Spikes from each tetrode were tested 
for high, correlated amplitudes (indicating noise) and then counted 
into their respective spatial bins if the current velocity was above 
threshold. Spike counts were divided by occupancy, and the resulting 
432 firing rates (spikes per s) were made available at 1 Hz; no attempt 
was made to sort spikes generated by principal cells from those gener-
ated by interneurons. These firing rates were used by the online spectral 
decoder, described below, to decode hippocampal gain (Extended 
Data Fig. 1c) for each tetrode. Tetrodes that had no visible neurons or 
had noisy recordings were excluded by the experimenter using a man-
ual interface, and the median of the gain estimates from the remaining 
tetrodes was termed the online hippocampal gain ( Ĥ) and used to 
manipulate stripe gain S during Epoch 2 of closed-loop sessions. The 
error between online gains Ĥ  and H estimated post hoc using clustered 
units was low when Ĥ  was used in the session (mean |Ĥ − H| < 0.1  in 
Epoch 2 for 22 of 25 sessions, Extended Data Fig. 1d).

Spectral decoding
The algorithm for spectral decoding of hippocampal gain is detailed in 
Extended Data Fig. 1. The core algorithm remained the same as in our 
previous paper6, but updates (described below) were made to improve 
the robustness of gain estimates. Briefly, we used the spatial periodicity 
of firing rates of place fields on a circular track to compute the spatial 
frequency of the population representation. For a stable spatial repre-
sentation in the laboratory frame, a typical CA1 place cell would exhibit 
one firing field that repeats every lap, and hence the spatial frequency 
of firing is 1 cycle per lap. If a cell fired more (or less) than once per 
lap, its spatial frequency would be >1 (or <1) cycles per lap. The spatial 
frequency of firing is termed the hippocampal gain of each place cell.

In this version of the decoder, we improved the threshold mask 
used to enhance the signal-to-noise ratio of the spatial frequency 
content. The spatial spectrogram of the firing rate curve of each unit 
was first thresholded to the 80% percentile of its power in each spatial 
window. Contiguous regions above the percentile threshold were 
identified (MATLAB regionprops function). Noise regions tended to 
lack structure and agglomerated into punctate roundish blobs while 
the parts of the spectrogram denoting spatial frequency traces were 

larger in pixel count and more elongated. Given this, regions that were 
below a pixel area of 70,000 and an aspect ratio of 17 were removed 
from the mask. This thresholding mask was then applied to the sharp-
ened spectrogram.

There were instances when the power in the fundamental trace 
failed to exceed the threshold described previously, causing the 
maximum-energy trajectory to follow a harmonic instead of the  
fundamental. An assumption was made that if the gain of a unit at a 
particular spatial window was a harmonic of another unit, the two units 
were likely from the same periodic signal. Harmonics were identified 
by taking the pairwise ratios between the gain estimates of all units at 
each spatial window. Ratios that were close to integer values indicated 
that the numerator was likely a harmonic of the denominator and were 
divided by this integer. These harmonic-corrected gain estimates from 
the individual units were binned in the space of unwrapped angular 
position and spatial frequency to identify if the set of gain estimates 
had a coherent grouping (all unit gain estimates fell within a 0.05 mean 
absolute error of each other) or if multiple subpopulations existed.

Offline decoding. The spectral decoder was run with a spatial window 
on each sorted unit passing inclusion criteria (‘Data analysis’, below). 
For each 5° spatial bin, the firing rate for each unit was calculated by 
dividing the number of spikes fired by that unit by the amount of time 
the rat spent in that bin when it was moving >5° s−1. In accordance with 
standards in the field, this threshold corresponded to speeds at which 
theta power shows a marked increase64 and was intended to remove 
spikes during the large irregular activity mode of hippocampal EEG, 
when place cell firing tends to be spatially nonlocal65,66. For each unit and 
for each bin, the hippocampal gain was the spatial frequency estimated 
by the spectral decoder on the 432 firing rates corresponding to the six- 
lap window before that bin. The population hippocampal gain H for 
each bin was computed as the median of these estimates across units.

Online decoding. During online decoding, the spectral decoder was 
run at 1 Hz on the 432 spatially binned firing rates for each tetrode cor-
responding to the six laps before the rat’s current angular location. 
Thus, every second, a hippocampal gain estimate was generated for 
each tetrode. The population online hippocampal gain estimate ̂H   
was the median of these estimates across the tetrodes chosen by the 
experimenter.

