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Abstract

Sensory systems in animals and robots can receive information from the environ-

ment via modulations of sensory signals. Environmental features and conspecifics

generate these modulations, and effective computational algorithms in sensory sys-

tems can demodulate signals to perceive the features. However, interaction of mul-

tiple modulations can themselves generate emergent modulations, which can encode

relative information between environmental features. These emergent modulations

create sensory interference which can be detrimental or beneficial to sensing. Or-

ganisms that probe their environment using autogenous sensory signals are prone

to such interference from other nearby individuals in the same social group. Some

animals have evolved behaviors that allow them to retain a high level of sensory

performance in such a social context. For example, the weakly electric glass knife-

fish, Eigenmannia virescens, produces a pseudo-sinusoidal oscillating electric signal

used for electrolocation and social communication. In my thesis, I explore how the

electrosensory system of weakly electric fish use nonlinear processing to respond to

interference from conspecifics.
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ABSTRACT

In Eigenmannia and other wave-type electric fishes, the interaction between two

individuals produces first-order modulations termed beats, and interaction between

three or more individuals produce “beats of beats”, termed envelopes. In this thesis,

I provide an analytical basis for the emergence of beats and envelopes in sensory

systems. I derive conditions where these emergent modulations arise, and show how

biologically plausible nonlinear mechanisms can extract information embedded in

them.

Experimentally, I characterize the Jamming Avoidance Response (JAR) in Eigen-

mannia in terms of an input-output model. The JAR is a widely studied response

to beats. The JAR is locally unstable; it is an escape response. An experimental

closed-loop around the electrosensory system of the animal “stabilized” the behavior,

facilitating system identification analysis. The experimental input–output responses

were parsed into a global nonlinear model of the JAR.

I also describe our discovery of a new behavior in these fish, termed the Social

Envelope Response (SER). The SER is a behavioral response to envelopes. We ex-

perimentally determined the properties of the SER for Eigenmannia.

Primary Reader: Noah J. Cowan

Secondary Reader: Eric S. Fortune and Dennice F. Gayme
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Chapter 1

Introduction

Biological organisms thrive in a wide variety of natural and even artificial envi-

ronments. An organism’s environment provides it with a rich set of sensory signals.

Accessing appropriate information encoded in these sensory signals is essential for the

organism to utilize its environment. This sensory challenge is relevant not only to

biologists in understanding animal behavior, but also to engineers trying to get the

most out of the sensing capabilities in a robot.

In the following sections, I discuss the nature of information encoded in sensory

signals, and how this information can be extracted and utilized by organisms. In

social settings, interference between sensory signals provides additional, potentially

confounding, nonlinear information. My thesis focuses on the mechanisms for ex-

traction of emergent oscillations resulting from sensory interference, and behavioral

responses to these nonlinear features. In the following discussion, the term “agent”
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can refer to either an organism or a robot. Similarly, both a biological sensory organ

and an artificial sensor are lumped together under the term “sensor”.

1.1 Information in modulations

Most environments can be sensed through a large number of possible cues, for ex-

ample, light, sound, mechanical perturbations, electric and magnetic fields, chemical

composition, temperature, and pressure. In some sensory systems, the source of the

sensory signals can be the agent itself (e.g. echolocation and electrolocation in biology;

radar and sonar in engineering). Sensory systems can also rely on signals generated

and present in the ambient environment (e.g. vision, hearing, and magnetoception in

biology; cameras, microphones, and GPS receivers in engineering).

These myriad signals are conducive to sensing due to the environment being able

to influence and change them. Environmental features interact with sensory signals

to produce modulations in the signal. A modulation is simply a change in one or more

of the parameters of the sensory signal. The modulation in a sensory signal produced

by an environmental feature tends to “encode” some parameter of the feature. This

encoding is generally the result of the physics of the interaction; the feature leaves a

signature of itself in the signal that it interacts with. An example of this is viewing

shadows. An object in the presence of a visible light source physically obstructs the

light, producing a shadow: a distorted two-dimensional projection of the object. A
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sensor that perceives visible light, e.g. an eye or a camera, measures a contrast pattern,

which is the modulation of the signal absent the object. The spatial frequencies of

this modulation correspond, in large part, to dimensions of the object that caused

the modulation. Thus, the modulation carries information relevant to perception of

the object.

Sensory organs as well as their associated neural circuits are typically tuned to

the properties of their associated sensory signal. For instance, the visual receptors

(rods and cones) in the human retina are tuned to the specific frequencies of electro-

magnetic radiation which we term “visible light”. In fact, there are three different

types of cones which are sensitive to specific frequency bands, allowing us to perceive

and interpret color [9, 73]. Similarly, the cochlea in the human ear is susceptible to

mechanical vibration in the so-called “audio frequency” range (10–10000 Hz). How-

ever, visual features in nature are generally much lower frequency (higher wavelength)

than visible light [25], and human speech is much lower frequency than audio frequen-

cies [68]. Visible light and audible sound are just signals that are “carriers” of relevant

low-frequency information. An object in the visual scene, for example, produces a

modulation of the light, and it is this modulation of the carrier signal which provides

the visual system with the information to perceive and process the feature.
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1.2 Emergent modulations in sensing

The role of a sensor is to measure the modulated sensory signal. A successful sen-

sory system will additionally use this measured signal to extract relevant information

about the environment. In the simplest case, the sensory signal undergoes one type of

modulation from a specific environmental feature, and the sensory system performs

one set of operations on the signal in order to extract the modulation, thereby re-

vealing characteristics of the feature. However, this is rarely the case in real-world

environments, where different features and conspecifics are present. A sensory signal

may undergo multiple similar or dissimilar modulations. In these conditions, the role

of the sensory system is decidedly complex: the sensory system has to demodulate

the signal, and then process the modulations in order to estimate the properties of

the features that created those modulations.

The layered nature of information in sensory modulation is made more compli-

cated by the emergence of second-order modulations which are not due to a specific

environmental feature, but instead due to the interaction of multiple feature-driven

first-order modulations. For example, if a carrier signal (say a pure cosine wave cosωt)

is modulated by two different amplitude functions a1(t) and a2(t), either additively

(a1(t) + a2(t)) cos(ωt),

or sequentially

a2(t)[a1(t) cos(ωt)];
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either of these operations can result in emergent (second-order) modulations. The

first case represents the interaction of two independently modulated carrier signals

(e.g. diffraction patterns in interacting light from two spatially separated sources).

The second case represents tiered modulations, where a signal modulated by an en-

vironmental feature is further modulated by a second feature. (e.g. patterns around

the image of an object viewed through a lens with spherical aberrations).

Emergent modulations are generally nonlinear, i.e. they cannot be extracted by a

linear process such as the Fourier transform. In my thesis, I investigate two types of

emergent nonlinear modulations, termed beats and social envelopes. These features

can, under the appropriate conditions, emerge in sensory systems that generate their

own signals to probe the environment. The sensory signals from these systems could

interfere under conditions where multiple agents are in close proximity. For example,

several species of animals prefer to be in social settings, and some animals even lead

their lives in large social groups [24]. Under the assumption that each agent does not

know its conspecific’s signal properties, there is a large chance that signal interference

could occur. These types of interference might be detrimental to sensory processing,

or may even be beneficial by providing information on conspecifics.

How do organisms process these complex, interfering, degraded, sensory signals in

order to effect complex behavior such as social communication, obstacle and predator

avoidance, and prey capture? How do they balance the beneficent effects of large

social groups with the resulting increased complexity of sensory tuning and motor
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action? To answer some of these questions, I look at the effect of interacting sensory

fields and the production of sensory modulations, termed beats and envelopes, using

the weakly electric fish electrosensory system as a model.

1.3 Weakly electric fish

Two orders of weakly electric fish inhabit fresh water habitats all over South

America (Gymnotiforms) and parts of Africa (Mormyriforms). Research suggests

that these fish independently evolved a structure in the tail called the electric organ

(EO) [26,42,48]. The EO acts as a current source [10,15], discharging electricity gener-

ated by either modified muscle cells (myogenic) or nerve cells (neurogenic) [8] into the

water surrounding it. In an aquatic environment filled with obstacles, obstructions,

predators and prey, the electric organ discharge (EOD) is modulated by objects with

impedances that are different from the surrounding water [3,44,82]. Lower impedance

objects “attract” the field lines whereas higher impedance objects “repel” them. The

local potentials of this modulated field are sensed by electroreceptors distributed over

the surface of the fish’s body, and used in electrolocation [12,15,50,51,81]. The fields

create a two-dimensional projection of the surrounding three-dimensional field, called

the electric image (akin to images on a retina in the visual system) [10]. As described

above, neighboring objects, including obstacles, conspecifics, predators and prey, cast

“shadows” in this electric image, and thus can be sensed by the fish. Previous work
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has shown that weakly electric fish can discriminate the size, shape and distance of

objects in range of their electric field [1, 4, 31,65].

Weakly electric fish can be classified broadly by the spatiotemporal properties of

their electric signal. “Pulse-type” fish emit discrete, periodic pulses followed by a

silent period until the next pulse [20, 29]. In contrast, “wave-type” fish emit a con-

tinuously modulating periodic signal, without any breaks in between. [17] Pulse- and

wave-type electric fish experience similar but distinct challenges during social commu-

nication and gathering electrosensory information from the environment. Wave-type

species have distinct EOD patterns, and species differences can be reflected in fre-

quency, harmonic content and spatial distribution of EOD [20,23,45,61].

I will be focusing on wave-type fish, whose EOD potential oscillates periodically

at the EOD frequency (f1). EOD frequencies span a wide range, from 25 to 2000

Hz [23]. The frequency of any given individual remains relatively constant over time,

but is subject to change from environmental factors [16,43,87].

1.3.1 Emergent modulations in electrosensory

signals

The weakly electric fish EOD can be modulated in a number of ways. Objects in

the environment influence the amplitude of the electric field sensed by the receptors

according to their impedance, creating local amplitude modulations (AMs) and phase
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modulations (PMs). These local modulations carry information on the size, shape

and distance of objects [1,4,31,65]. Movement of objects and other organisms relative

to the fish can create spatiotemporal AMs across its skin surface, termed movement

envelopes [84].

Weakly electric fish live in social groups in the wild, and frequently swim close

enough to each other for EOD interactions to occur [74]. Interaction with a con-

specific of similar frequency creates a specific combination of amplitude and phase

modulations, termed a beat. Interaction between multiple conspecifics can create

second-order effects such as ‘beats of beats’, which are termed ‘envelopes’ in the

electric-fish literature. Beats are predominantly at the pairwise difference frequen-

cies (dfs) and envelopes are at the difference of difference frequencies (ddfs). The

weakly electric fish electrosensory system is the source of the relevant sensory signal,

and these emergent modulations are caused by additive interactions of unmodulated

sensory signals from multiple individuals, and not by any environmental features.

AMs and PMs caused by objects with differing impedance, movement envelopes

due to relative motion of objects and conspecifics, as well as beats and envelopes due

to interfering conspecific signals all occur simultaneously in the electrosensory milieu,

and it is up to the nervous system in these animals to categorize, declutter and

interpret signals and use them to generate behavior. All the modulations described

above have the common characteristic that they are nonlinear. Accordingly, a linear

analysis such as the Fourier transform is unable to extract this rich set of information,
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i.e. they cannot be detected in the frequency spectrum of the received signal. However,

neural circuits are inherently nonlinear, and there are several proposed mechanisms

like saturation and rectification that the nervous system can utilize in order to extract

nonlinear modulations.

1.4 Thesis synopsis

In Chap. 2, I provide an analytical explanation of the generation of envelopes

in sensory systems. I begin with an analysis of a seemingly simple case, interfering

sinusoids, and show that by applying elementary nonlinear operations such as rectifi-

cation, information emerges at the beat and envelope frequencies. [76]. Many of these

operations are biologically relevant, and already being explored as candidate neural

correlates of envelope processing. I also provide a mathematical justification of the

algorithm which computes difference frequencies in the electrosensory system of these

fish. This algorithm proposed by Heiligenberg et al. [34,35] involves information col-

lected from electroreceptors across the body surface compared and compiled into a

“democratic” estimate of the frequency difference with a conspecific.

In the third chapter, I explore the behavior that is iconic of the weakly electric fish

model: the Jamming Avoidance Response (JAR) in the glass knifefish Eigenmannia

virescens. In this behavior, the EOD frequency of the fish moves away from that of

an interfering conspecific. The JAR is initiated when the two frequencies are close
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but not identical. This condition gives rise to low-frequency beats (Chap. 2), which

have been shown to be detrimental to electrosensory processing [5, 30, 54]. JAR was

discovered in Eigenmannia over half a century ago [47, 83], and the neural circuitry

and computational algorithm underlying this behavior have been deciphered [6, 35].

In this chapter, I describe a set of experiments used to fit a “black-box” input–

output model to the JAR. [53]. Closed-loop experiments, where the frequency of

an artificial signal was tied to the instantaneous frequency of the fish, was used to

characterize this behavior. This characterization was done at multiple operating

points: at the resting frequency of the fish as well as at surrounding frequencies. This

allowed a global nonlinear model to be constructed that could simulate the behavior

given a particular frequency input.

In groups of two or more fish, higher-order sensory modulations, called envelopes,

emerge as a result of EOD interactions (Chap. 2). Do these fish detect and respond

to envelopes as well? Recent studies have shown responses at envelope frequencies at

various levels of neural electrosensory processing [55, 60, 70]. However, a behavioral

response to envelope stimuli was unknown. I describe in Chap. 4 work by Dr. Sarah

Stamper and I resulting in discovery of the Social Envelope Response (SER) and its

properties [76]. Characterizing the JAR was a necessary step to differentiate it from

responses to envelopes. Stimuli that would not elicit a low-frequency beat, but do

produce low-frequency envelopes were shown to elicit responses similar to the JAR.

These responses could be a behavior correlate to envelope-sensitive neural circuits
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discovered previously [55,60,70]; however, these responses can also be described by a

small addition to the already existing JAR circuitry. One such mechanism is proposed

in Chap. 4, although the neural mechanism underlying envelope processing is still

unclear.
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Chapter 2

A Mathematical Treatment of

Sensory Envelopes

2.1 Representation of sensory signals

2.1.1 Time series

Animals perceive their environment using a myriad of sensory signals. These

signals are measured and converted into neural code by a similarly large variety of

sensory organs, which are generally highly tuned to the specific stimuli and environ-

ments. A metric of the property of the environment being measured as a function of

time forms the relevant sensory signal, which can thus be expressed as a time series,

i.e. a time-varying amplitude s(t).
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2.1.2 Frequency domain representation

A signal can also be represented in the frequency domain. The common way of

effecting this is the Fourier transform:

S(ω) =

∫ +∞

−∞
s(t)e−iωtdt. (2.1)

where at each frequency ω, S(ω) is a complex number whose magnitude and phase

correspond to the amplitude and phase of a sinusoid of frequency ω. The integral

(sum) of these sinusoids mathematically gives rise to the same time series s(t).

Mathematically, a Fourier transform is simply a projection of the signal onto an

infinite-dimensional basis vector, the elements of which are the complex sinusoids

eiωt = cosωt+ i sinωt.

The time and frequency domain representations are interchangeable and contain

the same information. Then why is the frequency domain representation advanta-

geous? Instead of viewing the signal as amplitudes in time, the frequency domain

adds the perspective of periodicity, i.e. it quantifies the presence and relative con-

tribution of periodic signals which contribute to the overall signal. Several physical

processes, including inertial dynamics, can be described using linear models. A linear

system effects relative amplification and phase change on each periodic component of

a signal without changing the periodicity itself. Thus, the effect of the system on each

frequency is independent of other frequency components, which makes the frequency

domain an efficient method to model and understand physical systems. Similarly,
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frequency domain models of biological systems may also be constructed and utilized,

as I have done with the JAR in Chap. 3.

2.1.3 FM representation

Even though time series and frequency-domain representations are used in the

majority of signal processing applications, there are many other useful representa-

tions of signals. One relevant example is the so-called Frequency Modulation (FM)

representation.

In FM representation, the signal is synthesized as modulations of modulations of

a carrier signal. A simple case is a sinusoidal carrier whose frequency is modulated

around its initial value, ωc, by a sinusoidal modulator of frequency ωm. This produces

a combined signal of the form

s(t) = A sin(ωct+ I sinωbt) (2.2)

The modulated function s(t) can be expanded [22] as:

s(t) =A

{
J0(I) sinωct

+ J1(I) [sin(ωc + ωm)t− sin(ωc − ωm)t]

+ J2(I) [sin(ωc + 2ωm)t+ sin(ωc − 2ωm)t]

+ J3(I) [sin(ωc + 3ωm)t− sin(ωc − 3ωm)t] + . . .

