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Abstract— Fruit flies adeptly coordinate flight maneuvers to
seek, avoid, or otherwise interact with salient objects in their
environment. In the laboratory, tethered flies modulate yaw
torque to steer towards a dark vertical visual stimulus. This
stripe-fixation behavior is robust and repeatable, making it a
powerful paradigm for the study of optomotor control in flies. In
this work, we study stripe fixation through a series of closed-
loop perturbation experiments; flies are observed stabilizing
moving stripes oscillating over a range of frequencies. A system
identification analysis of input—output data furnishes a fre-
quency response function (FRF), a nonparametric description
of the behavior. We parameterize this FRF description to
hypothesize a Proportional-Integral-Derivative (PID) control
model for the fixation behavior. Lastly, we revisit previous work
in which discrepancies in open- and closed-loop performance in
stripe fixation were used to support the reafference principle. We
demonstrate that our hypothesized PID model (with a modest
biologically plausible nonlinearity) provides a more parsimo-
nious explanation for these previously reported discrepancies.

Insect behavior has long inspired scientists and engineers
to discover and recreate Nature’s implementation of sensory
processing, motor control, learning and navigation. Though
insect behavior manifests from evolved mechanisms and an
economy of neural architecture (merely 100,000 neurons
comprise the fruit fly nervous system), the performance
achieved by these animals far exceeds that of even the most
impressive robots they’ve inspired (e.g. RHex [1], microfly-
ing machines [2], jumping robots [3]). Flies are remarkably
adept agents within their environments, behaving robustly
in response to unpredictable and changing surroundings,
consolidating sensory cues from a diverse suite of modalities
(e.g. visual, olfactory, haltere, etc.) to control a repertoire
of flight behaviors. In this work, we model the feedback
control of flight for stripe-fixation, an optomotor stabilization
behavior in which flies modulate flight forces to orient a
moving target (a laterally moving vertical stripe).

In order to constrain the dimensionality of the identifica-
tion problem, we use a tethered preparation in which flies
are rigidly attached to a fixture and presented with a fictive
visual stimuli. This preparation has become a popular ex-
perimental paradigm for studying this class of behaviors. In
free flight, naturalistic visual stimuli are extremely rich (e.g.
luminance, contrast, spatial content, object motion, motion
coherence, etc. can all be salient factors which contribute to
the response) and the motor output is described kinematically
with (at least) six degrees of freedom (three for rotation and
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three for translation, not to mention head, body, and limb
movements). In the tethered preparation, the visual stimulus
and the kinematic output can each be constrained to a single
degree of freedom, hence reducing the task-level locomotor
behavior to a single-input—single-output system [4]—[6].

Optomotor yaw regulation has been studied extensively
towards understanding many aspects of sensorimotor pro-
cessing: comparing responses to small- and wide-field visual
stimuli [7], [8], parsing cross-modality sensory integration
[9]-[11], etc. However, empirically derived predictive models
for optomotor behaviors are rare in the literature. Poggio
and Reichardt [12] modeled the stripe-fixation behavior (in
Musca domestica) in a stochastic differential equation frame-
work, inferring the model through the propagation of motor
noise given different stimulus conditions (e.g. salience or
noise). Theobald et al. [13] modeled the optomotor response
to wide-field point-cloud stimuli both rotating (roll, pitch,
yaw) and translating (thrust, slip, lift) in each of the primary
axes using binary noise sequences (impulses in optic flow
velocities) and a time-domain correlation analysis to recover
the impulse response function.