Mean gain ratio error. To evaluate the coherence of the recorded 
neural population, we quantified the deviation of the offline gain 
decoded from individual units to the population gain estimate. For 
each unit i and for each decoding window (six laps), the offline gain 
estimate Hi was compared against the population gain H, computed 
with Hi excluded. The gain ratio error was computed as |1–Hi/H| and  
the units were compared based on the mean of this value across all 
windows within a session (Fig. 2h and Extended Data Fig. 2).

Neurally closed-loop controller design
We hypothesized that we would be able to control the hippocampal 
gain H to a desired value by manipulating the stripe gain S during an 
experimental session, in response to an online decoded gain Ĥ . 
Open-loop experiments demonstrated that changes in S produced 
changes in hippocampal gain H, but that this change effect is nonlinear. 
We made a reasonable approximation that

Hfinal − Hbaseline = a + bSmfinal

Without stripe manipulation (Sfinal = 1), we do not expect Hfinal  
to deviate significantly from Hbaseline. This was also subsequently sup-
ported by the data (paired t-test, Hfinal versus Hbaseline in open-loop ses-
sions where Sfinal = 1: t(6) = −0.90, P = 0.40). Thus, for the purpose of 
developing a feedback controller, we make the simplifying assumption 
that: a = −b. Open-loop data from rat 771 showed an exponent fit of 
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m = 1.5. For simplification of derivation, we further assumed a quad-
ratic relationship (m = 2). These values were close to curve fits across 
rats in Fig. 2i (paired t-test, a versus −b: t(4) = 1.92, P = 0.13; m versus 2: 
t(4) = 0.91, P = 0.41). (Our failure to reject the null hypotheses in these 
low-sample datasets is used only to furnish a simplified model that is 
sufficiently expressive for neurally closed-loop control design, not 
to make definitive conclusions about the nature of the parameters.) 
Under these assumptions, we get the simplified model:

Hfinal − Hbaseline =
κ
2 (S

2
final − 1)

where b = κ
2

. This corresponds to the integral equation:

∫
Hfinal

Hbaseline

dH = κ∫
Sfinal

1
SdS

Ignoring constants of integration, the model relating the change 
in stripe gain dS to the hippocampal gain dH is thus

dH = κ S dS

At the initial value of S = 1, the linearized system dynamics is  
given by dH = κdS . We designed a controller for this simplified  
system that reduces the error between the decoded gain ̂H  and  
the desired value Hdesired. In scenarios where a control input (S) is used 
to drive a system state (H) to a desired state Hdesired, a proportional 
controller could be used. For such a controller, the input is proportional 
to the error between Ĥ  and Hdesired.

S = KP(Hdesired − Ĥ )

In our case, at a particular Ĥ  and Hdesired, the error would remain 
constant, and thus S will be constant. Thus, dS = 0, which means that 
dH = 0 as well. Moreover, proportional control can require large gains 
to reduce the error, and large gains would lead to rapid changes in stripe 
movement such that the virtual environment may no longer have 
appeared to be stable to the animal. Due to these reasons, we chose an 
integral controller, known to be able to eliminate steady-state errors 
under appropriate conditions:

S = KI∫
θ
θ0
(Hdesired − Ĥ )d𝜗𝜗

The integration is initiated at S0 = 1 in our case (the value of the 
stripe gain at the beginning of Epoch 2). The term KI is the ‘integral 
gain’ (terminology from control theory, not to be confused with other 
‘gains’ in the manuscript), and θ is the angle of the rat on the table. As 
a practical matter, the gain S produced by the integral controller was 
not allowed to go below 0.1 or above 4.0; these limits were reached in 
only 5 of 25 sessions (4 sessions saturated at 0.1, and 1 session at 4.0).

The block diagram of the feedback system consisting of the rat and 
controller is shown in Extended Data Fig. 7. The feedback loop consists 
of the controlled ‘plant’ P (in this case, the hippocampal circuit), the 
integral controller C and the feedback, which is our decoder, repre-
sented by a moving average over a window of six laps. We performed 
a Nyquist stability analysis to determine the range of integral gain KI 
over which the controller would be stable. When the frequency of the 
input signal s = jω is swept from 0 to ∞, if the loop gain L intersects 
the real axis at a point less than −1, the system would be unstable. To 
determine this point:

L = CP (1 − e−6s)
6s = κKI

s
(1 − e−6s)

6s = −κ KI
6ω2 (1 − cos(6ω) + j sin(6ω))

Here, j = √−1. Setting Im[L] = 0 (where Im[.] refers to the ima gi-
nary component of a complex number), the first point of intersection 
with the real axis is at ω = π

12
.