}
(2.3)

where Jn(I) represents the Bessel function of the first kind and nth order evaluated

at the modulation index I, which is the ratio of the peak deviation to the modulating
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frequency ωm. Note that this equation clarifies what a frequency modulation does

to the spectrum of a “pure” sinusoidal carrier — power which was concentrated at

the carrier frequency ωc is distributed into the sidebands (ωc − ωm), (ωc + ωm), (ωc −

2ωm), (ωc + 2ωm), . . . , according to the Bessel functions, which decay with increasing

order. The sidebands are separated from each other by the modulating frequency,

ωm.

A time series, s(t) can similarly be synthesized as a (possibly infinite) series of

nested modulations, in the following manner:

s(t) = Ic sin(ωct+ Im1 sin(ωm1t+ Im2 sin(ωm3 + . . . ))) (2.4)

and the modulating frequencies ωc, ωm1, ωm2, . . . and the modulating envelopes Ic,

Im1, Im2, . . . can be evaluated by performing the analytic signal analysis described

in [40] “ad infinitum or ad nauseum if we so desire.” The FM representation is

useful as a way to synthesize complex “naturalistic” music, with a large number of

harmonics, using relatively few parameters [22,40].

Envisioning a sensory signal using the FM representation, i.e. as “modulations

of modulations” turns out to be useful to understand the emergence of envelopes in

these systems. In the following section, we explore this topic in the context of the

electrosensory system of weakly electric fish.
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2.2 Beats and envelopes in the

electrosensory system

This section focuses on emergent modulations arising from multiple interacting

motionless wave-type weakly electric fish. We address the following questions:

• What are beats and envelopes in the context of interacting EODs?

• How do beats and envelopes emerge from sums of sinusoids?

• What are the constraints on biological mechanisms for the extraction of beats

and envelopes?

2.3 Definition of beats and envelopes

Interactions of the electric fields of two motionless fish with different EOD frequen-

cies give rise to a beat pattern at the difference frequency (df) of the two EOD signals.

The sum of two sinusoids can be mathematically decomposed into an amplitude and

phase modulated signal:

a1 cos(ω1t) + a2 cos(ω2t) = M(t) cos(ψ(t)). (2.5)

However, the structure of M(t) and ψ(t) is complicated:

M(t) =
√
a21 + a22 + 2a1a2 cos((ω2 − ω1)t),

ψ(t) =
ω1 + ω2

2
t+ tan−1

(
a1 − a2
a1 + a2

tan

(
ω1 − ω2

2
t

))
.

(2.6)
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Figure 2.1: A sum of three sinusoids (blue), S1, S2 and S3, with amplitudes a1, a2 and
a3, and frequencies f1, f2 and f3, along with the AM (black) and envelope (red), as
calculated from the magnitude of the analytic signal. The AM (green) and envelope
(magenta) as calculated from full-wave rectification and filtering are inverted and
shifted to the bottom of the combined signal. Enlarged sections of both the top and
bottom profiles are shown in each of the plots. f1 is 500 Hz in all cases. (A) For df at
−52 and 48 Hz (with a1 : a2 : a3 = 10 : 1 : 1), the signal has a meaningful envelope at
the |ddf | at 4 Hz. (B) This is not the case when df values are −48 and 100 Hz, and
there is no spectral separation with the |ddf | of 52 Hz. The analytic envelope does
not follow the amplitude profile of the AMs; here the low-frequency profile is created
by a secondary interaction between the |df | at 48 Hz and the |ddf | at 52 Hz. The
rectification envelope with a low-pass cut-off set at 10 Hz captures this envelope. (C)
When the amplitude of S1 does not dominate (a1 : a2 : a3 = 5 : 5 : 2), the analytic
envelope deviates from the extrema of the AM, while the rectified signal produces an
‘envelope’ in the sense that it tracks some overall structure of the EOD, although the
carrier signal is not well defined. It should be noted that the rectification envelope
(magenta) in B and C have been amplified; thus this method has the penalty of
reduced gain.
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When a1 � a2 > 0 these signals can simplified to an intuitive expression:

M(t) ' a1 +
a2
a1

cos
(
(ω2 − ω1)t

)
,

ψ(t) ' ω1t.

(2.7)

This holds for electric fish because the amplitude of the self-generated EOD for a fish

generally dominates the amplitudes of EODs of conspecifics.

Mathematically, the “modulator” M(t) above is referred to as the envelope of

the signal. However, this quantity is termed the AM by the electric fish community,

because envelope coding in electric fish is observed in the afferents of P-type electrore-

ceptors, which code EOD amplitude increases. Thus the source signal for envelope

extraction is the AM of the EOD, not the underlying EOD signal itself. However,

as shown in Eq. (2.6), both the amplitude and phase are modulated simultaneously.

This particular combination of amplitude and phase modulations is termed the beat

of the EOD.

The AM itself can be written in terms of amplitude and phase modulations:

M(t) = E(t) cos(γ(t)) (2.8)

The second-order envelope E(t), i.e. the modulator of the AM, will be referred to as,

simply, the envelope. Of course, we can further express E(t) as modulations, and so

on, resulting in a nested modulation representation similar to Eq. (2.4).

For three interacting, motionless EODs (modeled as sinusoids), M(t) and ψ(t)

are more complicated. These interactions can produce a combined signal with higher
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order features such as “beats of beats” (primarily at the ddf), which are termed social

envelopes.

The AM M(t), of a signal, s(t), is the signal such that, when multiplied by a carrier

signal, cosψ(t), reproduces s(t), namely s(t) = M(t) cosψ(t). Under appropriate

assumptions, M(t) is a smooth curve that approximately traces the local maxima

of s(t), and −M(t) its minima, and these local extrema approximately correspond

to the peaks and troughs of cosψ(t). Thus, for an AM to be “well defined” (in a

sense formalized below), the extrema should oscillate at slower frequencies than the

carrier. In the case of two sinusoids, the expression for M(t) in Eq. (2.6) represents

a pure AM only if it is in a lower frequency band than the carrier signal cosψ(t),

i.e. the signals are spectrally separated. In fact the Hilbert transform can be used to

decompose such a signal into a product of its amplitude and carrier if those signals are

spectrally separated [7,66]. M(t) and cosψ(t) resulting from mixing of two sinusoids

as in Eq. (2.6) generally results in infinite harmonics; however, when a1 � a2 > 0

and |ω2 − ω1| < ω1, the majority of the spectral content of the M(t) and cosψ(t) are

band-separated, so they form well-defined AMs [49,66]. These restrictions can also be

explained in the context of a signal, initially constructed as s(t) = M̂(t) cos ψ̂1(t). The

AM and carrier extracted by the Hilbert transform, M(t) and cosψ(t) will generally

not be equal to M̂(t) and cos ψ̂(t) unless M̂(t) and cos ψ̂1(t) are themselves band

separated. For three or more sinusoidal EODs, there are analogous constraints on

amplitudes and frequencies of the individual EODs in order that their sum produces
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a well-defined envelope of the AM (See Fig. 2.1).

Consider a group ofN weakly electric fish, assumed motionless, with approximated

sinusoidal EODs. The EOD of fish k, where k ∈ {1, 2, . . . , N}, is perceived at an

electroreceptor of fish 1 as akck, where ak is the amplitude, and ωk = 2πfk is in

radians, where fk is the frequency of fish k in Hz. ak is a function of the relative

distance and orientation between fish 1 and fish k for k 6= 1, and a1 would depend on

body bending of fish 1. The total signal at the electroreceptor is:

s(t) =
N∑
k=1

ak cos(ωkt+ φk) =
N∑
k=1

akck(t), (2.9)

where cos(ωkt + φk) = cos(θk) = ck. Since s(t) is assumed to be the signal at a

receptor of fish 1, the amplitude of fish 1 will generally be greatest, i.e. a1 � ak,

k = 2, 3, . . . N .

We have stated that amplitudes and envelopes contain the dfs and ddfs, but it is

clear from Eq. (2.9) that the signal at the electroreceptor has only components at ωk.

Thus, a nonlinear method is required to extract AMs and envelopes.

2.4 Methods for envelope extraction

2.4.1 Magnitude of the analytic signal

A common definition of AMs is as the magnitude of the analytic signal. For a

given real input signal s(t), its complex analytic signal is defined as A(t) = s(t)+iŝ(t),
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Real

Im
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ar
y

Figure 2.2: Analytic representation of sum of cosines signal at time t. Each of the
three short vectors represents an analytic signal; the original signals are shown on
the ‘Real’ axis, and their Hilbert transforms on the ‘Imaginary’ axis. Over time, each
vector rotates, tracing a circular path at its angular velocity ωk. However, because
they rotate around the tip of the previous vector, the combined signal (orange vector)
traces out a complex Lissajous figure. This combined signal can be parameterized by
the magnitude, M(t), and phase, ψ(t), of the analytic signal.
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where ŝ is obtained by the Hilbert transform:

ŝ(t) = H(s)(t) =
1

π
P

∫ ∞
−∞

s(τ)

t− τ
dτ = s(t) ∗ 1

πt
, (2.10)

where P denotes Cauchy principal value, and ∗ denotes the convolution operator.

There are two key properties of the Hilbert transform used extensively below.

First, the Hilbert transform is linear:

H(au(t) + bv(t)) = aH(u(t)) + bH(v(t)).

Second, the Hilbert transform of sinusoids is given by:

H(cos(ωt)) = sin(ωt),

H(sin(ωt)) = − cos(ωt).

We can express the analytic signal in polar form as A(t) = M(t)eiψ(t). The

AM is M(t) = |A(t)| and the phase function is ψ(t) = ∠A(t). The nonlinearity in

this form of AM extraction arises not from the Hilbert transform or analytic signal

construction—which are both linear—but rather from the magnitude operation.

To apply this to the sum of sinusoids signal, let Ak be the complex analytic signal

corresponding to akck, namely Ak = akck + iaksk = ake
iθk . Then

A =
N∑
k=1

Ak =
N∑
k=1

ake
iθk = M(t)eiψ(t) (2.11)

is the analytic signal of s(t) in Eq. (2.9). Graphical representation of this decompo-

sition is shown in Fig. 2.2, for the three sinusoid case. The real part of the analytic
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signal is the real signal s(t) = M(t) cosψ(t). The magnitude is calculated via

M2(t) =

∣∣∣∣∣
N∑
k=1

ake
iθk

∣∣∣∣∣
2

=

(
N∑
k=1

ake
iθk

)(
N∑
k=1

ake
−iθk

)

=
N∑
k=1

a2k +
N−1∑
k=1

N∑
j=k+1

akaj
(
ei(θk−θj) + e−i(θk−θj)

)
=

N∑
k=1

a2k + 2
∑
k 6=j

akajck−j(t)

= α2 + 2
∑
k 6=j

akaj(ck−j − 1),

(2.12)

where
n∑
k=1

ak = α, and the summation notation k 6= j refers to the
(
N
2

)
= N(N−1)

2

combinations of k, j ∈ {1, . . . , N}, k 6= j.

M(t) = α

√
1 +

2

α2

∑
k 6=j

akaj(ck−j − 1) (2.13)

The Taylor series expansion can be approximated, to first order, as

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + . . . ' 1 +

x

2
, (2.14)

when |x| is small. To apply this first order approximation to Eq. (2.13), note that

x =
2

α2

∑
k 6=j

akaj(ck−j − 1) , 0 ≤ |x| ≤ 4

α2

∑
k 6=j

akaj.

When a1 dominates, the upper bound is approximately 4(a2+...+aN )
a1

, which for suffi-

ciently large a1 is small, and the approximation in Eq. (2.14) is justified. Thus,

M(t) ' α +
1

α

∑
k 6=j

akaj(ck−j − 1)

= α− 1

α

∑
k 6=j

akaj︸ ︷︷ ︸
DC

+
1

α

∑
k 6=j

akajck−j︸ ︷︷ ︸
dfs

.
(2.15)
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Subtracting DC, we obtain a “Hilbert approximation,” MH , of the AM:

MH(t) =
1

α

∑
k 6=j

akajck−j

=
∑
k 6=j

bkj cos((ωk − ωj)t+ (φk − φj))
(2.16)

where bkj =
akaj
α

. The AM is approximately a sum of
(
N
2

)
cosines at the dfs |ωk−ωj|.

The envelope of this AM is obtained as the magnitude of the analytic signal of

the expression in Eq. (2.16). Repeating steps in Eqs. (2.12–2.16),

EH(t) =
∑

ekjpqc|k−j|−|p−q|

=
∑

ekjpq cos((|ωk − ωj| − |ωp − ωq|)t+ (|φk − φj| − |φp − φq|)),
(2.17)

where the summation is over the set of all
((N

2 )
2

)
= N(N2−1)(N−2)

8
combinations of

{{k, j}, {p, q}} such that k, j, p, q ∈ {1, . . . , N}, k 6= j, p 6= q and {k, j} 6= {p, q}, and

ekjpq =
bkjbpq
β

=
akajapaq
α2β

, β =
∑
k 6=j

bkj.

The envelope can be approximated as the sum of sinusoids at ddfs of the frequencies

contained in the original sum of sinusoids. In the context of this chapter (mixing of

three EODs), from 2.17,

EH3(t) '

a21a2a3 cos(|∆θ21| − |∆θ31|) + a1a
2
2a3 cos(|∆θ21| − |∆θ32|)

+ a1a2a
2
3 cos(|∆θ32| − |∆θ31|)

a1a2 + a2a3 + a3a1
,

where ∆θ21 = (ω2 − ω1)t + (φ2 − φ1) = 2π(df2)t + (φ2 − φ1). Similarly, ∆θ31 =

2π(df3)t + (φ3 − φ1), and ∆θ32 = 2π(df1)t + (φ3 − φ2). If we assume a1 � a2 and

a1 � a3, we can further approximate this as

EH3(t) '
a1a2a3
a2 + a3

cos(2π(ddf)t+ Φ), (2.18)
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where ddf = |df3| − |df2|, and Φ = (|φ3 − φ1| − |φ2 − φ1|) Thus the envelope is pri-

marily composed of the ddf , namely the difference of difference frequencies between

fish 1 and other conspecifics.

2.4.1.1 Caveats of the analytic signal method

Real-time envelope extraction using the analytic signal is not biologically plausi-

ble, since the Hilbert transform is a noncausal operator. The analytic envelope of a

narrow-band Gaussian white noise, as discussed in [60], is generally well-defined. How-

ever, this breaks down as the number of sinusoidal components are reduced (unless

one of the amplitudes is dominant), as shown in the case of three EODs in Fig. 2.1C.

The approximation in Eq. (2.18) is not applicable for a wide range of parameters, e.g.

any conspecific amplitude is non-negligible relative to a1, or insufficient band sepa-

ration between Fs, dfs and ddf . These limitations do not apply to our experimental

setup because (1) the combined signal perceived by the fish is dominated by its own

EOD and (2) the ddf and dfs used were sufficiently separated.

2.4.2 Envelope extraction via rectification and

low-pass filtering

A commonly used method of envelope extraction is rectification of the signal

followed by filtering. A similar mechanism may be used in electric fish via rectification
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Figure 2.3: Envelope extraction methods comparison. The input (top) is the sum of
three sinusoids, S1, S2 and S3, at f1 = 500, f2 = 452 and f3 = 552 Hz. S2 and S3

had amplitudes a2 = a3 = 0.5, while S1 had amplitude a1 = 1. The first plot in each
row is the spectrum of the output of a particular method of envelope extraction, and
the second column is the output when the method is used twice in succession. The
methods are mnemonically depicted by a sequence of filters, H depicts extraction via
the analytic signal, || depicts full-wave rectification and the diode depicts half-wave
rectification. High-pass and band-pass filters are depicted by frequency response gain
functions. It can be seen that all resulting signals from one application of each method
have maximum amplitude at the |df | frequencies (48 and 52 Hz), with an additional
component at the ddf (5 Hz). Applying the method twice extracts out the |ddf |
component alone. When used twice, each method extracts out the ddf component
alone, but with varying amplitudes.
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by having the firing threshold of a neuron close to the mean of the input, and then

filtering through a slow synapse [52,59].