We approach the system identification of stripe-fixation
through a series of perturbation experiments and frequency-
domain analyses. In closed-loop experiments, fly motor
output is measured and stabilizes stripe position through
negative feedback making fixation (zero angular displace-
ment and zero angular slip) a stable equilibrium point. All
systems, in a neighborhood of (hyperbolic) equilibria, can be
approximated by their local linearizations [14]. So despite
the nonlinear mechanisms which contribute to the behavior
(e.g. nonlinear flight dynamics, sensory tuning curves, motor
saturations, etc), at the task-level, we assume the behavior
can be captured by a linear frequency response function
(transfer function). In this work, we fit a proportional-
integral-derivative (PID) control model to our empirical
frequency response data. Notions of PD and PID control have
been referenced in past work [15], [16]; the PID structure
furnishes biological hypotheses as to the contributions of
different sensory information and we use this model to
consolidate observations from previous studies [7], [8], [17].
Lastly, we revisit work by Heisenberg and Wolf in which
a comparison between closed- and open-loop responses
revealed surprising qualitative differences in performance
between the two conditions. They attribute the observed dis-
crepancies to the reafference principle [18]. We recreate the
replay experiments and demonstrate that our hypothesized
PID model may explain their observations, presenting a par-
simonious alternative to the reafference principle. In terms of



the measured frequency bandwidth and the generalizability
of the resultant linear model to prior published observations,
this is perhaps the most comprehensive task-level model of
the stripe-fixation behavior to date.

I. MATERIALS AND METHODS

Large adult fruit flies, female Drosophila melanogaster
at 2-3 days post-eclosion, were selected for all experiments.
Flies were anesthetized at temperatures of 3-4°C and tethered
to tungsten wire at the anterior end of the thorax using UV-
cured cement. Additionally, the head was glued to the thorax
to eliminate movement during experiments, fixing the head
to the stationary frame of the arena.

A. Experimental apparatus

The flight arena (Figure 1) was composed of 44 modular
LED panels (each panel consisting of an 8 x 8 grid of LEDs)
[19], arranged in a cylinder (4 panels high and 11 around
the circumference) subtending 330 deg with a 30 deg gap
at the rear. In this configuration, the circumferential pixel-
to-pixel distance was 3.75deg. Four levels of gray-scale
dithering allowed for apparent motion with a minimum
increment of 0.9375 deg. The visual scene consisted of two
dark stripes, positioned antipodally on the cylinder, each
subtending 30deg. Positional error was measured as the
angle from the fly’s sagittal plane to the front-most stripe
considered the fixation target.

The fly was positioned in the center of the arena. Illumi-
nated from above with infrared light, the fly cast a shadow
on a sensor below; the wingbeat analyzer inferred wingbeat
frequency (WBF) and left and right wingbeat amplitude
(LWBA and RWBA) from the spatiotemporal pattern of
the shadow. The wingbeat amplitude asymmetry (RWBA —
LWBA = AWBA, measured in volts) was assumed to be
proportional to the fly’s intended yaw torque [20].

A simple one degree-of-freedom model for the yaw dy-
namics is JO + B = 7, where 0 is the yaw angle, J is the
moment of inertia, B is the linear rotational damping, and
T is the wing-generated torque. The damping time constant
J/B, compared to the duration of a maneuver, determines
whether the damping forces dominate [21]: if J/B is small
then second-order model can be further reduced to first order.
Indeed, recent modeling suggests damping dominates [22],
thus we assume that the yaw dynamics further reduce to
0 o 7. This justifies, to some degree, the long-standing
tradition of simply scaling AWBA and treating it as the
angular velocity of the fly. We implemented this as

6 = KAWBA, (1)

where K = 239.1deg -s~!-V~! was tuned by hand to
achieve a robust, closed-loop stripe fixation behavior.

The velocity error signal was calculated as the difference
between the reference trajectory velocity and the wingbeat
asymmetry; the flight arena controller integrated the velocity
error signal (calculating the positional error) and updated the
corresponding stripe image.
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Fig. 1. Apparatus (1) The LED arena displays an oscillating vertical bar,
eliciting a tracking response from the fly. (2) Illuminated from above, the
fly casts a shadow on a sensor below and the wingbeat analyzer extracts
the salient kinematic descriptors from this wingstroke silhouette. (3) The
differential amplifier subtracts the fly motor output (AWBA) from the
reference trajectory (prescribed in software) to generate the error velocity
(sensory slip). (4) The Flight Arena controller integrates velocity error and
displays an updated stripe position.