The intersection with the real axis is Re [L (ω = π
12
)] = − 24KIκ

π2
 (where 

Re[.] refers to the real component of a complex number). To maintain 
stability, this intersection point needs to be to the right of −1, requiring 
KI <

π2

24κ
. According to our fitted power law (Fig. 2i), b = 0.2, and thus 

κ = 0.4; hence the condition for stability is KI < 1.03. We used KI = 0.2 
in our closed-loop sessions, staying well within this margin of  
stability.

Stripe gain selection and ramp rates
In open-loop sessions, rats ran 15 laps with stripes on and stationary 
(Epoch 1; Fig. 2a,c,e). In Epoch 2, S was increased or decreased to Sfinal. 
The values of Sfinal were chosen to be of the form, 1 ± n/13, with n = 2, 6, 
10, resulting in gains of 0.231, 0.539, 0.846, 1.154, 1.462 and 1.769. These 
values with a prime denominator were chosen to reduce ambiguity 
between frames and ensured that during Epoch 3 the position of the rat 
relative to the laboratory and stripe frames of reference aligned only 
once every 13 laps. Gains were changed at a constant rate of 1/52 per lap, 
such that the length of Epoch 2 was 8, 24 and 40 laps for n = 2, 6 and 10, 
respectively. The sessions were not randomized; the gain for each ses-
sion was selected such that gains were rarely repeated in consecutive 
sessions, and the gain manipulation typically increased in magnitude 
over consecutive sessions for any given animal. The investigators were 
not blinded to allocation during experiments and outcome assessment. 
No statistical methods were used to predetermine sample size.

In closed-loop sessions, Epoch 1 was identical to open-loop ses-
sions. The hippocampal gain decoder was initialized and the gain 
estimate Ĥ  was monitored during Epoch 1, but not used for cue manipu-
lation. Hdesired was either specified before the session, in which case it 
was chosen from the aforementioned values of the form 1 ± n/13, or it 
was set to be a constant offset of ±0.25 or ±0.5 from the estimated value 
of Hbaseline. In either case, the Hdesired value was set and not modified once 
the controller was initialized at the beginning of Epoch 2.

Data analysis
Spike sorting. For each triggered spike waveform, features such 
as peak, valley and energy were used to sort spikes using a custom 
software program (WinClust; J.J.K.). Cluster boundaries were drawn 
manually on two-dimensional projections of these features from two 
different electrodes of a tetrode. We mostly used maximum peak and 
energy as features of choice; however, other features were used when 
they were required to isolate clusters from one another. Clusters were 
assigned isolation quality scores ranging from 1 (very well isolated) 
to 5 (poorly isolated), agnostic to their spatial firing properties. Only 
clusters rated 1–4 were used for quantitative analyses including offline 
estimation of hippocampal gain.

Inclusion criteria. To be included in the quantitative analyses, ses-
sions were required to meet the following criteria: sessions with stripe 
manipulation must have been run all the way to completion, that is, 
the rat finished the session (Epochs 1–3, and removed after stripes 
were extinguished), and there were no major behavioral issues or long 
manual interventions during the session, as per our experimental 
notes. Session inclusion was determined before performing any of the 
statistical analyses across sessions detailed in this manuscript. For the 
65 sessions that met these criteria, spikes that occurred when the move-
ment speed of the rat was less than 5° s−1 (about 5 cm s−1) were removed. 
Units were required to fire at least 50 spikes during the session to be 
included. Interspike interval (ISI) for a unit was computed as the peak 
of the histogram of difference in spike times. Units were categorized 
as putative principal cells or interneurons based on a k-means clus-
tering algorithm with firing rate, spike width and ISI as dimensions67. 
Units formed two clusters: consistent with well-established standards, 
pyramidal cells fired at lower rate, had broader spikes and had larger 
ISI than interneurons. Both putative principal cells and interneurons 
were included in the offline estimation, as segregation of units into 
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putative principal cells and interneurons did not affect the results 
(Extended Data Fig. 2).