2.4.2.1 Full-wave rectification

Full-wave rectification of a zero-mean signal produces the absolute value of the

signal. For the sum of sines from Eq. (2.9),

|s| =

∣∣∣∣∣
N∑
k=1

akck

∣∣∣∣∣ =

√√√√( N∑
k=1

akck

)2

=

√√√√ N∑
k=1

a2k

(
1 + c2k

2

)
+ 2

∑
k 6=j

akaj

(
ck+j + ck−j

2

)

|s| =

√√√√α2

2

(
1 +

1

α2

N∑
k=1

a2kc2k +
2

α2

∑
k 6=j

akaj(ck+j + ck−j − 1)

)
. (2.19)

By using the first order Taylor approximation from Eq. (2.14),

|s| ' α√
2
− 1√

2α

∑
k 6=j

akaj︸ ︷︷ ︸
DC

+
1√
2α

∑
k 6=j

akajck−j︸ ︷︷ ︸
dfs

+
1√
2α

∑
k 6=j

akajck+j +
1

2
√

2α

N∑
k=1

a2kc2k︸ ︷︷ ︸
Sum frequencies

(2.20)

If the band of difference frequencies |ωk − ωj| is spectrally separate from the sum

frequencies |ωk + ωj|, an appropriate filter can extract the dfs only, which form the

AM. Let LF (.) be such a filter, which high-passes DC and low-passes sum frequencies,

and define

IF (t) = LF (|s|) ' 1√
2

∑
k 6=j

bkjck−j =
IH√

2
(2.21)
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One more rectification and low-pass filtering step provides us with the envelope, at

the ddf :

EF (t) =
1

2

∑
ekjpqc|k−j|−|p−q| =

EH
2

(2.22)

Envelopes extracted by both methods thus have similar spectral content, and the

difference frequency components are separated only by scale.

2.4.2.2 Half-wave rectification

Envelopes can also be extracted by half-wave rectification. For a signal s(t), let

h(s) denote the positive half-wave operator, as follows:

h(s) =


s : s > 0

0 : s ≤ 0

(2.23)

h(−s) is thus the negative half wave, inverted to be positive. The signal itself can

be written as the difference of these two “half-waves”:

s = h(s)− h(−s) (2.24)

Similarly, the full-wave rectification is the sum of the two half-waves:

|s| = h(s) + h(−s) (2.25)

Using Eq. (2.24) and Eq. (2.25), the half-wave rectified signal is simply the average

of the full-wave rectification and the signal itself (in the zero-mean case):

h(s) =
s+ |s|

2
(2.26)
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Thus the half-wave rectified signal contains the frequencies from the full-wave rec-

tification (DC, dfs and sums) and the signal frequencies themselves. Using Eq. (2.20),

|s| ' α

2
√

2
− 1

2
√

2α

∑
k 6=j

akaj︸ ︷︷ ︸
DC

+
1

2
√

2α

∑
k 6=j

akajck−j︸ ︷︷ ︸
dfs

+
1

2

N∑
k=1

akck︸ ︷︷ ︸
fs

+
1

2
√

2α

∑
k 6=j

akajck+j +
1

2
√

2α

N∑
k=1

a2kc2k︸ ︷︷ ︸
Sum frequencies

(2.27)

Comparing Eq. (2.27) with Eq. (2.20), it is possible to extract dfs if the band

of difference frequencies |ωk − ωj| is spectrally separate from both the band of sum

frequencies |ωk + ωj| and the band of signal frequencies ωk. The filter LH(.) which

extracts dfs will have to, in this case, high-pass DC and low-pass signal as well as

sum frequencies. Applying this filter,

IH(t) = LH(h(s)) ' 1

2
√

2

∑
k 6=j

bkjck−j =
IF
2

=
IH

2
√

2
(2.28)

After one more rectification and low-pass filtering step, the envelope emerges:

EH(t) =
1

4

∑
ekjpqc|k−j|−|p−q| =

EF
2

=
EH
4

(2.29)

Comparing this to Eq. (2.22), we can see that half-wave rectification, in the ideal

case, only results in half the envelope power of full-wave rectification. In addition,

LH(.) needs to have cut-off frequencies between the signal frequencies and dfs. These

stricter restrictions as compared to LF (.) could, in practice, cause more signal loss.

This further degrades the power at the envelope, as can be seen in Fig. 2.3.
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2.5 The amplitude-phase Lissajous
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Figure 2.4: Amplitude-phase Lissajous of two or three sinusoidal signals. (A) The
parametric curve of analytic signal amplitude vs relative phase for the sum of two
signals S1 and S2 produces a circular graph that rotates counter-clockwise for positive
df (top) and clockwise for negative df (bottom), at frequency |df |. (B) The sum of
three signals S1, S2 and S3 results in a more complex Lissajous figure, for positive
ddf (top) and negative ddf (bottom). The Lissajous has a local rotation (arrows on
petals) and also a general precession (external arrow and increasing color gradient
on petals) (C) The amplitude and phase from B were low-pass filtered (Butterworth,
sixth-order, 20 Hz normalized cut-off). This shows that there is a low-frequency
precession of the graph in the counter-clockwise direction for positive ddf (top) and
clockwise for negative ddf (bottom). The precession is at frequency |ddf |.

In weakly electric fish, extensive research has abstracted the computation of dif-

ference frequencies as a comparison between the absolute signal amplitude and signal

phase. [33]. This so-called “amplitude-phase Lissajous” figure is illustrated for the
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case of two and three interacting sinusoids in Fig. 2.4. Here, we explain why this

Lissajous figure is able to extract the dfs, and why the low-pass filtered version of the

Lissajous has a global precession at the ddf . Consider the summed signal Eq. (2.9).

The phase function ψ(t) is

ψ(t) = tan−1

∑
aksk∑
akck

. (2.30)

Using tan−1 z =
i

2
ln

1− iz
1 + iz

,

ψ(t) =
i

2
ln

∑
ake
−iθk∑

ake
iθk

= θ1 +
i

2
ln

∑
ake
−i(θk−θ1)∑

ake
i(θk−θ1)

= θ1 + tan−1

∑
aksk−1∑
akck−1

The analytic phase relative to that of fish 1 is

PL(t) = ψ(t)− θ1(t) = tan−1

∑
aksk−1∑
akck−1

. (2.31)

This is the phase of the sum of the dfs,
N∑
k=1

akck−1. The analytic signal magnitude

(2.16), when a1 dominates, can be further simplified to

ML(t) =
N∑
k=1

bk1ck−1. (2.32)

The Lissajous (ML vs PL) consists primarily of df components, which is why the

graph in Fig. 2.4A rotates in the direction of the df in the case of two fish. However,

ML is a first order Taylor approximation. If, instead, we approximate to the second

order, we obtain

ML(t) ' α +
1

α

∑
k 6=j

akaj(ck−j − 1)− 1

2α3

(∑
k 6=j

akaj(ck−j − 1)

)2

. (2.33)
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The square term, when expanded, will contain product terms ck−jcp−q, which can be

written as their corresponding sums

ck−jcp−q =
1

2
(c|k−j|+|p−q| + c|k−j|−|p−q|).

This shows that the amplitude of the analytic signal contains ddf terms
akajapaq

2α3 c|k−j|−|p−q|.

(Fig. 2.3, top). Hence a low-pass filtered version of the Lissajous also serves as a

means to extract out components at ddf , albeit with reduced magnitudes. This is

illustrated by the graph in Fig. 2.4C rotating in the direction of the ddf . Fig. 2.3

(middle, bottom) shows that a ddf component is also present in the full-wave and

half-wave rectified signals. Interestingly, when we apply each extraction method twice

in succession, it affects the ddf component differently. It turns out that the half-wave

rectified signal contains a stronger component at the ddf than the half-wave rectified

AM.

2.6 Distributed computation of df

The amplitude-phase Lissajous described in the previous section is the abstraction

of the computation in the Electrosensory Lateral Line (ELL) and midbrain of these

fish, which ultimately reveals the df [6, 32, 34], without explicit “knowledge” of the

self-generated pacemaker frequency [16]. In this section, I describe how a similar com-

putation can be accomplished in a distributed manner, using pairwise comparisons of

amplitude and phase information from different areas of the body. Such a distributed
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computation does not need a central representation of signal amplitude and phase,

and thus is likely a more biologically relevant method. This is indeed what the neural

circuitry seems to accomplish [6, 35].

Consider two small areas on the body surface of fish 1, denoted by p and q. There

is a single conspecific, fish 2, in the neighborhood, as in the case of JAR, providing a

df . The signals at the two areas, sp and sq are:

sp(t) = a1c1 + a2pc2(t)

sq(t) = a1c1 + a2qc2(t)

(2.34)

These expressions assume that the fish’s own signal is perceived at a constant ampli-

tude a1 across the body surface. Eigenmannia has such a spatially uniform EOD [1].

Two types of tuberous receptors on the body surface sense high-frequency EOD dis-

turbances. P-units increase their probability of firing upon increasing amplitude of

the signal. [71, 72]. Applying Eq. (2.16) to the special case of two signals, the DC-

subtracted amplitudes at the two areas are:

Mp(t) '
a1a2p
a1 + a2p

c2−1

Mq(t) '
a1a2q
a1 + a2q

c2−1

(2.35)

T-units are receptors which fire in a phase-locked manner to the EOD, and thus

provide an encoding of phase [14, 72]. Similarly, from Eq. (2.30), the phases at the

two receptors are:

ψp = θ1 + tan−1
a1s1−1 + a2ps2−1
a1c1−1 + a2pc2−1

= θ1 + tan−1
a2ps2−1

a1 + a2pc2−1

ψq = θ1 + tan−1
a1s1−1 + a2qs2−1
a1c1−1 + a2qc2−1

= θ1 + tan−1
a2qs2−1

a1 + a2qc2−1

(2.36)
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Again, we make use of the assumption that the fish’s own amplitude dominates those

perceived from a conspecific, i.e. a1 � a2p, a1 � a2q. Under these assumptions, from

Eq. (2.35),

Mp(t) ' a2pc2−1(t), Mq(t) ' a2qc2−1(t) (2.37)

Also adding the small angle assumption of tan−1 z ' z for small z:

ψp(t) ' θ1 +
a2p
a1
s2−1(t), ψq(t) ' θ1 +

a2q
a1
s2−1(t) (2.38)

The amplitude-phase Lissajous for area p, for e.g., is constructed by placing the

amplitude Mp on the y-axis, and the pairwise differences between the ψp and phases

at other areas on the body surface on the x-axis. For simplicity, we can again con-

sider just the areas p and q, which would make the x-axis ψp − ψq. In case of a

two-dimensional X − Y curve such as the Lissajous, Greene’s theorem gives us the

infinitesimal area swept by the curve as a line integral [41]:

dA =
1

2
(xdy − ydx) (2.39)

The sum of the differential areas thus obtained at areas p and q are:

2dAp,q = (ψp − ψq)dMp −Mpd(ψp − ψq) + (ψq − ψp)dMq −Mqd(ψq − ψp)

= (ψp − ψq)d(Mp −Mq)− (Mp −Mq)d(ψp − ψq)
(2.40)
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The rate of change of area is:

2
dAp,q
dt

= (ψp − ψq)
d

dt
(Mp −Mq)− (Mp −Mq)

d

dt
(ψp − ψq)

=
a2p − a2q

a1
s2−1(a2p − a2q)

d

dt
c2−1 − (a2p − a2q)c2−1

a2p − a2q
a1

d

dt
s2−1

= −(a2p − a2q)2

a1
(c22−1 + s22−1)(ω2 − ω1)

dAp,q
dt

= −(a2p − a2q)2

2a1
df

(2.41)

The above expression clearly shows that the sign of area, i.e. direction of rotation

of the Lissajous clearly depends on the sign of df , and the rate of change of area is

proportional to |df | – thus the curve rotates faster with increase in |df | – in fact, it

is periodic at frequency |df |. Moreover, since the Lissajous can be created with any

pair of areas p and q, each pairwise interaction does provide a “vote” towards the

democratic computation of the df [32, 34]. The electrosensory behaviors are indeed,

as Heiligenberg [33] puts it, a result of “a pandemonium of local computations and

competing instructions”.
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Chapter 3

Modeling the

Jamming Avoidance Response

The Jamming Avoidance Response, or JAR, in the weakly electric fish has been

analyzed at all levels of organization, from whole-organism behavior down to spe-

cific ion channels. Nevertheless, a parsimonious description of the JAR behavior in

terms of a dynamical system model has not been achieved at least in part due to the

fact that “avoidance” behaviors are both intrinsically unstable and nonlinear. The

experimental setup described in [53] overcame the instability of the JAR in Eigen-

mannia virescens by closing a feedback loop around the behavioral response of the

animal. Specifically, the instantaneous frequency of a jamming stimulus was tied to

the fish’s own electrogenic frequency by a feedback law. Without feedback, the fish’s

own frequency diverges from the stimulus frequency, but appropriate feedback sta-
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bilizes the behavior. After stabilizing the system, we measured the responses in the

fish’s instantaneous frequency to various stimuli. A delayed first-order linear system

model fit the behavior near the equilibrium. Coherence to white noise stimuli to-

gether with quantitative agreement across stimulus types supported this local linear

model. Next, we examined the intrinsic nonlinearity of the behavior using clamped-

frequency-difference experiments to extend the model beyond the neighborhood of

the equilibrium. The resulting nonlinear model is composed of competing motor re-

turn and sensory escape terms. The model reproduces responses to step and ramp

changes in the difference frequency (df) and predicts a “snap-through” bifurcation as

a function of df that we confirmed experimentally.

3.1 Introduction

Weakly electric fish emit an electric organ discharge (EOD) that is used for elec-

trolocation [18, 80] and communication [27, 38, 39, 79]. In wave-type electric fish, the

EOD is quasi-sinusoidal and has a relatively stable baseline frequency when undis-

turbed [11,13,62,85,86]. When two or more fish are in close proximity (< 1 m), their

EODs interact to produce emergent beats with amplitude and phase modulations

at the difference frequency (df) between the fish (Eqs. (2.31),(2.32)). Eigenmannia

virescens (Fig. 3.1) shift their baseline EOD frequency in response to low-frequency (<

15 Hz) dfs [16,83], which have been shown to impair aspects of electrolocation [5,30].
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Figure 3.1: (A) Eigenmannia virescens, the “glass knifefish”. Photo credit: Will
Kirk. (B) The pseudo-sinusoidal EOD of Eigenmannia. This amplified EOD signal
was recorded from a fish with a baseline frequency of approximately 421 Hz.
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The direction of the frequency shift is determined by the sign of the df and results

in an increase in the magnitude of the df . This behavior is known as the Jamming

Avoidance Response (JAR).

The JAR has been analyzed at all levels of organization, from whole-organism

behavior down to specific ion channels [6, 28, 33, 35]. Despite the fact that the JAR

is among the best understood sensorimotor circuits, the sensorimotor responses have

not been modeled as a dynamical system. One challenge to modeling the temporal

dynamics arises from the intrinsically ‘unstable’ nature of the JAR. This is because

the fish shifts its EOD frequency (f1) in the direction away from the frequency of the

conspecific (f2), resulting in an increase of |df |, where df = f2 − f1. We overcame

this challenge by closing a feedback loop around the natural behavior: the frequency

of a conspecific-like signal was calculated and adjusted in real-time to stabilize the

response and drive it to any desired frequency in a neighborhood of the fish’s original

baseline frequency.

Perturbation experiments on the stabilized closed-loop system were used to char-

acterize the dynamics of the JAR. These perturbations included sinusoids, sums of

sinusoids, chirps, and band-limited noise. Responses to these stimuli were used to

estimate a non-parametric frequency response function (FRF). The FRF was then

used to infer the frequency response of the open-loop behavior, i.e. the JAR itself. A

first-order delayed parametric model was fit to the behavior near its equilibrium.

This local model does not, however, capture the nonlinear features of the behavior:
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the biological relevance of the JAR lies in its escape from the unstable equilibrium.

To address this, we extended the linear model using additional experiments in which

the dfs were “clamped” to furnish a complete nonlinear model. The nonlinear model

was parsed into terms that capture competing avoidance and return responses and

was validated by comparison with responses to open-loop stimuli. The model was

also used to predict a saddle–node bifurcation in the vector field of the system, which

was exhibited in the behavior as a ‘snap-through’ of the fish’s frequency (f1) from

one stable equilibrium to another.

3.2 Methods

3.2.1 Experimental setup

Adult Eigenmannia virescens (10−15 cm in length) were obtained from commer-

cial vendors. The fish were housed in group aquarium tanks that had a water temper-

ature of approximately 27◦C and a conductivity in the range of 150−500 µS/cm [36].

All experimental procedures were approved by the Johns Hopkins Animal Care and

Use Committee and followed guidelines established by the National Research Council

and the Society for Neuroscience.