B. Experiments

System identification assay: Flies (N = 10) were observed
stabilizing an array of moving-stripe stimuli comprising
pure sinusoidal, sum-of-sines and chirp trajectories. Between
presentations, flies were given a simple “reward” fixation
task intended to maintain motivation and provide consistent
initial conditions. This set of trajectories is repeated three
times with trial order randomized within an iteration; for
the large majority of trajectories, flies maintain the tracking
behavior through all three presentations.

Sinusoidal trajectories were presented at frequencies of
1, 3.5, and 11.5 Hz for durations of 6 s; sum-of-sines
trajectories encompassed every pair-wise sum of sinusoids
from this same set of frequencies and the same duration.
The frequencies were selected to be mutually prime, so
that for sum-of-sines trials, the harmonics of the response
to any frequency component would not coincide with any
other stimulus (fundamental) frequency. The logarithmic
chirp stimulus spanned frequencies from 0.05-11.5 Hz with
frequency increasing continuously over a 120 s duration. The
angular amplitude A(w) (and consequently the maximum
angular velocities) for all trajectories was selected as a
function of frequency:

A(w) = (0.0153 + 0.0044(w)) " deg . )

This relation prescribed an angular amplitude that decreases
with increased frequency but an angular velocity that in-
creases with frequency, addressing physical limitations of the
animal behavior and constraints imposed by the LED display.
At high frequencies, the velocity was constrained from above
by the motor output of the fly (free-flight saccadic rotations
are estimated at 1800 deg -s~! [21] and the limitations on
smooth tracking are significantly lower) and the angular
amplitude was constrained from below by the resolution of
the LED arena (peak-to-peak travel must be greater than a



single pixel). At 11.5 Hz, this relation yielded a peak-to-peak
amplitude of 6 deg (approximately 1.5 pixels translation) and
a maximum velocity of 216.8 deg -s~!. At low frequencies,
we bounded the amplitude of the exogenous reference to
60 deg, though the displayed error signal was allowed to
exceed this bound as a result of feedback.

Replay paradigm: In 1988, Heisenberg and Wolf explored
the role of feedback in processing exogenous (reference)
and reafferent (self-generated) motion stimuli using an error
replay experiment. This experiment paradigm compares the
responses to two sequential perturbations, first in closed-loop
and then in open-loop. In the first presentation, the fly’s
generated torque (or for our set-up, the AWBA) stabilizes
the stripe position through negative feedback and the error
signal, the displayed motion stimulus, is recorded. In the
second presentation, this recorded error is replayed as the
motion stimulus in the absence of any stabilizing feedback
(i.e.the stimulus is unaffected by the fly motor output).

The replay experiments were recreated for oscillations of
0.1 Hz (as used in [15]) with the same visual stimulus and
position-frequency relation (2) used in the system identifica-
tion assay. Flies (N = 10, distinct from the sample used
for identification) were presented three periods (30 s) of
oscillation in closed-loop, followed by 3 s of reward fixation
and then the open-loop replay. Flies completed six repetitions
of closed- and open-loop pairings.

C. Analysis

The frequency analysis and subsequent linear transfer
function model faithfully describe the stripe-fixation behavior
for some neighborhood about the fixation equilibrium (stripe
position and velocity are both zero). Acknowledging this
caveat, we discard data points for which the stripe is not
reasonably frontal, those for which the magnitude of the error
signal exceeds 60 deg (Figure 1 upper left). Additionally, we
ignore data for which the instantaneous wingbeat frequency
falls below the mean WBF (as calculated per individual
across all presentations), eliminating data for which the fly
was fatigued or otherwise unmotivated.