Closed-loop control categorization. We categorized closed-loop 
control sessions based on the value of the hippocampal gain at the  
end of Epoch 2, Hfinal, in comparison with the desired gain, Hdesired, as 
follows: controlled if |Hdesired − Hfinal| < 0.05, moderately controlled if 
0.05 ≤ |Hdesired − Hfinal| < 0.20  and uncontrolled if |Hdesired − Hfinal| ≥ 0.20. 
The thresholds of 0.05 and 0.20 were chosen subjectively based on 
visual inspection of the graphs in Extended Data Fig. 8.

Histology
Once experimental sessions were complete, rats were transcardially 
perfused with 3.7% formalin. The brain was extracted and stored in 
30% sucrose–formalin solution until fully submerged. For four rats, 
the brain was sectioned coronally at 40-µm intervals. The sections were 
mounted and stained with 0.1% Cresyl violet, and each section was pho-
tographed. These images were used to identify tetrode tracks, on the 
basis of the known tetrode bundle configuration. A depth reconstruc-
tion of the tetrode track was carried out for each recording session to 
identify the specific areas in which the units were recorded. For one rat, 
we optically cleared the whole brain using the AdipoClear+ protocol68. 
The cleared brain was imaged using a lightsheet microscope (Ultrami-
croscope, LaVision BioTec) and the tetrode tracks were visualized in 
the autofluorescence channel using Imaris software to identify areas 
where units were recorded.

Statistics
No statistical methods were used to predetermine sample sizes but 
our sample sizes are similar to those reported in previous publica-
tions6,12,13,43,65. Parametric tests were used to determine statistical sig-
nificance. Pearson product–moment correlations were used to test 
the linear relationship between variables. For nonlinear relationships, 
data were fit using nonlinear least-squares (MATLAB fit function) with 
specified model structures and goodness-of-fit statistics (residual 
d.f. = n − m, where n is number of data points and m is number of param-
eters, as well as d.f.-adjusted coefficient of determination (R2) are 
reported). Paired, two-sided t-tests were used to compare information 
scores in laboratory, stripe and hippocampal frames of reference. Data 
distribution was assumed to be normal but this was not formally tested. 
To prevent sampling the same cells across days for this analysis, the 
experimental session with the greatest number of units was chosen 
for each rat and for each tetrode. Mean and s.e.m. were used to plot 
information scores across units. LMEs were used to test the significance 
of recalibration across all animals, with (Hrecal − Hbaseline) as the depend-
ent variable, (Hfinal − Hbaseline) as a fixed-effect independent variable and 
rat identity as a random-effect dependent variable. The model was fit 
using the command fitlme in MATLAB. A separate LME was also run 
with Sfinal as the fixed-effect dependent variable, to test whether Sfinal or 
(Hfinal − Hbaseline) was a better predictor of (Hrecal − Hbaseline). We used the 
criterion of a difference in BIC > 6 to indicate a meaningful difference 
between the two models52.

Simulation of biased drift in path integration
To simulate the drift in path integration gain, we modeled it as an 
iterative loop between two processes. First, a noisy stripe gain signal S 
influences the hippocampal gain using the optic flow response model 
fit in Fig. 2i, moving it from a baseline value Hbaseline to Hfinal.

Ht
final − Ht

baseline = a + b(St)m (1)

Then, following the linear fit quantifying recalibration in Figs. 3c 
and 5c, a portion of the change in hippocampal gain is remembered due 
to recalibration and alters Hbaseline in the next iteration. These processes 
can be written out for step t as follows:

Ht+1
baseline − Ht

baseline = k(Ht
final − Ht

baseline) (2)

Substituting (1) into (2) and iterating gives:

Ht+1
baseline = H0

baseline + k
t
∑
k=0

(a + b(Sk)m) (3)

Initial baseline value H 0
baseline is assumed to be 1. Parameters were 

chosen within the confidence intervals of the data fits (Fig. 2i; slope 
coefficient in LMEs): b = 0.2; a = −b; m = 2; k = 0.3. The stripe gain S  
was assumed to be a constant input at unity with independent and 
identically distributed uniform random noise ε (±0.25 interval) added 
to it at each iteration, that is, Sk = 1 + ε.

Equation (3) was iterated across spatial increments of approxi-
mately 50° for a length of 15 laps (duration of Epoch 1 in open-loop 
sessions). This constituted one ‘run’ of the simulation. The slope of the 
drift in gain over the 15 laps was computed. The histogram of the slopes 
from 10,000 runs is shown in Extended Data Fig. 4c.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Preprocessed data used to perform the analyses and generate the 
figures in this manuscript are available in the Johns Hopkins Research 
Data Repository, at https://doi.org/10.7281/T1/THLC8N.