The experimental tank was maintained at a temperature of 25± 3◦C and conduc-

tivity of 150± 25 µS / cm. Each fish (N = 7; n = 5 reference-tracking trials, n = 2

clamp trials) was tested individually. Each fish was acclimated to the testing tank for
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a minimum of 24 hours prior to the start of the experiment. After the initial accli-

mation period the fish was restricted in a chirp chamber for 2− 3 hours to allow the

EOD frequency to stabilize. The chirp chamber served to restrict the movement of

the fish and prevent changes in orientation during the experiment, resulting in more

consistent measurements of the EOD frequency. A pair of measurement electrodes

(red) were placed longitudinally (near the fish’s head and tail) to record the EOD

and a second pair of stimulus electrodes (black) were placed transverse to the fish to

provide a frequency-controlled sinusoidal stimulus (Fig. 3.2A). The distance between

each pair of electrodes was 25 cm.

The EOD of the fish, recorded via the head-to-tail electrodes (Fig. 3.2A ; red

circles), was filtered and amplified (0.1 Hz - 1 kHz bandpass, gain 100 ; A-M Sys-

tems Model 1700, Sequim, WA, U.S.A.) and input to a frequency-to-voltage converter

(F2V; FV-1400, Ono-Sokki, Yokohama, Japan). The F2V calculates the frequency

of the signal using precise time differences. The F2V output was further filtered

(Chebyshev low-pass, 30 Hz cutoff). Both the amplified signal and the F2V output

were fed into a Power1401 Mk.II signal acquisition device (CED, Cambridge, U.K.)

which ran a custom sequencer script that read the input signal, performed the feed-

back calculation and generated a sinusoid with the desired output frequency. Using

this setup enabled regular temporal sampling intervals and provided a lower and more

measurable and repeatable computation time than including a standard computer in

the feedback. The signal acquisition device received parameters and reference signal
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for each trial from the Spike2 software (CED, Cambridge, U.K.) which ran simulta-

neously on a computer. During the trials, this software received and recorded data

from the input, output and intermediate channels. The amplitude of the stimulating

sinusoid was 100 µV/cm (unless otherwise noted) which produced approximately 30%

contamination of the EOD, as measured at a 1 cm dipole placed adjacent to the head

of the fish.

We performed an identification experiment on the feedback system to assess what

its characteristics were, especially the delay introduced by the equipment. The con-

tribution was minimal (∼ 2 ms delay) due to fast instrumentation (data not shown).

As such, the feedback delay was not incorporated into subsequent calculations.

3.2.2 The closed-loop approach

The fish EOD frequency f1(t) and the stimulus frequency f2(t) are functions of

time. Under constant lighting, temperature, and conductivity, and without conspe-

cific stimulation, the EOD frequency remains relatively stationary over long periods

of time [11]. The initial time t = 0 for each trial was preceded by a period of no

stimulation for at least 300 s, and we defined the baseline (initial) frequency f1(0) as

the EOD frequency at that initial time.
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Figure 3.2: Experimental Setup. (A) Schematic of the closed-loop system. The ref-
erence frequency, r(t), EOD frequency, y(t), and the frequency of the input signal,
u(t), are all baseline subtracted, so that 0 Hz corresponds the fish’s baseline EOD
frequency. The EOD is measured (recording electrodes, red), amplified, and its fre-
quency, y(t), is extracted. The input frequency u(t) = α(y(t)− r(t)) is fed to a signal
generator, which outputs a sinusoid of that frequency. This sinusoid is played back
through a stimulus isolation unit (SIU) to the fish (stimulating electrodes, black). (B)
A block diagram representation of the experimental system. Here, R(s), Y (s), U(s)
and D(s) are the Laplace transforms of the reference, input, output and difference
frequencies respectively. J(s) represents the (open-loop) JAR behavior, namely the
transfer function from U(s) to Y (s). The transfer function from the computed differ-
ence D(s) and output Y (s) is The closed-loop transfer function H(s) relates R(s) to
Y (s).
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The following control variables were chosen as frequencies relative to f1(0):

y(t) = f1(t)− f1(0),

u(t) = f2(t)− f1(0),

d(t) = y(t)− u(t)

(3.1)

The signal u(t) served as the input and y(t) was the measured output of the behavior.

The signal d(t) is the difference between these signals, also referred to as the df .

Given a reference signal r(t), a simple proportional controller was able to stabilize

the system:

u(t) = −α(r(t)− y(t)). (3.2)

The controller gain was typically selected as α = 2 (unless otherwise noted) and was

positive for all experiments.

The frequency of the applied signal S2 was f2(t) = f1(0) + u(t). S2 is calculated

as a function of time:

S2(t) = a2 sin

(∫ t

0

f2(t)dt

)
= a2 sin

(
f1(0)t+

∫ t

0

u(t)dt

)
(3.3)

where a2 is the stimulus amplitude (typically 100 µV/cm). The generation of applied

signals from frequency trajectories is illustrated in Fig. 3.3.

In the frequency domain, J(s) denotes the input–output transfer function corre-

sponding to the behavior at frequency s = jω. Thus J(s) is the behavior transfer

function from U(s) to Y (s), where U(s) and Y (s) are the Laplace transforms of

u(t) and y(t), respectively. G(s) is the open-loop transfer function between D(s) =
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Figure 3.3: Instantaneous frequencies are the primary signals of interest in this chap-
ter, but ultimately voltage signals are applied into, and measured from, the water.
This can be confusing because we often wish to create sinusoidally varying frequency
trajectories (or chirps, or sums of sines), and then use these frequency trajectories to
generate a voltage signal. This figure illustrates the generation of an applied signal
S2(t) from a sinusoidally varying frequency, f2(t). (A) In this scenario, the fish’s
baseline frequency is f1(0) = 500 Hz, and the input frequency trajectory is a sinusoid
of 400 Hz magnitude and 5 Hz frequency—a single 0.2 second period is shown. Thus
u(t) = 400 sin 10πt, and the stimulus frequency is f2(t) = f1(0)+u(t). (B) A signal of
amplitude 1 V is generated with the frequency varying as f2(t), using Eq. (3.3). Note
that for illustration purposes, the stimulus frequency magnitude and stimulus ampli-
tude shown in this figure is exaggerated beyond values applied during experiments.
Typical experimental frequency magnitude value is ∼ 1 Hz, and stimulus amplitude
value is ∼ 100µV/cm.
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(Y (s)− U(s)) and Y (s). Similarly, H(s) is the closed-loop transfer function between

R(s) and Y (s) (Fig. 3.2B). The open-loop transfer function, J(s), can be converted to

closed loop, H(s), and vice versa. The following equations relate these three transfer

functions:

Y (s)

R(s)
= H(s) =

−αJ(s)

1− αJ(s)
=

−αG(s)

(1− α)G(s)− 1
(3.4)

Y (s)

U(s)
= J(s) =

H(s)

α(H(s)− 1)
=

G(s)

G(s)− 1
(3.5)

Y (s)

D(s)
= G(s) =

J(s)

J(s)− 1
=

H

H(1− α) + α
(3.6)

3.2.3 Stimulus types

3.2.3.1 Single sines

Sinusoidal stimuli were of frequencies 0.01, 0.055, 0.215, and 0.995 Hz and of du-

rations 1000, 1000, 500, and 200 s respectively. The stimulus durations were chosen

to have a sufficient number of beat cycles for spectral analysis.

3.2.3.2 Sum of sines

These stimuli were the sum of 10 logarithmically spaced sinusoids with randomized

phase, in the range 0.01 to 1 Hz. The sum-of-sine stimuli included the four single sine

frequency components. The stimulus duration was 1000 s.
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3.2.3.3 Chirps

The chirp stimulus was a sinusoid of increasing frequency, from 0.01 to 1 Hz over

1000 s. The increase of frequency was exponential, ensuring sufficient stimulus power

across all frequencies.

3.2.3.4 Long chirps

The long-chirp stimulus was similar to the chirp stimulus except that the frequency

increased from 0.001 to 1 Hz. Consequently, the stimulus duration was increased to

10000 s.

3.2.3.5 Band-limited pseudo-random noise

Band-limited noise stimuli consisted of non-overlapping, 2 Hz wide frequency bins

from 0 to 20 Hz. For each bin, a stimulus was generated by summing together

sinusoids associated with all uniformly spaced frequencies as dictated by the sampling

rate. This ensured that the stimulus has uniform power over all the frequencies

analyzed within each bin. Each component had randomized phase and was scaled

equally so that the sum would have a maximum magnitude of 1 Hz. The trial duration

was 300 s, except for the lowest frequency band of 0 to 2 Hz, which was 1000 s long.
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3.2.4 Trial types

3.2.4.1 Closed-loop reference-tracking trials

For closed-loop reference-tracking trials, we provided a reference signal r(t) and

applied the controller as described in Eq. (3.2). At the start of each trial, the fish’s

baseline was measured. Subsequently, there was a “balancing” period of 100 s wherein

the controller aimed to keep the fish at the initial EOD frequency (r(t) = 0). To avoid

startling the fish, the amplitude of the stimulus signal was ramped up linearly from 0

µV/cm to 100 µV/cm (unless noted) over the first 50 s of balancing period. After the

balancing period a stimulus (single sine, noise, etc.) was introduced as the reference.

Trials were pseudo-randomized. All stimuli were pre-generated at 1 KHz and input

to the sequencer at the start of the trial. A sample interval of a closed-loop trial with

a single-sine stimulus is shown in Fig. 3.4.

Each fish (N = 5) completed closed-loop reference-tracking trials (n = 49) in a

randomized order within a single testing session. The trials consisted of the following:

• Single sine stimuli (n = 8), the four frequencies of which were replicated for

magnitudes of 1 and 2 Hz.

• Sum-of-sines stimuli (n = 4), with two different component magnitudes (0.2 and

0.3 Hz), with two different sets of randomized component phases each. Thus

the maximum stimulus magnitude was 2 or 3 Hz.

• Chirps (n = 2), with magnitudes 1 Hz and 2 Hz.
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Figure 3.4: Sample closed-loop trial and verification of applied signals via post hoc
analysis of measured signals. Output y(t) from the F2V converter (pink) was used
during the experiment and its value was verified with a post hoc estimate of frequency
(blue) based on the measured EOD signal. The desired input u(t) = α(y(t) − r(t))
(green) was verified against a post hoc estimate of the applied frequency (orange)
based on a measurement of the input signal.

• White noise stimuli (n = 30), with three identical replicates of each of the 10

frequency bands.

• Chirp (n = 2) stimuli with signal amplitude 50 µV/cm and 200 µV/cm (typical

value = 100 µV/cm). These were to examine sensitivity of the identified system

to signal amplitude.

• Chirp (n = 3) stimuli with controller gains 1.5, 2.5 and 3 (typical value = 2).

These stimuli were, similarly, to examine sensitivity to the feedback gain.

Sample responses to four stimulus types are shown in Fig. 3.5.

In addition, a subset of 3 individual fish were presented with long chirp stimuli at
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Figure 3.5: Stimulus–response plots for closed-loop reference-tracking trials for dif-
ferent types of reference signals: (A) single sine, (B) sum of sines, (C) chirp, (D)
band-limited noise in the 0 to 2 Hz range. The reference trajectory is gray, response
is orange.
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two magnitudes (1 Hz, 2 Hz).

After each trial, the stimulus was turned off and the EOD frequency was allowed

to stabilize over a period of 300 s before the next trial began.

3.2.4.2 Closed-loop clamp trials
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Figure 3.6: Dynamic clamp trial. In this trial, the difference between the baseline-
subtracted EOD frequency, y(t) (blue), and applied stimulus frequency, u(t) (pink), is
clamped at a constant value, ds = −2 Hz for the first 100 s (gray shaded area). During
this time, the EOD frequency settles to the steady-state value, −4.76 Hz. After this
static clamp period, the desired clamp (green) is oscillated through a trajectory, in
this case a sinusoid of magnitude 1 Hz and frequency 0.01 Hz (100 s period). Since
this is a closed-loop trial, the controller maintains u(t) at the appropriate difference
from y(t). This is verified by the post-hoc computation of the applied clamp (orange).
Note that for clarity in illustration, the negatives of the desired clamp and applied
clamp curves are plotted, i.e. −d(t) and u(t)− y(t).
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Instead of driving the fish frequency towards a goal, the clamp trials applied a

stimulus such that d(t) was maintained at a desired value. Two types of clamp trials

were run:

• Static clamps: The clamp was a constant value d = ds for 300 s.

• Dynamic clamps: The clamp was kept at a particular value d = ds for 100 s

and then oscillated around the value according to a reference trajectory r(t),

such that d(t) = ds + r(t).

Static and dynamic clamps experiments were performed on N = 2 individuals, that

did not complete the reference-tracking trials. These included n = 39 static clamps

with ds from −50 to 50 at higher resolution closer to 0. The dynamic clamp trials

had single sine, sum-of-sines, and chirp stimuli as the reference trajectories.

3.2.4.3 Open-loop trials

The objective of these trials was to observe the response of the fish to a stimulus,

whose frequency trajectory u(t) was predetermined, and not tied to y(t). Two types

of open-loop trials were performed:

• Step inputs: Initially, the fish was driven towards 0 in closed loop for the

balancing period of 100 s. The amplitude was linear ramped up to 100 µV/cm

for 50 s as described previously. At 100 s, the stimulus switched to open loop,
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and u(t) was commanded to a fixed value for a further 100 s. We performed

trials at steps with magnitudes from −5 to +5 Hz.

• Ramp inputs: The magnitude of u was ramped down from +30 to −30 Hz or

up from −30 to +30 Hz in 300 s at a constant rate of change of 0.2 Hz/s. The

stimulus amplitude was ramped to 100 µV/cm in the first 10 s. The initial

difference frequency was large, |df | ≈ 30, well outside the typical range of the

JAR.

3.2.5 Data analysis

All data analysis was carried out using custom scripts written in MATLAB (The

MathWorks Inc., Natick, MA, U.S.A.).

For each trial, we recorded the reference, EOD, F2V output, and output waveform,

sampled at 10 KHz. The voltage signal from the F2V was scaled and offset to convert

it into frequency. Extremely rapid, transient changes in frequency (commonly caused

by fish movement) were eliminated. The known baseline frequency of the fish was

subtracted from all signals, so that a frequency of 0 Hz represents the fish’s pre-

stimulus (baseline) signal. The processed F2V signal was then subsampled to 100 Hz,

and used as the output signal y(t). The input for analysis depended on the type of

trial: r(t) was used for reference-tracking trials, d(t) was used for the dynamic clamp

trials, and u(t) was used for the open-loop trials. These inputs were pre-generated
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trajectories, as mentioned previously.

3.2.5.1 Estimating FRFs for sinusoidal inputs

The frequency domain representations of the input and output signals were calcu-

lated using a Fast Fourier Transform (FFT) and peaks corresponding to the known

number of frequency components in the input were determined (1 for single sines, 10

for sums of sines). The frequency response at a particular frequency was calculated

as the ratio of the Fourier transform of the output to the input of the signal at that

particular frequency. Thus we measured 8 data points from 8 single-sine trials and

40 points from 4 sums-of-sines trials. Each data point was represented as a phasor,

namely a number in the complex plane. The gain (distance of the phasor to the

origin) and phase (angle of the phasor from the positive real axis) for all data were

computed.

3.2.5.2 Estimating FRFs for chirp inputs

The input and output signals were filtered, subsampled and transformed via FFT

as described above. The data points in this case were the input–output ratios of all

the frequency components in the chirp frequency range. Thus, with a single trial,

we obtained many data points, but each individual data point is somewhat more

susceptible to noise. The data points were binned and averaged at 10 bins per decade

of frequency, giving us 20 data points per chirp trial and 30 data points per long chirp
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trial.

3.2.5.3 White noise

White noise stimuli were used to evaluate the range over which the behavior is

linear. This was done by evaluating the difference of the square root of the response-

response coherence (
√
RR) and the stimulus-response coherence (SR) [67]. The co-

herence between two signals X and Y is a frequency-dependent function:

CXY (ω) =
|GXY |2

GXXGY Y

(3.7)

where GXY is the cross-spectral density between X and Y , and GXX and GXY are

the autospectral densities of X and Y respectively. SR is the coherence between each

stimulus and its corresponding response.
√
RR is the square root of the coherence

between two responses to the repeated presentation of the same stimulus. In our

experiment, there were three replicates of each frequency band, i.e. for a particular

stimulus X, there were three independent responses Y1, Y2 and Y3. This gave us 3

data points per frequency per individual for SR (CXY1 , CXY2 and CXY3) as well as

√
RR (

√
CY1Y2 ,

√
CY2Y3 and

√
CY3Y1).

3.2.5.4 Steps and Ramps

These trials were open loop and were used to compare the fish response with

model response in the time domain. Hence, no frequency domain analysis was done

on these trials.
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3.2.6 Modeling approach

Three of the four fish used in the reference frequency tracking trials were tested

using long chirp stimuli whose reference frequency started at 0.001 Hz and increased

to 1 Hz; the resulting FRF data binned into 30 frequency bands (see Sec. 3.2.5.2).