The discrete Fourier transform (DFT) of the complete data
reveals the coincidence of peaks in the input and output
power spectra (i.e. the fly motor output has significant power
at the stimulus frequencies). The DFT, however, is not
amenable to incomplete or irregularly sampled data sets. In
lieu of the DFT, we apply a least squares spectral analysis
(LSSA) to both the input and output signals. For pure
sinusoids and sum-of-sines trajectories, we fit the coefficients
to cosine—sine pairs only at the frequencies of interest (w;)
and only for the admissible data samples (at times ¢ € T):

(,) = arg min

> { (Zk: o sin(w;t) + Bi cos(wit)) - y(t)}2 G

teT i=1

The magnitude and phase of each component are then
calculated as M; = [[o; Bi]|2 and ¢; = arctans(B;, «;);

denoting the behavioral response as a transfer function F'(w),
gain is calculated as the output—input ratio of magnitudes,
|F| = Myyut/M;n, and phase relation as the difference of
output—input phases, ZF' = @yt — ¢in. For chirp signals, we
perform a short-time LSSA, with non-overlapping windows
of 10 s for t € (0 40] and 4 s for ¢ € (40 120]. The least-
squares minimization in (3) is modified to accommodate
time-varying frequency and signal amplitude where 6(t) and
w(t) = 92 are prescribed and A(w) is determined by (2).
The short-time LSSA assumes that for sufficiently small
deviations in frequency (corresponding directly to window
size for the chirp stimulus) the frequency response F'(w) is
nearly constant:

(o, B) = argmin
a,pB

> {aA(w) sin(0(t)) + BA(w) cos(6(t)) — y(t)} . @)

teT

A parameterized transfer function model F'(w, &), a function
of frequency w and parameters «, is fit in the least-squares
sense to the empirical frequency response F*(w) (at the
discrete frequencies in the set (2) represented in the log
(Bode) space:

a = arg min
«

S {Wg(log |Fa(w, @)])*+(1=Ws) (£ Fa(w, oz))Z}
weN

where
F(w,a)

Fr(w)
The weight W; € R is a free parameter chosen to favor data
according to frequency; negative values of W7 more heavily
penalize low frequency errors and positive values penalize
errors at high frequencies. W € [0 1] scales the relative
costs contributed by gain and phase.

Faw,a) = (&)

II. RESULTS
A. Empirical frequency responses

We describe the system as an input—output relation from
the stripe position (measured as the azimuthal angle from the
sagittal plane of the fly) to the fly motor output (measured as
a voltage proportional to the difference in wingbeat ampli-
tudes, AWBA). An example of the motor response (green) to
a sum-of-sines trajectory (blue) is shown in Figure 2A, both
in the time domain (top) and the frequency domain (bottom).
Though the fly motor output has significant stochastic com-
ponents (noise and drift), comparing the magnitude of the
frequency spectra of the input-output pair as calculated by
a fast Fourier transform, allows us to disambiguate the re-
sponse to the moving stimuli from motor noise. For this trial,
the stimulus trajectory is a sum of sinusoids at frequencies of
1 and 3.5 Hz. In the frequency domain, the fly’s motor output
comprises two distinct peaks coinciding with the stimulus
frequencies; we consider these peaks to be the response
to the stimulus and disregarded other spectral content as



extraneous motion. Though in many trials, these response
peaks are easily discernable, this is not always the case. We
proceed under the assumption that for each trial, the response
to the stimulus is the response measured at the stimulus
frequencies. In the remaining analyses, we use LSSA (see
Section I-C) to extract only the frequency components of
interest (those present in the stimulus), understanding that,
at times, the response data may be highly corrupted by
extraneous motor output, or worse, that a responsive behavior
is not present at all and we are sampling only stochastically
driven motor output.

In the first suite of experiments, flies were recorded fixat-
ing a dark vertical stripe oscillating with sinusoidal, sum-of-
sines, and logarithmic chirp trajectories. The empirical FRF
(shown in black in Figure 2B) is calculated from the chirp
stimulus using a moving window LSSA over the frequency
range 0.1-11 Hz. The response to pure sinusoids (blue) and
sums-of-sines (green) are superimposed on the FRF. The
response to sinusoids coincides well with the chirp response;
this is expected since for any small window of time (small
with respect to the rate of change of frequency), the chirp
stimulus resembles a pure sine and for any small band of
frequencies (with caveats discussed in Section I) the system
response should be similar. More importantly, the sums-of-
sines responses provide frequency response estimates consis-
tent with the empirical FRF, substantiating the superposition
property and further motivating a linear model.