Code availability
Custom code was written to analyze the datasets used in this study, and 
to generate figures for this manuscript. This codebase is versioned, 
and uses several third-party packages, the license files for which are 
included with the respective code. The codes used to perform the 
analyses and generate the figures in this manuscript are available in the 
Johns Hopkins Research Data Repository, at https://doi.org/10.7281/
T1/THLC8N.
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Extended Data Fig. 1 | Hippocampal gain decoding. (a) If a unit has a 
characteristic spatial tuning that repeats once per physical lap, the firing rate of 
the unit exhibits a spatial frequency of H = 1 per lap. Illustration of the firing of a 
spatially tuned cell for three values of hippocampal gain, H. (b) Reproduction of 
data from Fig. 1d, f. The spectrogram of one unit is shown at the bottom, with the 
color denoting the power at a given position and spatial frequency. Spectrogram 
peaks emerge at a fundamental frequency starting at ~1.1 and at its harmonics. We 
use a custom algorithm to trace these peaks (see ‘Spectral Decoding’ in Methods) 
and estimate the gain for each unit. The hippocampal gain, H, is estimated as the 
median spatial frequency across all isolated units for a given session.  
(c) Real-time decoding flowchart. Neural data from each tetrode and rat position 
data from the camera are acquired (see62 for hardware details). Incoming spike 
times, as detected by Neuralynx spike detection parameters, and positions are 
added to a temporal buffer. The following operations are performed every 1 s. 
The temporal buffer is transferred into a spatial queue buffer that accumulates 

spike times and positions from the previous 6 laps. Velocities are computed from 
positions, and spikes and positions with velocities <5 cm/s are eliminated. The 
remaining spikes and positions are spatially binned (5° width). The spike bins are 
divided by position bins to create firing rate bins for each tetrode, which are then 
smoothed and sent to the spectral decoder to estimate H (details in Methods 
section and Fig. 1d–g). The spectral decoder is able to estimate spatial frequency 
from the cumulative spatial tuning of all simultaneously recorded cells on a 
tetrode, extending the success of decoding spatial frequency from cells with such 
diffuse spatial tuning like interneurons (described in6). Spatial frequencies 
estimated independently from each tetrode were combined together into ̂H , to 
be robust to noisy estimates on any particular tetrode. (d) Comparison of online 
(unsorted) decoding vs. offline (sorted) decoding in Epoch 2 (controller on and 
using online decoded values) of the 25 closed-loop sessions. The mean absolute 
error between these gains remains close to 0, with a few sessions (3/25) showing 
deviations greater than 0.1.
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Extended Data Fig. 2 | Comparison of population coherence of putative 
pyramidal cells and interneurons. Here, the data from Fig. 2h is split into  
(a) putative pyramidal cells (1549 units) and (b) putative interneurons (85 units) 
that were identified in all data (see Methods). If a unit, i, were part of a coherent 
population, its gain Hi should equal the population hippocampal gain H. For each 
6-lap window we computed a gain ratio error |1–Hi/H| and computed the average 

of this value across the session to derive the coherence score for the unit. To avoid 
bias, for each unit i, Hi was excluded from the computation of population gain H. 
Most units in both populations have a score very close to zero and very few have 
values above 0.1 (19/1549 pyramidal, 2/85 interneurons). These populations were 
thus combined in the other analyses.
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Extended Data Fig. 3 | Gain dynamics during all open-loop sessions. Gain 
dynamics during all open-loop sessions (including sessions illustrated in main 
text figures). Each plot represents a single session (titled as ‘Rat-Day, Session’,  
40 sessions across 5 rats). X axis is number of laps the rat ran on the table and Y axis 
is gain. The black scale bar in each plot denotes 10 laps. Applied stripe gain  
(S; blue) plotted with decoded hippocampal gain (H; yellow). Sessions are grouped 
by the final stripe gain: (a) Up sessions (Sfinal > 1), (b) Down sessions (Sfinal < 1), and 
(c) Unity sessions (Sfinal = 1). Dashed vertical lines indicate boundaries between 
Epochs 1, 2a, 2b and 3 for Up and Down sessions, and between Epochs 1 and 3 for 
Unity sessions. The blips in the S curve in session 791–06, m1 was the result of 
a momentary software error. In most of the Up sessions, the hippocampal gain 
increases at a faster rate in Epoch 2a (S ramps up) than in Epoch 1 (S = 1). In many 
Down sessions, the hippocampal gain appears to decrease slowly, stay stable, 