Two chirp magnitudes (1 Hz and 2 Hz) were tested for each individual for a total of

six trials that were used for fitting.

The FRF of the closed-loop system was determined as described in Sec. 3.2.5.

This data was converted to open-loop as per Eq. (3.6). In open loop, each trial was

represented by complex numbers for each frequency bin. At a given frequency ω, the

ratio of output Ŷ (jω) to its corresponding input D̂(jω) can be represented by its gain

and phase components:

Ĝ =
Ŷ

D̂
=
|Ŷ |
|D̂|

ei(∠Y−∠D) = |Ĝ|ei∠Ĝ (3.8)

The logarithm of this complex number is:

log(Ĝ) = log |Ĝ|+ i∠Ĝ = log
|Ŷ |
|D̂|

+ i(∠Ŷ − ∠D̂). (3.9)

which is also a complex number, but weights gains logarithmically and phases linearly.

This is important since we are interested in ratio of amplitudes and the difference of

phases. This is also analogous to computing error directly in the Bode plot, e.g.

Figs. 3.9,3.11. Distances in this ‘log-complex plane’ thus provide a good measure of

error for model fitting, as previously used in [69].

We also have to account for the fact that the open loop response will have increased
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sensitivity to noise at some frequencies, corresponding to the equation for opening the

loop (Eq. (3.5)). The sensitivity of opening the loop can be computed in log-complex

plane coordinates:

S(ω) =

∣∣∣∣ d logG(ω)

d logH(ω)

∣∣∣∣ =
1

|H(ω)(1− 1/α)− 1|
. (3.10)

We use the inverse of this sensitivity to weight the error. The error between model

response M(ω) and the system response G(ω) at a given frequency ω is then defined

as follows:

E(ω) =

∣∣∣∣log

(
M(ω)

G(ω)

)∣∣∣∣2 (|H(ω)(1− 1/α)− 1|). (3.11)

The total error between model M and response G is the sum of this error over all

frequencies.

3.2.6.1 Determining model structure

The next step was to determine the model structure. A model fitting criterion

such as reduced χ2, or information criteria such as AIC or BIC can be generally

minimized to determine the model order. However, these criteria assume independent

data points. Since the chirp is a time-varying frequency stimulus, the response data

is clearly covariant, and the relatively small number of trials (6) is insufficient to

determine the covariance structure between 30 bins.

So, we implemented a selection criterion decision technique that takes into account

two factors: Model fit and Model consistency :
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3.2.6.1.1 Model fit:

Leave-one-out cross validation (LOOCV) was used as the technique to fit a model

while penalizing over fitting. LOOCV is asymptotically equivalent to AIC [77]. For

each model, the Matlab nonlinear optimization function fminsearch was run with

the error function (Eq. (3.11)) to fit parameters to data from five trials, leaving the

sixth trial out. This optimization was initialized 100 times (using Matlab to generate

pseudo-random initial parameter values), and the parameters with the lowest fit error

among them was then compared to the left out trial, using the same error function.

The ‘leave-one-out’ error determined for one trial was averaged over all six trials being

left out, providing a combined leave-one-out error for the model structure. See Fig.

3.7, y-axis.

3.2.6.1.2 Model consistency:

Even though a certain model might have low leave-one-out error, the parameters

fitted during each of the six leave-one-out minimizations may vary significantly. This

variance, which is measure of the uncertainty of the parameters based on our data,

needs to be penalized, since we desire to have a consistent model fit with all six trials.

To measure model consistency, we calculate the maximum singular value of the K×6

matrix where each of the six columns contains an estimate of all K parameters, with

one column for each fit (one for each of the 6 trials left out). The poles and zeros

of each fit are sorted, and mean of each parameter across trials is subtracted, before
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finding the maximum singular value.

Altogether, 72 transfer function models of up to seventh order were tested. This

includes all combinations nz ≤ np ≤ 7 where nz is the number of zeros and np is the

number of poles. The delay was turned on (nd = 1) or off (nd = 0). The models are

referred to as (nz, np, nd), and correspond to the transfer function:

(nz, np, nd) ≡
k

nz∏
i=1

(s− zi)

np∏
i=1

(s− pi)
e−ndsT . (3.12)

The total number of parameters for a model is K = nz + np + nd + 1, where the

extra parameter is due to the gain. The maximum K tested is then 7 + 7 + 1 = 16.

Fig. 3.7 shows leave-one-out error versus maximum singular value. For clarity, only

models with maximum singular values below 105 are shown. It is clear from the figure

that the two initial models (0, 0, 0) (gain: k) and (0, 0, 1) (gain with delay: ke−sT )

both have unacceptably high errors. The next two models (0, 1, 0) (gain, zero: k
s−p)

and (0, 1, 1) (gain, zero, delay: k
s−pe

−sT ) have a combination of low error and high

consistency. The higher order models have lower error in some instances, but are

much less consistent. As shown in the inset of Fig. 3.7, among the two ‘good’ models,

we choose the model closest to the origin, (0, 1, 1), which corresponds to a first-order

system with a delay.
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Figure 3.7: Model fit vs. Model consistency. Each data point (black dot) represents a
particular model structure (nz, np, nd). The average leave-one-out error for a particu-
lar model structure is on y-axis. The maximum singular value of the K×6 parameter
matrix for each model structure is shown on the x-axis. The first four models are
labeled for clarity, and the region containing the two best models is magnified (inset).
The model order (0, 1, 1) was ultimately chosen as the best compromise between fit
and consistency (inset; green dot)
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Model K
Parameters

Fit error LOO MSV
k z p T

(0,0,0) 1 0.45 295.17 49.73 0.057

(0,0,1) 2 0.45 0.49 172.34 29.30 0.058

(0,1,0) 2 0.37 −0.23 28.77 5.81 0.071

(0,1,1) 3 0.38 −0.24 0.057 27.12 5.59 0.077

(1,1,0) 3 −0.021 16.14 −0.24 26.97 5.56 5.23

(1,1,1) 4 0.085 −3.65 −0.19 0.25 25.42 5.32 0.92

(0,2,0) 3 7.52
-0.25,
-19.90 27.33 5.61 6.30

(0,2,1) 4 9.18× 108

−0.24,
−2.45× 109 0.057 27.12 5.59 1.3× 108

(1,2,0) 4 0.39 −0.08
-0.04,
-0.38 25.67 5.86 28.32

(1,2,1) 5 0.41 −0.16
-0.06,
-0.54 0.08 23.03 5.22 1.90

(2,2,0) 5 −0.03
-0.13,
13.18

-0.06,
-0.48 23.02 5.19 4.37

(2,2,1) 6 0.06
-0.09,
-5.78

-0.04,
-0.37 0.21 22.75 5.12 54.25

Table 3.1: Fit parameters, fit error, leave-one-out error, and maximum singular value
for the first 12 model structures. The ‘best’ models (0, 1, 0) and (0, 1, 1) are high-
lighted in bold.
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3.2.6.2 Model fitting

The final fit parameters were determined by initializing the optimization 100 times

with random initial parameter guesses, this time with no data left out. The lowest

error fit among these was designated the fit error, the parameters associated with

which were used. For clarity, we present the best parameters and errors of the ten

lowest order models shown in Fig. 3.7 in Table 3.1. This is also illustrated in Fig. 3.8.

The (0, 0, 0) and (0, 0, 1) models are obviously poor fits to the data, whereas the two

parameter model (0, 1, 0) fits the data well except the high frequency region. (0, 1, 1)

compensates for that by introducing a phase lag. There is no noticeable advantage

to adopting a higher order model than (0, 1, 1). The results from this fitting were

reported in the main text; see Eq. (3.14).

3.3 Results

3.3.1 The JAR is approximately linear

around the unstable equilibrium

The FRF for single sine, sum of sines, chirp and long chirp closed-loop tracking

trials were plotted in a Bode diagram as shown diagram in Fig. 3.9A. The data were

converted to open-loop according to Eq. (3.5) as shown in Fig. 3.9B. The agreement

between single sine, sum of sines and chirp data indicates that the behavior can be
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Figure 3.8: Candidate model fits to open-loop data. The FRF data from six long-
chirp trials transformed to open loop using Eq. (3.6) is shown, along with the best fits
using model structures (0, 0, 0), (0, 1, 0) and (0, 1, 1). It can be seen that fits using
(0, 1, 0) and (0, 1, 1) are different only at higher frequencies. Higher-order models
with low leave-one-out errors were not substantively different than the (0, 1, 1) model
within this frequency range, and thus are not shown.
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modeled approximately as a linear system in the neighborhood of the equilibrium, i.e.

near the baseline frequency f1(0). There are small differences in the closed-loop data

among different trial types, particularly between long chirps and the others. Sensi-

tivities of opening the loop tend to amplify these, creating significant differences in

the open-loop data. The modest difference in closed-loop responses could come from

a variety of sources, including nonlinearities and time-dependencies in the behavior.

SR and
√
RR coherences from white noise trials are shown in Fig. 3.10A.

√
RR

represents the maximum theoretically possible coherence for a linear system in the

presence of additive noise. The difference

e =
√
RR− SR (3.13)

is an indicator of the nonlinearity of the system [67]. This difference (Eq. (3.13),

Fig. 3.10B) does not exceed 0.4, over the white noise stimulation range of 0 to 20

Hz. However, past approximately 6 Hz,
√
RR drops to around 0.4. In that range

and beyond, even the best model will only be able to capture a fraction of the be-

havior. However the frequency range over which we performed frequency response

analysis and modeling (0.01 − 1 Hz) is far below this, and would likely encompass

most naturally occurring frequency modulations among conspecifics.

As an important control, we investigated the sensitivity of the open-loop dynamics

to experimental parameters. Amplitudes were compared at both half and twice the

value of 100 µV/cm used in all of the other experiments described in this chapter.

Gains were tested at values of 1.5, 2.5, 3 and 4 compared to the value of 2 used in
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Figure 3.9: Bode diagrams of experimental frequency response functions (FRFs) from
single sine, sum of sines, chirp and long chirp trials. In a Bode diagram, the gain of
each FRF point, z = a+ ib, is expressed in decibels (20 log10(|z|), top) and its phase
in degrees (180

π
∠z, bottom). The single sine and sum of sines data points are slightly

offset horizontally to avoid overlapping. (A) Closed-loop FRF. (B) The same data,
mapped to open-loop via Eq. (3.6). The model was fit to the open-loop FRF and
mapped back to closed loop via Eq. (3.4).
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Figure 3.10: Noise coherence plots. (A) SR and
√
RR, as calculated from band-

limited white noise trials over all individuals. The solid lines indicate mean value for
each frequency and the lighter bands show one standard deviation above and below
the mean. (B) Difference between the coherences is an indicator of the linearity of
the system [67].
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all other experiments. There was little-to-no effect of changing either amplitude of

the signal (Fig. 3.11A) or the feedback gain (Fig. 3.11B) on the open-loop frequency

response. The amplitude insensitivity results in an experimental advantage, since the

size of the fish, or the specific placement of the fish between the stimulus electrodes

would have little effect on the dynamics.
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Figure 3.11: Sensitivity to experimental parameters. (A) Open-loop frequency re-
sponses to chirp stimuli, for stimulus amplitudes of 50 µV/cm and 200 µV/cm along
with the usual experimental value of 100 µV/cm. The stimulus amplitudes were
measured at a 1 cm dipole placed adjacent to the head of the fish. (B) Open-loop
responses to the feedback gain α being set to 1.5, 2.5, and 3 as opposed to the usual
experimental value of 2. Changing the feedback gain causes divergence in the closed-
loop response as expected; however the computed open-loop responses do not appear
to be sensitive to stimulus amplitude or feedback gain. In both bode plots, the top
plot is the gain response and the bottom plot is the phase response.
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3.3.2 Determining the local linear model

To fit a model to the JAR behavior at the equilibrium, each of the closed-loop

data points was transformed, in the complex plane, to the corresponding open-loop

data point using Eq. (3.5); see Fig. 3.9B. As described in the previous section, a

simple first order model with delay was fit to the open-loop response:

G(s) =
k

s− p
e−sT (3.14)

where k = 0.38 Hz, p = −0.24 Hz, and T = 57 ms. Recall that G(s) represents the

transfer function from the df , d(t), to the fish’s EOD frequency, y(t) (both signals

were baseline subtracted). The negative real pole (p < 0) confirms that this is a stable

system, and the sensorimotor delay of T = 57 ms is biologically plausible. The transfer

function is plotted as the black curve in Fig. 3.9B. The behavior transfer function J(s)

(computed via Eq.( 3.5)) is unstable if there are zeros of the denominator G(s)− 1 in

the open right-half plane. Similarly, the closed-loop transfer function H(s) (computed

via Eq. (3.4)) is stable if there are no zeros of 1− αJ(s) in the open right-half plane.

Based on the Nyquist stability criterion [2], it is easy to confirm that J(s) is unstable

(there is exactly one pole in the right-half plane). Furthermore, it is trivial to show

that H(s) is stable so long as α is larger than αmin.

αmin =
p

k
+ 1. (3.15)

For the model parameters in Eq. (3.14), the minimum stable gain is αmin = 0.35.

The experimental value of α = 2 is much higher than this threshold, thus robustly
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stabilizing the closed-loop system.

3.3.3 Determining the global nonlinear model

The model fit using the closed-loop experiment is, effectively, a local linearization

of the behavior about the unstable equilibrium y = 0 (corresponding to the fish’s

pre-stimulus baseline frequency). Thus, the transfer function described in Eq. (3.14)

is unable to reproduce the full extent of a naturalistic response, which, in addition to

avoiding a jamming frequency, involves achieving a steady state frequency at a higher

final df magnitude. Using the linear model as a starting point, and known features

of the JAR neural circuit, we fit a nonlinear model as described below.

The model structure we propose decomposes jamming avoidance responses into

competing sensory and motor components. The sensory component captures the

primary functional computation in the JAR circuit, namely an ‘escape’ term, e(d),

that depends on the df , d = y−u. The delay in the linear model fit is lumped into the

computation of the df , d(t−T ), which is in turn passed into the escape term, namely

e(d(t − T )). The motor component captures the known tendency of the pacemaker

nucleus to ‘return’ to the pre-stimulus (baseline) EOD frequency upon removing a

transiently applied jamming stimulus. The combination can be thought of as a leaky

nonlinear integrator. When stimulated by a jamming signal, this model settles down

to an equilibrium frequency where the sensory and motor components are equal but

opposite. By further assuming that the strength of the motor return depends linearly
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on the deviation from baseline, we arrive at the following model structure:

τ ẏ(t) = −y(t) + e(d(t− T )). (3.16)

In this equation, τ is the characteristic time constant of the return to baseline, −y(t)

represents the return to baseline, and e(d(t− T )) represents the repulsive escape. In

the time domain, Eq. (3.14) is expressed as the following differential equation:

ẏ(t) = py(t) + kd(t− T ), (3.17)

with p = −0.24 Hz and k = 0.38 Hz. Upon linearizing the nonlinear dynamics in

Eq. (3.16) around the baseline, d = 0, y = 0, we compare terms with the linear model

in Eq. (3.17) and obtain the following parameters for the nonlinear model:

τ = −p−1 = 4.17 s,

∂e

∂d

∣∣∣∣
d=0

= τk = 1.58.

(3.18)

To recover the function e(d), note that if d is kept constant at ds, Eq. (3.16) predicts

that y should settle down to the equilibrium corresponding to ẏ = 0, which is ys =

e(ds). Hence the steady state values of the clamp trials determine the escape function.

We can use both the final values of the static clamp trials, as well as values from the

dynamic clamp trials at the end of the static clamp period, before the reference

trajectory begins. Panels A and B of Fig. 3.12 show the steady state values of both

static and dynamic clamp trials as a function of the clamp d, for two individuals.