B. A linear transfer function model

The FRF reveals low-pass dynamics, as has been re-
peatedly observed and reported in the literature [7]. The
high-frequency decay (estimated as 18.7 dB - decade ™! from
measurements at 3.65 and 9.33 Hz) suggests a transfer func-
tion with relative degree of one. Phase rolls off faster than
expected for the assumed relative degree, which likely results
from a delay in sensorimotor processing. Also notably, the
gain plot exhibits a distinctive notch at 1 Hz. In order to
capture these salient features, a linear model would require
at minimum three poles, two zeros and a delay. The following
transfer function from positional error E(s) to motor output
Y (s) was fit to the empirical FRF as described in Section I-
C:

Y (s) 0.181s% + 1.23s + 8.68

B(s) P00 S 652 + 2775 & 1098
The transfer function has a real pole at -5.72 and complex
poles at —7.434+11.70. Dividing numerator and denominator

polynomials by the real pole, we reformulate (6) into a
proposed PID control model:

(s 4 14.85s +192.1) Y (s) (7)

(6)

motor dynamics

7.55
= —0.032 181 1 — | E(s).
exp(—0.032s) <O 81s+ 0.196 + s—|—5.72) (s)

sensory weighting - PID (leaky integrator)
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Fig. 2. (A) In the frequency domain (bottom), the motor response (green) to
stimulus motion (blue) is discernable from extraneous motor noise. (B) The
FRF empirically calculated from chirp stimuli is compared to the responses
to single and summed sine waves. Agreement between these responses
motivates a linear transfer function model (red). (C) A saturating integrator
model results in a PD model with phase and gain differences in accordance
with Heisenberg and Wolf’s replay experiments. A derivative model relying
only on optic flow generalizes the model for wide-field stimuli.



While the FRF is unique for any given data set, many such
parameterized models may be hypothesized, each furnishing
a different mechanistic interpretation. In fact, there are fun-
damental limits in our ability to tease apart sensory dynamics
from downstream processing due to the likelihood of pole-
zero cancellations [23]. Notwithstanding this limitation, we
parse the transfer function so that the left-hand and right-
hand side equations describe the motor dynamics and sensory
processing, respectively. Under this interpretation, the motor
plant is described as a forced second-order (spring-mass-
damper) system driven by a neural control signal. In the
right-hand side equation, the control signal is calculated as
a weighted sum of sensory measurements of sensory slip,
positional error, and accumulated error. The fit visual-motor
delay is 32.1 ms; this delay has been previously estimated
at 40 ms for Drosophila [15], [24].

This model framework consolidates several previously
published observations. Flies exhibit increased motor output
for regressive (front-to-back) stripe motion compared to
progressive (back-to-front) motion [8], [17]. This observa-
tion is consistent with the proposed PID control policy.
In response to regressive motion (e.g. a stripe to the left
moving leftward), the positional and derivative responses
contributing constructively to the motor output; conversely,
for progressive motion (e.g. a stripe to the left moving
rightward), the positional and derivative responses contribute
opposing torque commands yielding a reduced net torque.
Additionally, Duistermars et al. observed that for wide-field
(repeating stripe with period of 30 deg) visual scenes at
0.1 Hz, motor output was phase advanced to the stimulus
motion by a quarter period while for small-field (single
stripe) the input and output phases were practically locked.
Assuming that this spatial periodicity supresses the majority
of positional and integral error (modulo 30 deg), we propose
a derivative (optic flow) model for yaw regulation of this
scene (Figure 2C in green); as observed by Duistermars et
al., at low frequencies this response to the wide-field scene
phase leads the single-stripe (PID model) response by ap-
proximately 90 deg. We note that our model is inconsistent
with their observations of response gain.