and or even increase over laps, even though the stripe gain is decreasing. This 
may be the result of two effects—high baseline and low influence of stripes when 
gain is changed in the downward direction. In general, reducing the stripe gain 
has a lower influence on H than increasing the gain (Fig. 2i). These two factors 
combine: in the first four sessions of panel b, H rises up to Hbaseline in Epoch 1, 
but this upward drift is arrested and overcome by larger decreases in S (panel 
b, sessions 2, 3, and 4) but not quite overcome by a smaller decrease in S (panel 
b, session 1). For one animal (883), we observed a ‘rebound’ in the hippocampal 
gain after the stripes were extinguished, resulting in a consistent offset (that is, a 
negative intercept and low slope in the recalibration line, Fig. 3c, yellow); despite 
this offset, there was still a linear relationship between Hfinal − Hbaseline and Hrecal − 
Hbaseline for each rat (Fig. 3c), demonstrating the recalibration phenomenon.
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Extended Data Fig. 4 | Hippocampal gain drift. (a) Data from Epoch 1 of all open 
and closed-loop sessions where the stripe gain was held at 1. Most sessions have 
a positive slope. (b) Data from Epoch 2b of open-loop sessions where the stripe 
gain was held constant for 26 laps at a value not equal to 1. Most sessions have a 
positive slope. The x axis shows slopes of the linear fits of the hippocampal gain 
in these respective epochs and the y axis shows the session count. Colors indicate 
individual animals (see key in (f)). (c) Simulation of drift in path integration gain 
within session. We created a simulation to test the hypothesis that the positive 
drift might be caused by the asymmetric responses of the hippocampal gain to 
UP and DOWN manipulations of stripe gain (Fig. 2i, Extended Data Fig. 4a, b).  
Under the assumption that the velocity inputs are noisy, the asymmetric 
response would result in any noise deviation in the UP direction having a 
stronger influence on the updating of position on the hippocampal map than 
noise deviations in the DOWN direction. If the gain is continually recalibrated, 
the biased influence of noise and gain recalibration results in a biased random 
walk toward higher gain values (description in Simulation of biased drift in path 
integration under Methods). An iterative model was fed a noisy stationary optic 
flow gain input for 15 laps. As predicted, the output hippocampal gain exhibited 
a biased drift toward higher gain values. The x axis shows slopes of the linear 
fits of the hippocampal gain in these 15 laps and the y axis shows the run count 
for each slope bin. (An alternative explanation reverses the causal relationship 
between the observed asymmetry and the observed drift. That is, the asymmetry 
might result from a biased drift inherent in the system, which would need to be 
counteracted to drive the hippocampal gain down in the DOWN condition. In 
contrast, this bias would presumably augment the effects of increasing optic 
flow gain in the UP condition. We currently cannot distinguish between these two 
possible explanations of the relationship between biased drift and asymmetrical 
influence of optic flow.) (d) Example of baseline shift across days in one rat. The  
y axis is hippocampal gain, H, during the first 12 laps of Epoch 1 (stripes 
stationary) for 9 consecutive sessions. The last point in each curve (square 