For the purpose of generating theoretical predictions from our model, we fit the

nonlinear escape curve, e(d), using the a sum of three Gaussians (Matlab curve-fitting
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Figure 3.12: Static and dynamic clamps. (A,B) The steady state frequency, ys (black
dots), of two individuals vary nonlinearly as a function of clamped frequency differ-
ence, ds. These data were used to fit distinct escape functions, e(d) (blue curve),
for each of the two distinct fish: (A) see Eq. (3.19) and (B) see Eq. (3.20). Green
dots represent trials in which the fish frequency shifted in the direction of the input;
these data points were removed from fitting. The linearization at origin obtained
from reference-tracking trials y = 1.58d is shown (orange line) to compare with the
slope of e(d) at the origin. (A-1,A-2,B-1,B-2) Bode plots for the dynamic clamp trials
for select clamp values d = −2.0 (A-1) and d = 2.0 (A-2) for the first individual, and
d = −5.0 (B-1) and d = −2.0 (B-2) for the second individual. On each bode plot,
the response of the linearized model (Eq. (3.17)) is also shown (pink curve).
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toolbox):

e(d) = 2.85e−( d−11.39
5.12 )

2

+ 6.71e−( d−3.26
2.40 )

2

− 10.45e−( d+9.05
5.68 )

2

(3.19)

e(d) = 2.55e−( d−10.43
4.98 )

2

+ 8.70e−( d−1.08
4.53 )

2

− 11.18e−( d+6.91
11.23 )

2

. (3.20)

The units for all numerical values in the above expression are s−1. The Gaussian

mixture approximation of e(d) was somewhat arbitrarily chosen through trial and

error to obtain reasonable fits that capture the basic features of the clamp data, and

so no mechanistic insights can be drawn from its specific form.

The (dimensionless) slope at the origin for both curves are remarkably similar

(1.68, 1.73). Both slopes agree well with the predicted value of 1.58 (Fig. 3.12, orange

line), particularly given that the linear system identification data used to predict the

escape function slope of 1.58 was categorically different from the clamp experiments,

fitting, and analytical differentiation used to determine each individual’s slope. Note

that three trials (Fig. 3.12, green points), for which the responses were qualitatively

different than the other responses, were removed from fitting; including those trials

biased the curve toward these outliers, and away from the typical behavior.

3.3.4 Dynamic clamps validate nonlinear model

As a first validation the nonlinear model, we examined the dynamic clamp trials,

whose FRF should, in theory, match the prediction of the linearization of Eq. (3.16)

at (ds, ys). We examined this prediction for two fish (see Fig. 3.12).
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For our prediction, we approximated the nonlinear function e(d) as a straight line

through the origin, namely ys = τkds. With this approximation, the FRFs should

match the prediction from Eq. (3.17). The FRFs in the insets of Fig. 3.12 (A-1,A-

2,B-1,B-2) show the frequency responses to dynamic clamps at two points along e(d),

marked in panels (A,B). The response of the linearized model is shown in all four

plots and is in good agreement with the frequency responses from the clamp trials.

The data shown in Fig. 3.12 were selected to most clearly illustrate the prediction,

but among the experimental paradigms we use, clamp trials were the least robust and

repeatable. This is evident for e.g. in Fig. 3.12B-1, where the sum-of-sines response

is well predicted by the model but the chirp responses have a lower gain response.
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Figure 3.13: Step Responses (A) Responses of one individual to open loop steps of u
= 4 Hz (gray) with the model response to the same stimulus (red). (B) Responses
of the same individual to steps of u = -3 Hz (gray) with the model response to the
same stimulus (red).
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3.3.5 Open-loop steps validate nonlinear model

For the same two individuals for which the escape functions were fit, we simulated

the model in Eq. (3.16) in response to (open-loop) step inputs. The simulated step

responses matched the data from the open-loop step trials remarkably well, particu-

larly given the qualitatively different nature of open-loop step experiments compared

to the experiments used to furnish the nonlinear model. Two examples, showing all

the data from one individual for steps u = +4 and u = −3 Hz, along with the model

response, are shown in Fig. 3.13.

3.3.6 ‘Snap-through’ bifurcation predicted

for ramp stimuli

The model predicts that if the external stimulus frequency were slowly increased

or decreased from outside the JAR range, then it should drive the fish’s frequency up

or down, respectively, until the fish frequency “snaps over” to the other side of the

stimulus and then moves away from the stimulus in the opposite direction. Using the

open-loop ramp trials (Sec. 3.2.4.3), we tested this prediction of the model.

We now describe the model’s snap-through prediction in more detail. Assuming

u(t) = constant, the solution(s) to y(t) = e(u− y(t)) are the equilibria of the system,

i.e. the intersections of functions y and e(u − y). The stability of the equilibrium

depends on the derivative of the vector field on the right-hand-side of Eq. (3.16) with
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Figure 3.14: Snap-through bifurcation of the dynamics ẏ(t) = τ−1(e(y(t− T )− u(t−
T ))−y(t)). (A-E) The right-hand-side of the dynamics (blue, right axis) is the scaled
difference between two components, e(y−u) (pink, left axis) and y (orange, left axis).
The intersection points of y and e(y−u) comprise the equilibrium frequencies (green
dashed lines), corresponding to dy/dt = 0. The graphs in (A-E) correspond to five
distinct values of u, indicated by the black dashed lines originating in Panel (F). (F) As
the stimulus, u(t), was ramped linearly up or down from ±30 Hz, the fish response
(gray curves) initially followed the nearest stable equilibrium. For frequencies between
approximately −2.21 and 3.71 there are three possible equilibria (green curve); the
center branch is unstable. When the input reached a bifurcation frequency, the output
“snapped through” to the only remaining equilibrium, as predicted by the model
output (red curve). The general hysteretic structure of the responses is well captured
by the model.
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respect to y: if the derivative is negative, positive or zero the equilibrium is stable,

unstable, or a saddle–point, respectively. The subplots along the top in Fig. 3.14

decompose the vector field at different values of u that produce qualitatively differ-

ent nonlinear dynamics in the sense that the number and type of equilibria change.

Assuming u changes sufficiently slowly, the dynamics should track the nearest stable

equilibrium.

The number and type of equilibria depend explicitly on the structure of the escape

function e(d) (where, recall, d = u− y). For the specific fit of e(d) in Fig. 3.12(A) we

tested the predictions of the nonlinear model. For this escape function the dynamics

are punctuated by two bifurcation points at critical levels of the stimulus input,

namely u ≈ −2.21 and u ≈ 3.69. For constant stimuli below −2.21 there is one

equilibrium (Fig. 3.14A). The single equilibrium (green dotted line) here is stable,

since ẏ crosses from positive to negative at the equilibrium. At the critical level

u ≈ −2.21, an additional equilibrium is introduced, namely a saddle–node (Fig.

3.14(B)). For −2.21 < u < 3.69, one stable and one unstable equilibrium branch out

of the saddle–node, while the original stable equilibrium persists; thus in this region

there are three equilibrium (Fig. 3.14(C)). But, at u = +3.69 the unstable branch

intersects with the original stable branch creating a saddle–node (Fig. 3.14(D)), which

vanishes for u > 3.69, leaving just one lower stable equilibrium (Fig. 3.14(E)). The

locus of equilibria at each u is shown in Fig. 3.14(F) (green curve); note that the

middle branch of this inverted s-shaped curve is the unstable branch.
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We simulated the dynamics for increasing and decreasing ramps between −30 and

+30 Hz. We started the simulation with an initial condition of y(0) = 0, which was

near the only equilibrium for the initial values of u = ±30 Hz. The red curve in

Fig. 3.14 shows that, indeed, at each time t, y(t) remained near the closest stable

equilibrium point until the output y(t) “snaps through” to the other branch. This

occurs when the input u(t) reaches a saddle–node bifurcation. In case of the increasing

ramp from−30, both the simulated (red) and actual (grey, multiple trials) y(t) tracked

the stable equilibrium on the upper branch of green curve in Fig. 3.14(F), even as

the two additional equilibria are introduced at the bifurcation point of u ≈ −2.21.

Eventually, the unstable equilibrium combines with the stable equilibrium that y(t) is

tracking, causing both of them to vanish after forming a saddle–node. At that point,

the closest (and only) stable equilibrium is the continuation of the lower branch, which

causes y(t) to “snap through”, ultimately converging to the remaining equilibrium.

The responses to decreasing ramps (which follow the lower equilibrium branch for both

model and data) exhibit the same qualitative behavior, although the snap-through

for the actual data are delayed relative to the model. The overshoot of the model

is indicative that either e(d) was underestimated in d > 0, or there is a velocity

dependence on d that we are not capturing with our first-order model.

77



Chapter 4

The Social Envelope Response

in Eigenmannia

Recent studies have shown that central nervous system neurons in weakly electric

fish respond to artificially constructed electrosensory envelopes, but the behavioral

relevance of such stimuli is unclear. In this chapter, we investigate the possibility that

social context creates envelopes that drive behavior. When Eigenmannia virescens are

in groups of three or more, the interactions between their pseudo-sinusoidal electric

fields can generate social envelopes. We developed a simple mathematical prediction

for how fish might respond to such social envelopes. To test this prediction, we

measured the responses of E. virescens to stimuli consisting of two sinusoids, each

outside the range of the Jamming Avoidance Response (JAR), that when added to

the fish’s own electric field produced low-frequency (below 10 Hz) social envelopes.
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Fish changed their electric organ discharge (EOD) frequency in response to these

envelopes, which we have termed the Social Envelope Response (SER). In 99% of

trials, the direction of the SER was consistent with the mathematical prediction. The

SER was strongest in response to the lowest initial envelope frequency tested (2 Hz)

and depended on stimulus amplitude. The SER generally resulted in an increase

of the envelope frequency during the course of a trial, suggesting that this behavior

may be a mechanism for avoiding low-frequency social envelopes. Importantly, the

direction of the SER was not predicted by the superposition of two JAR responses: the

SER was insensitive to the amplitude ratio between the sinusoids used to generate

the envelope, but was instead predicted by the sign of the difference of difference

frequencies.

4.1 Introduction

Weakly electric fish generate an electric organ discharge (EOD) that results in

an electric field that surrounds the fish’s body. In Eigenmannia, the EOD is quasi-

sinusoidal and when fish are in close proximity (∼ 1 m or less) their EODs interact. In

the case of two nearby conspecifics, the combined EOD signal has a specific combina-

tion of amplitude and phase modulations, termed the beat. If there are more than two

nearby conspecifics or relative movements between conspecifics, the combined EOD

signal contains modulations of the beat, which has been termed the electrosensory
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Figure 4.1: Social electrosensory envelopes. (A) A signal (blue) which is the sum of
three sinusoids, S1, S2, and S3, with amplitudes a1 = 1 V, a2 = 0.3 V, and a3 = 0.3 V,
and at frequencies of f1 = 505 Hz, f2 = 450 Hz, and f3 = 550 Hz respectively. The
interactions of these stimuli create a beat which has an amplitude modulation (AM;
black), which can be extracted from the signal using a Hilbert transform. Because
the a1 � a2 and a1 � a3, a well-defined envelope emerges (red) that can be extracted
from the AM using a Hilbert transform. (B) Power spectra of the signal (blue), the
AM (black) and the envelope (red). The two peaks of the AM correspond to the |df |
values at 45 and 55 Hz and the peak of the envelope corresponds to the |ddf | at 10 Hz.
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envelope [60]. The interactions of two EODs have been well studied in relation to the

Jamming Avoidance Response (JAR). When two nearby conspecifics have EOD sig-

nals S1 and S2 at frequencies of f1 and f2, respectively, the combined signal, S1 +S2,

has a emergent beat. The AM of this beat oscillates at the frequency difference, |df |,

where df = f2 − f1. When two neighboring Eigenmannia have EODs of similar fre-

quency (e.g. 500 and 505 Hz, with |df | = 5 Hz) they perform the JAR, during which

each fish will raise or lower their individual EOD frequency to increase |df |, and thus

the beat frequency. When there are three or more EOD signals it is possible that

fish are responding not only to the beat but also to the emergent envelope. Here we

define a social envelope as the modulation of the AM of the beat that occurs when

at least three EODs are added. For example, if there are three EOD signals, S1, S2

and S3, at frequencies f1, f2 and f3, respectively, the combined signal S1 + S2 + S3

can have an AM; the magnitude of this AM also fluctuates over time, referred to here

as the envelope of the AM (Fig. 2.1A) (see Sec. 2.3). Thus, it is possible that even

with high |df | values there could be a low-frequency envelope (as shown in Fig. 2.1).

Understanding the behavioral relevance and sensory processing of envelope informa-

tion has proven challenging in part because the extraction of envelope information

requires nonlinear processing (Fig. 2.1B; see Sec. 2.4). However, recent neurophysi-

ological studies already identified envelope-related neural activity at each level from

the receptor afferents to the midbrain in weakly electric fish [52, 55, 59, 60, 70], sug-

gesting that not only can the fish extract envelope information but there might also
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be behavioral relevance of these signals for the animals.

4.2 Model-based prediction of the social

envelope response

The beauty of the JAR is that the behavioral response can be predicted based

on a simple algorithm [33]. For the fish to shift its EOD frequency in the ‘correct’

direction (e.g. the direction that increases |df |), the fish must be able to compute

the sign of the df . The fish does this without an efference copy of its own EOD [16]

using amplitude and phase modulation information measured across the body (e.g.

multiple electroreceptors) [58].

In Chap. 2, I described how the JAR computation is diagrammatically represented

as a Lissajous figure in the amplitude-phase plane (Fig. 2.4A), which was pioneered

by Heiligenberg and Bastian [35] and has been verified through electrophysiological

recordings [6]. The plot is the magnitude (x-axis) versus the phase (y-axis) of the

complex representation of the combined signal (see Sec. 2.5). The Lissajous trajec-

tory will rotate clockwise for negative df and counter-clockwise for positive df at a

frequency of |df |. The direction of rotation of the Lissajous predicts the direction

that the fish will shift its EOD during the JAR.

When three sinusoids (or EODs) interact, beats emerge at each of the |df | values,

and the Lissajous is more complicated (Fig. 2.4B). For example, if there are three
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EOD signals, S1, S2 and S3, at frequencies f1, f2 and f3, there will be beats at the

magnitudes of the following df values: df2 = f2 − f1, df3 = f3 − f1 and df1 = f3 − f2.

However, the signal measured by each fish is typically dominated by its own EOD.

So, for fish 1 the signal S1 dominates the others (S2 and S3) and correspondingly,

the beats at |df2| and |df3| dominate the beat at |df1|. In this case, the beat at

|df1| can be considered negligible, and the dominant envelope frequency emerges at

ddf = |df3| − |df2| (see Eq. (2.18)). Note that ddf is a signed quantity, which is

important to the predictions stated below.

In this chapter, we hypothesize that the JAR circuit can be extended to predict a

behavioral response to signals outside the range of the JAR that nevertheless generate

low-frequency envelopes. In some cases, two conspecific signals (S2 and S3) when

added to S1 produce a low-frequency envelope (see Sec. 2.4.1.1). Two such cases are

depicted in Fig. 2.4B - positive and negative ddf . At first glance, the ‘floral’ pattern

of the Lissajous seems to lack a consistent rotation. However, each of the ‘petals’

precesses in a direction corresponding to the sign of the ddf , at frequency |ddf | (see

Sec. 2.5). Upon low-pass filtering of both the amplitude and phase signals, the petals

are filtered out and the general, slow precession emerges (Fig. 2.4C).

Interestingly, as the amplitude ratio between the signals is inverted, the direction

of rotation of individual petals flips, but the direction of the precession remains un-

changed. Does the fish respond to the direction of the petals (df values and amplitude

ratio) or the precession (ddf)? When the df values are within the JAR range the re-
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sponse of the fish follows the petals [63]. But what happens when the df values are

outside the JAR range? We hypothesize that fish respond to the emergent envelope

at the |ddf |, governed by the precession as revealed by the low-pass filtered model (see

Sec. 2.5). If, as our model predicts, the fish uses a downstream low-pass filter from

the JAR circuit to extract envelope information, it could drive a behavioral Social

Envelope Response (SER) much like the JAR to beat stimuli.

4.3 Materials and methods

Adult Eigenmannia virescens (10 − 15 cm in length) were obtained through a

commercial vendor and housed in aquarium tanks with a water temperature of 27◦C

and conductivity in the range of 150 − 300µS / cm [37]. All fish used in these

experiments were housed in social tanks that contained two to five individuals. These

experiments were conducted at the Johns Hopkins University between 2009 and 2012.

All experimental procedures were approved by the Johns Hopkins Animal Care and

Use Committee and followed guidelines established by the National Research Council

and the Society for Neuroscience.

4.3.1 Experimental procedure

Each individual fish (N = 4) was transferred to the testing tank (27 ± 1◦C and

175 ± 25µS/cm) and allowed to acclimate for 2 − 12h before experiments began.
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Figure 4.2: The fish’s EOD is recorded via head-tail electrodes (red) and amplified.
Stimuli to the fish are applied via transverse electrodes (black). Stimuli consist of a
single sinusoid (S2) or a sum of two sinusoids (S2+S3). The frequency of the recorded
EOD is extracted (f1), and a controller adds the stimulus values of df2 and df3 to f1
to produce output frequencies f2 and f3, respectively. The signal generator produces
sinusoids S2 and S3 at frequencies f2 and f3. S2 and S3 are added, and applied to the
tank through a stimulus isolation unit (SIU). A dipole with 1 cm spacing (orange)
was used to measure the local electric field, and this measurement was amplified and
recorded independently.

During the acclimation period a second fish was also in the testing tank, to provide

recent social experience, but was removed before the start of the experiment. For

testing, the experimental fish was restricted in a chirp chamber to prevent movement.

Experiments were started when the EOD frequency did not change by more than

±1 Hz for at least 25 consecutive minutes, which typically took 1− 3 h.

Trials were presented across multiple testing blocks that lasted 1− 3 h and were

completed on different days. Between testing sessions the fish was returned to its

home tank to reduce changes in response due to motivation, fatigue or other unknown

factors. If the EOD responses of the fish deteriorated over the course of testing the

fish was placed back in the home tank for 1− 5 days and then re-tested.
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Figure 4.3: Illustration of stimulus generation in envelope experiments. A sinusoid
represents the fish EOD (S1) with amplitude a1 = 1 V. The frequency f1 = 500 Hz is
extracted and the controller uses df2 = −50 Hz and df3 = +52 Hz to compute input
frequencies f2 = 450 Hz and f3 = 552 Hz. The signal generator produces sinusoids
S2 and S3 at these frequencies, with the same amplitude, a2 = a3 = 0.2 V. The
signals are added and sent to the stimulus isolation unit (SIU), which introduces the
combined signal into the water. The three signals interact in the water to produce a
combined signal (orange) with a 2 Hz social envelope.
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4.3.2 Experimental setup

The chirp chamber was positioned such that the fish was located in the middle

of two electrodes (head-to-tail) separated by 25 m (Fig. 4.2, red electrodes), used

to record the EOD. All stimuli were applied into the tank via transverse electrodes

separated by 25 cm with the fish located in the middle (Fig. 4.2, black electrodes).

A 1 cm transverse dipole (Fig. 4.2, yellow electrodes) adjacent to the head of the fish

measured the local electric field, which was used to estimate stimulus amplitude.

At the start of each trial the initial EOD frequency of the fish (f1i) was extracted.

All trials within a testing block were presented randomly for each fish. Each trial

lasted 200 s with an inter-trial interval of 200 s. For each trial, the fish was presented

with a stimulus that was either a single sinusoid (control trials; S2) or a sum of two

sinusoids (envelope trials; S2 + S3). For the envelope trials, the frequencies of the

individual sinusoids (f2 and f3) were calculated by adding a specified initial frequency

difference (dfi) to f1i, i.e. f2 = f1i + df2i and f3 = f1i + df3i. Thus S2 and S3 were

generated as:

S2 = a2 sin

(∫ t

0

f2dt

)
= a2 sin ((f1i + df2i)t) ,

S3 = a3 sin

(∫ t

0

f3dt

)
= a3 sin ((f1i + df3i)t) ,

(4.1)

where a2 and a3 are the amplitudes of applied signals S2 and S3 (see Fig. 4.3). For

control trials, only S2 was calculated and applied. The frequencies f2 and f3 were

held constant, i.e. not clamped to f1, so changes in the fish’s EOD frequency results

in changes in the value of each df and the ddf .
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4.3.3 Experimental stimuli

4.3.3.1 Control trials

All fish completed trials (N = 20) with a single sinusoid stimulus (S2) at a specified

high |df | (> 40 Hz). The initial df values used were ±52, 58, 72, 78, 92 and 98 Hz,

which are outside the range of frequencies known to elicit the JAR. These df values

were a subset of those used to create the envelope stimuli in other trials (see below).

For all control trials the stimulus amplitude was a2 = 0.74 mV/cm and the stimulus

amplitude ramp time was 20 s.

4.3.3.2 Amplitude trials

All fish completed trials (N = 10), with a sum of two sinusoids (S2 + S3) that

produced a ddfi of ±4 Hz. The initial df values used were ±48 and ±52, such that

there were two trial types: df2i = −48 and df3i = +52 or df2i = −52 and df3i = +48,

which resulted in a +4 Hz and a −4 Hz envelope, respectively. These trials were

repeated at five different combined stimulus amplitudes (a2 = a3, a2 + a3 = 0.15,

0.45, 0.74, 1.05 and 1.34 mV/cm) with a ramp time of 20 s.

4.3.3.3 Envelope trials

All fish completed trials (N = 48) with a sum of two sinusoids (S2 + S3) that

produced a specified ddfi. Trials were completed with df2i = ±50, ±70 or ±90 with
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df3i sweeping from −df2i − 8 to −df2i + 8 at intervals of 2 Hz. For example, for

df2i = 50, df3i was set at each of the following values for individual trials: −58, −56,

−54 or −52 (resulting in initial ddf values of −8, −6, −4 and −2 Hz) or −48, −46,

−44 and −42 (resulting in initial ddf values of 2, 4, 6 and 8 Hz). For trials where

df2i = −50, the df3i values were the same as the above example, except with a positive

sign. This was repeated for df2i = ±70 and ±90, resulting in trials with ddfi values

from −8 to +8 in increments of 2 Hz (excluding 0), produced by df values of varying

frequencies. All trials were completed with a2 = a3, a combined stimulus amplitude

of a2 + a3 = 0.74 mV/cm and a ramp time of 20 s.

4.3.3.4 Ramp-time trials

One fish completed trials (N = 30) with a sum of two sinusoids (S1 + S2), where

three amplitude ramp times were tested (1, 20 and 100 s). Each ramp time was

repeated for two envelope frequencies (+4 Hz: df2i = −48, df3i = +52; and −4 Hz:

df2i = −52, df3i = +48) and five stimulus amplitudes (a2 = a3, a2 + a3 = 0.15, 0.45,

0.74, 1.05 and 1.34 mV/cm).

4.3.3.5 Ratio trials

One fish completed trials (N = 10) with a sum of two sinusoids (S2 + S3), where

the relative amplitudes of each individual component were varied at a ratio of a2 :

a3 = 1 : 1, 1 : 3, 2 : 3, 3 : 2 and 3 : 1 for envelopes of +4 Hz (df2i = −48, df3i = +52)
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and −4 Hz (df2i = −52, df3i = +48).

4.3.4 Data analysis

For each trial the recorded EOD was used to compute the EOD frequency as a

function of time, f1(t). This was achieved via post-processing with a custom script

in MATLAB (MathWorks, Natick MA, USA) that computed the spectrogram of the

recorded signal and determined f1(t) as the frequency with the highest power near

the fish’s baseline EOD frequency. The baseline f1i was measured at the start of each

trial using a frequency-to-voltage (F2V) converter (FV-1400, Ono-Sokki, Yokohama,

Japan). For 60 trials the output of the F2V converter was verified against post-

experiment Fourier analysis. The error between the two measurements was negligible

(mean ± s.d. = 0.0008 ± 0.054 Hz). f1 stabilized by the last 60 s of each trial;

f1f is the mean frequency measured over this period. The change in frequency was

calculated as ∆f1 = f1f − f1i.

For each trial, ∆f1 was normalized to the individual fish’s maximum response,

|∆f1max|, to allow responses to be compared across fish. Because fish could raise or

lower their EOD frequency, some measures are normalized as |∆f1|/|∆f1max|. De-

pendent measures were analyzed using one-way repeated-measures ANOVA. For sig-

nificant main effects, effect size (ηp2) is given to allow comparison between measures.

Additionally, post hoc Tukey’s honestly significant difference (HSD) tests were run

on each significant main effect. We indicate the critical value (Qcrit) for each test and
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provide the obtained values (Qobt) only for those that were statistically significant

(i.e. greater than the critical value).

4.4 Results
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Figure 4.4: Eigenmannia virescens do not show a change in EOD frequency (∆f1)
when stimulated with a single sinusoid with |df | > 50 Hz (control; gray). The fish
respond to sums of two sinusoids that contain a low-frequency envelope. Two trial
types are shown, where df2 = −50 and df3 = +52 (+2 Hz envelope; blue lines) and
where df2 = −52 and df3 = +50 (−2 Hz envelope; red lines). The fish shift their
frequency down for positive envelopes (blue trials) and up for negative envelopes (red
trials).
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4.4.1 EOD frequency changes were not elicited by

high |df | values

To ensure that observed responses were not due to the individual df values, we

conducted control trials where fish were presented with a single sinusoid stimulus

that had a high |df |. We measured ∆f1 during the last 60 s of the inter-trial interval

and found that the EOD frequency was stable without stimulation (mean ± s.e.m.

= 0.05±0.006 Hz). In addition, ∆f1 across the first 10 s (0.23±0.03 Hz) and the last

60 s (0.52± 0.04 Hz) of control stimulus presentation produced only nominal changes

to the EOD frequency. Responses to all control trials by a single fish are shown in

Fig. 4.4. Thus, it is unlikely that the observed ∆f1 to the sum of sinusoid stimuli

(which has an emergent envelope) was due to a response to any individual component

alone.

4.4.2 Fish exhibited an SER

The sum of two sinusoid stimuli (S2 + S3) elicited changes in EOD frequency.

Fig. 4.4 shows a characteristic SER of a single fish to two replicates of a +2 Hz

envelope (df2 = −50, df3 = +52; blue) and two replicates of a −2 Hz envelope (df2 =

−52, df3 = +50; red). The figure shows that the envelope response differs from the

response observed to control stimuli (gray).

Across all fish, responses to control stimuli were minimal (range = 0.05 to 0.74 Hz)
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compared with the SERs (range = 1 to 4 Hz). Moreover, the time course of EOD

change during control trials was much larger than the time course of the SER, which

corresponded to the stimulus ramp time (20 s). In addition, responses to control trials

were biased downward, while the SERs were bidirectional. The direction of the SER

shows that the fish shifts its EOD frequency down when the envelope frequency (ddf)

is positive and up when the envelope frequency is negative. The direction of the SER

was typically opposite the sign of the ddf , resulting in the EOD shifting towards the

closer df (although the final |df | values were 40 Hz or above).

4.4.3 SER was stronger for lower-frequency

envelopes

Fish changed f1 in response to sum-of-sinusoid stimuli that created initial en-

velopes in the frequency range of |ddfi| = 2 to 8 Hz as illustrated for a single fish in

Fig. 4.5. The figure also illustrates that ∆f1 is qualitatively similar across all df values

used. However, the strength of the SER (the change in EOD frequency during a trial)

is dependent upon on |ddfi| (Fig. 4.6A). The effect of the initial absolute envelope

frequency, |ddfi|, on the normalized absolute EOD frequency change, |∆f1|/|∆f1max|,

was significant (F3,9 = 6.45, P = 0.04, ηp2 = 0.68). Normalized |∆f1| is generally

smaller as a function of larger initial ddf : mean ± s.e.m. = 0.59 ± 0.04 for 2 Hz,

0.52±0.03 for 4 Hz, 0.34±0.03 for 6 Hz and 0.39±0.04 for 8 Hz. The only significant
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Figure 4.5: The Social Envelope Response (SER) is dependent on ddf and not df . In
each panel, the initial ddf was varied from −8 to +8 Hz in 2 Hz intervals (excluding
0). (A) df2 = ±50 Hz, (B) df2 = ±70 Hz and (C) df2 = ±90 Hz. The strength
and direction of SER responses was dependent on the ddf . In contrast, fish show no
systematic differences in responses to ddf values as a function of the range of df2 and
df3 values used.
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Figure 4.6: SER strength as a function of initial ddf . (A) Normalized |∆f1| (1
indicates greatest response, 0 indicates lowest response) was significantly greater when
the initial |ddf | was lower. (B) The f1 generally shifted in the predicted direction for
all fish (colored circles). For most responses, the final envelope frequency was greater
than the initial envelope frequency. This is visualized on the plot when the magnitude
of the data point is greater than the unity (dashed line). In the three trials that did
not go in the predicted direction (purple circles, bottom right), the fish nevertheless
increased the envelope by having a stronger response but in the opposite direction.
Final |ddf | values were typically between 5 and 15 Hz (shaded band). (C) The change
in envelope frequency (∆ddf = |ddff | − |ddfi|) as a function of ddfi. The |∆ddf | was
generally decreased for initial envelopes that were higher in frequency.
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pairwise differences (Tukey’s HSD, Qcrit = 4.41) were between the lowest envelope

frequency (2 Hz) and those higher than 6 Hz (2 Hz versus 6 Hz: Qobt = 4.45; 2 Hz

versus 8 Hz: Qobt = 5.51; Fig. 4.6A, asterisks). The rest of the pairwise comparisons

were not significant (Qobt < 4.41).

4.4.4 SER increased the envelope frequency

Fish changed f1 in response to initial envelope stimuli, which resulted in a change

in the envelope frequency (Fig. 4.6B). In general, the final absolute envelope frequency

settles in the range of 5 − 15 Hz (mean ± s.e.m. = 8.87 ± 0.20Hz). The change in

envelope frequency (∆ddf = |ddff |−|ddfi|) as a function of ddfi is shown in Fig. 4.6C.

We found a significant effect of the initial envelope frequency (|ddfi|) on the ∆ddf

(F3,9 = 6.32, P = 0.01, ηp2 = 0.68) such that the change in envelope frequency,

|∆ddf |, was smaller as a function of larger |ddfi|: mean ± s.e.m. = 4.78 ± 0.68 for

2 Hz, 4.57 ± 0.51 for 4 Hz, 2.86 ± 0.36 for 6 Hz and 3.29 ± 0.59 for 8 Hz. The only

significant pairwise differences (Tukey’s HSD, Qcrit = 4.41) were between 2 and 6 Hz

(Qobt = 5.05) and between 4 and 6 Hz (Qobt = 4.50), where the change in envelope

frequency was greater for the lower initial envelope frequency in each pair.
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Figure 4.7: SER as a function of stimulus amplitude. (A) EOD frequency traces
showing that the strength of the ∆f1 increases as the stimulus amplitude a2 + a3
was increased from 0.15 to 1.34 mV/cm. The light blue box indicates the period
(ramp time) over which the stimulus amplitude was increased from zero to its final
value. (B) There was a significant effect of the stimulus amplitude on the strength
of the EOD frequency change where stronger responses were observed for higher
stimulus amplitudes. (C) The final |ddf | was significantly higher in frequency for
larger stimulus amplitudes, across individuals (color-coded).
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4.4.5 SER depended on stimulus amplitude and

not the rate of amplitude change

The strength of the SER, measured by the magnitude |∆f1|, increased as a func-

tion of combined stimulus amplitude a2 + a3 (shown for one fish in Fig. 4.7A).

The effect of stimulus amplitude on the normalized |∆f1| was significant (F4,12 =

7.16, P = 0.02, ηp2 = 0.71; Fig. 4.7B). The change in frequency, |∆f1|, was gen-

erally larger for larger stimulus amplitudes: mean ± s.e.m. = 0.32 ± 0.07 for

0.15 mV/cm, 0.49 ± 0.09 for 0.45 mV/cm, 0.68 ± 0.11 for 0.74 mV/cm, 0.63 ± 0.09

for 1.05 mV/cm and 0.83 ± 0.06 for 1.34 mV/cm. There were significant pair-

wise differences (Tukey’s HSD, Qcrit = 4.21) between the lowest stimulus amplitude

(0.15 mV/cm) and those higher than 0.74 mV/cm (0.15 versus 0.74: Qobt = 5.16;

0.15 versus 1.05: Qobt = 4.49 and 0.15 versus 1.34: Qobt = 7.20) and between the

second lowest stimulus amplitude (0.45 mV/cm) and the highest stimulus amplitude

(0.45 versus 1.34: Qobt = 4.73; Fig. 4.7B, asterisks). Other pairwise comparisons

were not significant (Qobt < 4.20). The effect of stimulus amplitude on final |ddff |

was significant (F4,12 = 7.99, P = 0.04, ηp2 = 0.73; Fig. 4.7C). There was a significant

pairwise difference (Tukey’s HSD, Qcrit = 4.20) between the lowest stimulus ampli-

tude (0.15 mV/cm) and those higher than 0.74 mV/cm (0.15 versus 0.74: Qobt = 5.25;

0.15 versus 1.05: Qobt = 4.71; and 0.15 versus 1.34: Qobt = 7.65) and between the

second lowest stimulus amplitude (0.45 mV/cm) and the highest stimulus amplitude
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(0.45 versus 1.34: Qobt = 4.83). Other pairwise comparisons were not significant

(Qobt < 4.20).
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Figure 4.8: The strength of the SER was determined by the final stimulus amplitude
value and not the rate of change of amplitude. This was observed by comparing
data for one individual fish across multiple stimulus amplitude ramp times (1, 20 and
100 s). The initial time course of the behavior increased as the ramp time increased,
but the final change in EOD frequency is equivalent across all ramp times.