marker) is considered Hbaseline for the session. The x axis denotes laps on the 
table. For Rat 923, the value of Hbaseline steadily increased across sessions but was 
relatively stable within a session. (e) Baseline shifts across sessions (typically 
1 session/day) for individual rats. Data from each rat is plotted in a different 
color. The x axis is the session number of each rat and the y axis is Hbaseline for 
that session. Dots denote open-loop sessions and stars denote closed-loop 
sessions. 4/5 rats show a significant positive drift of Hbaseline over sessions (Rats= 
771,791,883,923: slope = 0.029, 0.029, 0.029, 0.049; r2 = 0.82, 0.93, 0.73, 0.91; 
two-sided t-test against null hypothesis of slope 0, t-statistic = 5.18, 11.5, 5.88, 
11.1, p = 2.05 × 10−3, 4.47 × 10−7, 5.37 × 10−5, 1.13 × 10−7; n = 8, 12, 15, 14 ; df = 6, 10, 13, 
12, no adjustment made for multiple comparisons) whereas one rat showed a 
significant negative drift (Rat 913: slope = −0.006, r2 = 0.44; two-sided t-test, 
t-statistic = −3.33, p = 4.98 × 10−3; n = 16, df = 14). Because of these shifts, we 
subtracted Hbaseline from the dependent measures in our analyses of Figs. 2g, 3c, 
4h, and 5c. We speculate that the baseline shift across days, shown in panels (d) 
and (e), may be due to an accumulation of within-session biased drift shown in (a) 
and (b) and simulated in (c). Future work exploring the question of biased drift 
may help explain observed behavioral path integration error biases49,50. (f ) While 
there was an overall linear trend in the baseline over all sessions (panel e), it is 
unclear if, on a day-to-day basis, the baseline shift was influenced by the effect on 
H from the previous session’s manipulation. Typically, we alternated up and down 
manipulations in successive sessions, so if there were such a day-to-day influence, 
the residual around the linear trend should be correlated with the magnitude of 
the previous day’s manipulation. To examine if there was a systematic influence 
of the previous session’s manipulation on this residual, we plotted the residual 
(that is, the change in the baseline on session (n + 1), minus the linear trend  
from (e)) versus the gain change induced by stripes on the previous session,  
Hfinal (n) –Hbaseline (n). There was no significant relationship between these 
variables (r2 = 0.02, two-sided t-test, t-statistic = 1.07, p = 0.29, n = 48, df = 46).
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Extended Data Fig. 5 | Comparison of open-loop and closed-loop control.  
(a) As might be expected, regardless of the control scheme implemented, the 
nonlinear relationship between change of hippocampal gain from its Epoch 1 
baseline value (y-axis) and stripe manipulation (x-axis) is similar in open-loop 
(green fit) and closed-loop (orange fit) sessions. (b-c) The utility of closed-loop 
control is to drive the hippocampus to a desired state and hold it there. To 
demonstrate its effectiveness in this regard, we compared it with how well an 
open-loop experiment would perform. (b) Neurally open-loop (feedforward) 
control: The nonlinearity described in panel (a) can be used to predict Hfinal for a 
given open-loop stripe manipulation, Sfinal. However, rather than using all of the 
data to fit the model as in panel (a), an individual model fit was made for each 
open-loop session using the remaining open-loop sessions (leave-one-out). The 
y-axis shows a 1-lap moving average of the difference between the measured 
hippocampal gain, H, and the predicted gain from the leave-one-out fit for that 

session, Hpredicted
final , in the laps (x-axis) leading up to the stripes being turned off 

(zero point on x-axis). The stripe gain was held at Sfinal for 26 laps prior to the 
stripes being turned off. Data are shown as mean ± standard deviation, with the 
dark lines representing mean and shaded region representing standard 
deviation. DOWN sessions (Sfinal < 1) are shown in blue and UP sessions (Sfinal > 1) are 
shown in red. The means of both UP and DOWN sessions approached close to 
zero offset from the predicted value, albeit with a large standard deviation.  
(c) Neurally closed-loop (feedback) control: in strongly and modestly controlled 
neurally closed-loop sessions, a target state, Hdesired, was defined prior to  
each session. The controller was able to achieve close to zero-offset in both UP 
(Hdesired > Hbaseline) and DOWN (Hdesired < Hbaseline) sessions, but with notably lower 
standard deviations than in panel (b), demonstrating tighter control of H for 
neurally closed loop sessions compared to neurally open loop sessions.
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Extended Data Fig. 6 | Examining time and distance confounds. Because our 
manipulations generally require gradually increasing (or decreasing) gain in a 
monotonic fashion, it was necessary to ensure that the concomitant increase in 
time and distance were not confounding, critical factors that determined the 
evolution of the hippocampal gain. (a, b) Evolution of H−Hbaseline in Epoch 2 for  
(a) controlled closed-loop sessions for which the target gain was away from  
1 and (b) open-loop sessions such that Sfinal was away from 1, plotted as a function 
of time (top) and distance run (bottom). In closed-loop sessions, the controller  
moved H either up (Hdesired > Hbaseline, blue, 10 sessions) or down (Hdesired < Hbaseline, 
red, 9 sessions). In open-loop sessions, the stripe gain was either increased  
(Sfinal > 1, blue, X sessions) or decreased (Sfinal < 1, red, X sessions). Time and distance 
only increase (+) in these experiments but the hippocampal gain followed the 
sign of the manipulation, clearly indicating the strong causal control of our stripe 
manipulations above any potential confounding influence of time or distance.  
(c, d) We also examined the influences of distance run and time spent under 
stripe manipulation to the change in hippocampal gain, H−Hbaseline, compared to 
our stripe gain manipulation S. These analyses were run for all open-loop sessions 

where Sfinal ≠ 1. (c) For these sessions, we computed the minimum distance  
rats ran in Epoch 1 and 2 (49 laps, the distance run in the Sfinal = 1 ± 2/13 sessions) to 
equate distance across gain manipulations. At 49 laps after the start of Epoch 1,  
the change in hippocampal gain H−Hbaseline is plotted as a function of both time 
(top) and stripe gain S (bottom) for all sessions. Each data point is from a session 
and colors denote different rats. We fit a power-law curve to both plots (H−Hbaseline 
= a + bxm). There is no obvious relationship between H−Hbaseline and time (adjusted 
r2 = −0.26, df = 30), whereas there is a power-law relationship to S (adjusted  
r2 = 0.69, df = 30) similar to Fig. 2i. (d) For these sessions, we computed the minimum 
time rats ran in Epochs 1 and 2 (range 13.1–19.9 mins). At 13.1 mins after the start  
of Epoch 1, the change in hippocampal gain H−Hbaseline is plotted as a function of 
both distance run (top) and stripe gain S (bottom). There is no strong relationship 
between H−Hbaseline and distance (adjusted r2 = −0.077, df = 30) whereas there is a 
clear power-law relationship to S (adjusted r2 = 0.72, df = 30), similar to Fig. 2i.  
From these plots, we conclude that the change in H in these experiments is 
related to S and not to the correlated variables, time and distance travelled.
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Extended Data Fig. 7 | Block diagram of closed-loop controller. Here, s is the 
Laplace complex frequency variable. Multiplication by s denotes differentiation, 
whereas dividing by s denotes integration. C is the implementation of our 
neurally closed-loop controller, namely the transformation from the error 
(Hdesired − ̂H) to the stripe gain S. In control theoretic terminology, the controlled 

system (hippocampal circuit) is the ‘plant’ P, which transforms the stripe gain S 
into the output H. The term (1−e−6s)

6s
 in the feedback loop is the transfer function 

of a 6-lap moving average, capturing the lag introduced by our online gain 
decoder. The transfer function of the controller is C = KI

s
 and that of the plant 

reduces to a constant gain, P = κ.
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Extended Data Fig. 8 | Gain dynamics during all closed-loop sessions. Gain 
dynamics during all closed-loop sessions (including sessions illustrated in main 
text figures). Each plot represents a single session (titled as ‘Rat-Day, Session’,  
25 sessions across 4 rats). X axis is laps the rat ran on the table and Y axis is gain. 
The black scale bar in each plot denotes 10 laps. Applied stripe gain (S; blue) 
plotted with offline-decoded hippocampal gain (H; yellow) and hippocampal 
gain estimated online using unsorted spikes ( ̂H ; brown). This estimated value 
was driven to a constant desired value during the session (Hdesired; green dashed 
line). Dashed vertical lines indicate boundaries between Epochs 1, 2 and 3.  
Data is sorted into three groups based on how closely the final hippocampal  
gain (Hfinal) matched Hdesired (see Methods): (a) strongly controlled sessions 
(|Hfinal − Hdesired| < 0.05), (b) modestly controlled sessions 

(0.05 ≤ |Hfinal − Hdesired| < 0.20), and (c) uncontrolled sessions 
(|Hfinal − Hdesired| ≥ 0.20). Note that ̂H  is a real-time estimate that depended on 
neural noise inherent in multi-unit electrophysiology and varied in quality 
day-to-day. ̂H  was utilized only in Epoch 2 and even then, our slow-moving 
integral controller mitigated the effects of momentary noise in the estimate. For 
sessions in which Hdesired > 1 (Up sessions), 8 were strongly controlled, 5 were 
moderately controlled, and 3 were uncontrolled. For sessions in which 
Hdesired ≤ 1 (Down sessions), 2 were strongly controlled, 4 were moderately 
controlled, and 2 were uncontrolled. The small numbers of sessions do not 
provide enough power for statistical testing, but the apparent differences in 
closed-loop control between Up and Down sessions is discussed in the main text.

http://www.nature.com/natureneuroscience
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