In data from one fish, differences in ramp time did not effect the strength of the

SER, |∆f1| (Fig. 4.8). Thus, the SER strength depended on the amplitude of the

stimulus, but not on the rate of change of amplitude.
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4.4.6 SER did not switch direction with changes

in amplitude ratio

For a given df2 and df3 pair, the relative amplitudes of S2 and S3 determine the

rotation of the ‘petals’ of the Lissajous but not the general precession. As can be

seen for ddf = −4 Hz the petals rotate counter-clockwise for ratios a2 : a3 = 1 : 3 and

2 : 3, and clockwise for 1 : 1, 3 : 1 and 3 : 2, but the graph precesses clockwise in all

cases (Fig. 4.9, top).

Similarly, for ddf = +4 Hz the petals rotate clockwise for ratios a2 : a3 = 3 : 1 and

3 : 2 and counter-clockwise for 1 : 1, 1 : 3 and 2 : 3, but the graph precesses counter-

clockwise in all cases (Fig. 4.9, bottom). We examined the sign of SER, measured by

the sign of ∆f1 in response to different stimulus amplitude ratios a2 : a3 (1 : 1, 1 : 3,

2 : 3, 3 : 2 and 3 : 1) for ddf = ±4 Hz (Fig. 4.9). We found that the direction of

the SER depended only on the sign of ddf , not the amplitude ratio; i.e. f1 shifts up

when ddf is negative, and f1 shifts down when ddf is positive (Fig. 4.9, middle). This

supports our hypothesis that the SER is driven by the precession of the Lissajous

rather than the local rotation of the petals when the df values are outside the JAR

range.
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Figure 4.9: EOD frequency traces (middle plot) to envelope stimuli (±4 Hz) with
different amplitude ratios (a2 : a3 = 1 : 3, 2 : 3, 1 : 1, 3 : 2 and 3 : 1). The EOD
frequency shifts up for negative ddf (red spectrum plots) and shifts down for positive
ddf (blue spectrum plots). The Lissajous figures are representative angular sections of
the plots at each of the tested ddf values for each amplitude ratio. As the amplitude
ratio is varied the direction of the local rotation of the “petals” can differ from that
of the general precession of the Lissajous. The individual petals of amplitude ratios
1 : 3 and 2 : 3 (negative ddf ; top) and 3 : 1 and 3 : 2 (positive ddf ; bottom) rotate
opposite to the precession (gray arrows). The EOD responses follow the precession
and not the local rotations, indicating that they are dependent on ddf and not the
stimulus amplitude ratio.
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Discussion

Sensory conflict, confounds, and interference are inevitable in an environment

rich in sensory cues. However, this is not necessarily detrimental to the organism or

robot that employs a sensory system. With the appropriate mechanisms, modulations

caused by different environmental features can be extracted, and can serve as inde-

pendent “channels of information”. These mechanisms can in principle differentiate

between the subtleties of modulations generated by different sources. Emergent mod-

ulations such as beats and envelopes are unlike primary sensory modulations; they

are caused not due to a specific feature, instead they emerge from the interaction of

primary modulations. Thus emergent modulations can also be considered channels of

information—they reveal relative relationships between environmental features. This

information can either help the perception of these features to a higher accuracy, or

instead may be used to directly measure relative traits.
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5.1 Relative frequency extraction in

electric fish

Electric fish have evolved electrosensory geometry and an underlying computa-

tional algorithm which directly measures differential information from conspecifics.

The electroreceptors distributed across the body surface [12, 51] enable gathering of

spatial electric field information. Two types of tuberous electroreceptors measure

independent amplitude and phase information [71, 72] with precision in timing ap-

proaching tens of nanoseconds [62]. These parameters of the local electric field are

then compared across spatially distributed receptors [6]. This computation can reveal

the difference frequency (df) between the sensing fish and its conspecifics (Sec. 2.6)

without the sensing fish knowing its own EOD frequency f1. Indeed, it has been

shown through behavioral experiments that these fish lack this feedback from the

motor units or electric organ to the sensory regions of the brain [16]. The computa-

tion can be visualized as the rotation of the amplitude-phase parametric curve. The

direction of the Lissajous trajectory followed by these parameters reveal the sign of

df (Secs. 2.5,2.6, Fig. 2.4).
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5.2 Characterization of response to beats:

the JAR

The nonlinear computation described above allows the extraction of a specific

kind of emergent modulation, the beat, which is a specific combination of global

amplitude modulation (AM) and phase modulation (PM) at the same df . The electric

fish community mistakenly uses the term “Amplitude Modulation” to describe beats,

which is an unfortunate nomenclature that I have chosen to use in the publications

that contributed to this thesis. However, I have reverted to the mathematically precise

terminology in this document. The comparison of amplitude and phase information

allow these fish to differentiate beats from other modulations, which may contain

different relative contribution and temporal and spatial frequencies of AMs and PMs.

Perception of df also facilitates a behavioral response, the JAR, whereby fish change

their frequency f1 to increase |df |. In Chap. 3, a complete yet parsimonious model of

the JAR is described.

The JAR is a behavior in several species of weakly electric fish that allows individ-

uals to shift their EOD frequency away from that of an interfering conspecific, having

low (but nonzero) df . The neural computation of the JAR is conceptually simple yet

mechanistically complex: the fish achieve the JAR without an internal reference to

their own EOD frequency [16, 34] and instead integrate information from receptive

fields across the body surface, ultimately evaluating the single parameter, df , to raise

104



CHAPTER 5. DISCUSSION

or lower the EOD frequency so as to increase the magnitude of df .

Despite the mechanistic complexity of the JAR, our goal was to capture its con-

ceptual simplicity and express it as a low-order dynamical system. To achieve this

goal, we stabilized the JAR using a computer-controlled feedback system. This stabi-

lization allowed us to reduce the complete computational algorithm of the JAR into

a simple parsimonious model comprising a delay, a sensory escape function, and a

motor return (see Fig. 5.1).

Comparatively simple experimental measurements can now be used inform the

parameters of this model that in turn can predict responses to novel naturalistic or

artificial stimuli. For example, this model captures the dynamics of a “snap-through”

bifurcation that was not previously appreciated. Further, this model can be used

to simulate social interactions between multiple individuals, without considering the

mechanistic details of the internal dynamics underlying each individual’s response.

5.2.1 Local and global modeling

A stimulus whose frequency perfectly matches that of the fish’s own steady-state

EOD would not elicit a JAR response; there would be no amplitude modulations or

changes in the timings of zero crossings, as is necessary to drive the JAR circuit. This

situation is an unstable equilibrium, because any deviations of either the stimulus or

response frequency would cause the fish to shift its frequency away from it. The

EOD frequency does not escape indefinitely, however, as it settles down into a new
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Sensory
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Lumped
delay

Motor
“return”

Figure 5.1: A parsimonious nonlinear model for the JAR. The motor output of the
EOD is represented in terms of the frequency of the pacemaker, y(t). As is well
known, the nervous system extracts the df , d(t) = y(t) − u(t), where u(t) is the
frequency of an external stimulus (e.g. from a nearby conspecific). The sensorimotor
transform includes a delay T , an sensory escape function, e(d), and autogenous motor
return with time constant, τ .

equilibrium that is a function of the applied stimulus frequency. The existence of

additional stable equilibria reveals the inherent nonlinear nature of the behavior.

Further, it is known that there are two parallel motor pathways, one that shifts

the EOD frequency up and the other down [57]. This implies that there could well

be significant nonlinearities or even non-smoothness of the dynamics at the switching

point between the two circuits, i.e. the baseline. Thus it is imperative that we under-

stand the local dynamics at baseline, in addition to capturing the nonlinear escape

dynamics. Indeed, it is the global asymmetric shape of the nonlinear escape curve

e(d)—and not a local discontinuity—that captures the asymmetry that was described

previously by Metzner [57].
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5.2.2 Closed-loop stabilization of unstable

behavior

The JAR is an escape response, which makes the examination of the behavior

around the baseline challenging. It is the instability of the equilibrium at baseline

that underlies this difficulty. However, the stabilization of an unstable system us-

ing feedback is a classical application of control theory. In the case of the fish, we

stabilized the unstable equilibrium by setting up a closed-loop feedback system that

used the error signal between the fish’s own frequency and a predefined reference

frequency trajectory as the basis for the feedback. This system allows us to “dictate”

the frequency of the fish. We showed experimentally (Fig 3.4) and confirmed analyti-

cally after modeling (Eq. (3.15)) that this feedback did indeed stabilize the open-loop

system.

This artificially closed loop system was systematically perturbed (Fig 3.5), and

the resulting FRF data was numerically transformed to open loop using the known

feedback transformation (Eq. (3.5), Fig 3.9B). This allowed us to identify a model

structure (Fig 3.8) and verify it on the experimentally obtained closed-loop FRF data

(Fig 3.9A). In this manner, by knowing the feedback parameters and the closed loop

response, we were able to fit a frequency domain model to an unstable behavior. This

procedure is relevant and applicable to a wide range of unstable biological behaviors,

especially robust escape behaviors.
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5.2.3 Evaluating the JAR in relation to the model

In all of the fish that we tested (5 for reference-tracking and 2 for clamp) the

linearization at baseline was found to be identical. This was an unexpected result,

since it is certainly possible to avoid jamming frequencies while having different slopes

for e(d) at the origin, provided they are positive. This result is a testament to the

robustness of the JAR. This also means that small excursions around baseline should

appear extremely similar across individuals.

This consistency also means that the escape curve, which can be identified by

clamped-df experiments, serves as a possible “signature” for the behavior. By quan-

tifying the escape curve for two individuals, jamming interactions between them can

be modeled and predicted. Reducing the JAR to this curve also allows us to examine

social aspects of the JAR without considering the mechanistic details underlying its

dynamics. For instance, previous research, interpreted in the context of our model,

suggests that the escape curves may vary across development and be dependent on

gender [46]. This means that the distribution of frequencies in a social group might

be tailored by the individuals over time by modification of their escape curves. Future

work might include identifying a general model structure that works across individ-

uals and across stimulus amplitudes so that a complete interaction between freely

swimming individuals in the wild can be modeled.
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5.2.4 Refining and extending the model

The effect of stimulus amplitude on the dynamics has not been fully explored in

this work. While we found no significant dependence on constant amplitude (see Fig.

3.11), the JAR certainly depends on changing amplitude since a changing amplitude is

simply an AM. In a natural environment, the amplitude of EOD signals from nearby

conspecifics will depend on the time-varying distance and orientation between the

animals. If the goal is to model the interaction of groups of fish, it becomes necessary

to quantify the effect of stimulus amplitude dynamics on the JAR.

In addition, the escape function may depend on higher order time derivatives of d,

taking the form e(d, ḋ, d̈, . . .). An asymmetry in this kind of velocity dependence may

explain the difference between the model response and data in case of the decreasing

ramps. Experiments similar to the dynamic clamp trials described in this chapter are

required to fully understand the contribution of these higher order terms.

Our assumption that the return function can be modeled as a linear spring-like

term accurately captured the data; however, nonlinearities in the return function

could also affect the behavior. In this case, the model will be

ẏ = −r̂(y) + ê(d), (5.1)

with r̂(y) and ê(d) denoting return and escape respectively. This would imply that the

steady state frequencies are ys = r̂−1(ê(ds)). Further behavioral or neural experiments

will then be required to tease apart r̂ and ê, as this cannot be done with input–output
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behavior alone.

In their natural habitat, weakly electric fish are often found in groups of two or

more individuals [74,78]. In these groups, the complex interaction of electric fields can

give rise to envelopes [75], through the relative movement between individuals [84],

or the higher order interaction of their EODs [76]. Evidence of envelope processing

has been revealed in the electrosensory system in weakly electric fish [52,55,60,70]. In

addition, Chap. 4 described a behavioral response in Eigenmannia to low-frequency

‘social envelopes’ [76]. Extending the JAR model described in Chap. 3 to incorpo-

rate not only pair-wise differences between individuals, but also to capture envelope

responses would ultimately provide a powerful tool to predict and interpret complex

social behavior in these fish.

5.3 Discovery of response to social

envelopes

Forty years of analysis of the JAR [16,83] have focused on mapping a well-defined

computation [33] through all stages of neural processing, from sensory receptors to

motor units [58]. This work was successful mainly due to a sharp focus on the spe-

cific parameters that were necessary and sufficient to drive the behavior, thereby

putting aside potentially complex temporal features—such as social and movement

envelopes—that are likely to be ubiquitous in a fish’s electrosensory milieu [74, 78].
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Recent neurophysiological studies have identified neurons that respond to such elec-

trosensory envelopes [52, 55, 59, 60, 70], but the function of this brain activity was

unknown.

Here we show the behavioral relevance of one category of electrosensory envelopes.

We measured the EOD responses of Eigenmannia virescens to envelope stimuli like

those that would arise from the electrical interactions of three or more motionless

conspecifics. We call this behavior the SER. We also proposed a simple extension

of the algorithm for the JAR, a low-pass filter of the instantaneous amplitude and

phase of the combined signal, which accurately predicts SER behavior. In the SER,

E. virescens raised or lowered their EOD frequency, which resulted in an increase in

frequency of the envelope by approximately 2− 6 Hz, with final envelope frequencies

between 5 and 15 Hz. The strength of the SER depended on the initial envelope

frequency and the stimulus amplitude: low initial frequencies and high stimulus am-

plitudes elicited the largest changes in EOD frequency. The SER direction was insen-

sitive to the relative amplitude ratio between stimulus signals, indicating dependence

on the slow precession of the Lissajous, as opposed to fast local rotations of the petals,

as predicted by our model (see Fig. 4.9).

5.3.1 Mechanisms for the SER

We extended the widely known model for the control of the JAR with the addi-

tion of a low-pass filter that eliminates responses to the local rotations of the Lis-
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sajous while retaining its precession. The model does not predict where and how

this computation may be implemented in the brain. Part of this computation could

be implemented as a saturation nonlinearity of amplitude-coding P-receptors, which

would cause them to encode envelopes [70]. When combined with a rectification cir-

cuit in the electrosensory lateral line lobe (ELL) [52,59,60], the amplitude axis of the

Lissajous would oscillate at the envelope frequency 2.33. In this case, the phase axis

would be filtered independently in downstream circuits to yield the circular Lissajous

that precesses at the |ddf |. Alternatively, amplitude and phase filtering may both oc-

cur in downstream circuits. In this case, the higher response thresholds (as compared

with the JAR) may be necessary to overcome the attenuation caused by the filter.

5.3.2 Possible functional relevance of the SER

In their natural habitat, weakly electric fish are commonly found in groups of

three or more conspecifics [74, 78], which is a necessary condition for the SER. We

showed that fish exhibited SERs that increased the frequency of envelopes to higher

frequencies (up to 15 Hz). The SER appears to be analogous to the JAR, in which

fish also shift their EOD frequency, effecting an increase in the frequency of the

beat [33]. It has been shown that low-frequency beats impair aspects of electrolocation

and that the JAR may allow fish to avoid this detrimental interference [5, 30]. In

addition to the behavioral impairment, it has also been shown that neural responses

to moving objects are impaired by low-frequency jamming [64]. If the SER functions
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analogously to the JAR, one would predict that low-frequency envelopes might also

degrade electrosensory performance and impair the underlying neural responses to

moving objects.

5.3.3 Movement envelopes

Fish are rarely completely motionless; therefore, we expect that movement-related

envelopes commonly emerge in groups of two or more fish. These envelopes can en-

code the relative velocity between fish and possibly provide reliable cues about dis-

tance [84]. We suspect that fish may also exhibit a ‘movement envelope response’

that can be driven by modulations due to the relative movement between individuals.

These movement-based envelopes indeed arise in a social context, but for clarity we

distinguish them from ‘social envelopes’ as defined in Chap. 4. This distinction is

important because social envelopes constitute a special class of signals that arises

solely due to the details of the interactions between electric fields of three or more

wave-type weakly electric fish. Movement-related envelopes, however, can arise in a

variety of contexts, including from non-social sources such as the interaction of fish

with objects in their environment. In the natural habitat, a cacophony of stimuli

contribute to modulations of the EOD in Eigenmannia, including simple moving ob-

jects [21], summations of multiple electric signals (as examined in this chapter) and

movements of nearby electrogenic animals [56]. In addition, amplitude and phase

modulations influence each other, creating cross interactions, which also have behav-
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ioral implications [19]. These and related behaviors appear to be mediated by sets

of simple computational rules that are instantiated in the ascending electrosensory

pathways of Eigenmannia and other closely related species of weakly electric fishes.

The behavioral results in Chap. 4 provide yet another platform for the analysis and

re-analysis of a well-described neural circuit that is used in the control of multiple

behaviors.
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