C. Revisiting the replay paradigm

For linear stable optomotor dynamics, the response to the
replay experiment (as described in Section I-B) is expected to
be qualitatively similar to the original closed-loop response
excepting that in open-loop, there is no mechanism for
the attenuation of measurement noise. Moreover, it can be
shown that measurement noise attenuated in the closed-
loop presentation reappears undiminished in the replay re-
sponse. But Heisenberg and Wolf [15] observed qualitative
differences between the closed-loop and replay responses:
replay responses were phase leading by 50.9 deg (SEM =
48.6 deg, N = 10) and attenuated by approximately 50-
65%. This discrepancy between the closed-loop and replay
responses was presented as evidence corroborating the ef-
ference principle, that the disagreement between a feed-
forward expectation (efference) and the sensory measurement
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Fig. 3. Empirical histograms of gain and phase for (A) closed-loop and
(B) open-loop replay trials illustrate the sensitivity relation between the two
feedback conditions. Colors correspond to trials from different individuals
with the warmer colors assigned to flies with higher mean gain. (C) We
present the ratios of the two responses and compare the results to Heisenberg
and Wolf’s reported statistics [15].

of self-motion (reafference) initiates a categorical switch in
behavior. Further, Heisenberg and Wolf concluded that such
differences could not be the consequence of a linear system.

In recreating the replay experiments, we achieved the
results predicted by a linearity assumption. Specifically,
open-loop responses were qualitatively similar to closed-
loop observations but with greater noise, hence variability
(Figure 3). Though increased variance in open-loop obser-
vations makes it difficult to argue whether Heisenberg and
Wolf’s observed differences were significant, we proffer an
explanation derived from our proposed PID model. If we
allow the integrator to saturate (a nonlinearity inherent in
any physical instantiations of an integrator), then the system
responds quite differently about equilibrium when compared
to the saturated regime. In closed-loop, every internal state is
maintained at equilibrium and as a result, the integrator con-
tributes to the output proportional to the accumulated error
(which varies with time). In open-loop, small biases in noise
or initial condition (e.g. measurement bias, asymmetry in
baseline wingbeat amplitudes, fly misalignment, etc), which
would be mitigated in closed-loop, can cause the integrator
to drift to saturation. Once saturated, the integrator no longer
conveys changes in the accumulated error, contributing a
constant offset to the motor output, effectively silencing the
integral path in sensory processing. Figure 3C compares our



proposed PID model about equilibrium (red) to a model
prediction for a saturated state (cyan); over a broad range
of low frequencies, the saturated model exhibits attenuation
and phase-lead when compared to the equilibriam model,
the same differences observed by Heisenberg and Wolf in
comparing replay and closed-loop responses.

DISCUSSION

This work proposes a transfer function model derived
from a broad-spectrum frequency analysis. It has been ob-
served repeatedly and reaffirmed in this work that the fly
optomotor response is low-pass; performance in reference-
tracking tasks is strong for slow oscillations and diminishes
rapidly for frequencies greater than 2 Hz. For this reason,
the overwhelming majority of the literature focuses on the
low-frequency response, where behavior is robust and easily
discernable during experiments. However, from a control
theoretic perspective, low frequency responses are least in-
formative when the underlying system is low-pass.

Excepting differences in gain, for low frequencies (relative
to the cut-off frequency), the majority of linear low-pass
systems exhibit qualitatively similar responses. To differenti-
ate between competing models—to determine attributes such
as model order, cut-off frequency, damping, and delay—
requires observation beyond the cut-off frequency, where
performance wanes.

To further advocate this point, consider the sensitivity of
the open-loop fly optomotor response F'(w) (the transfer
function from perceived sensory error to fly motion) with
respect to tracking performance. The tracking behavior can
be described by G(w), where error is filtered by F'(w) and
stabilizes the stimulus trajectory through negative feedback:

F(w) _ Gw)
3w TW = T=ewy

with sensitivity of the optomotor plant with respect to
performance calculated as

oF 1
G~ (1-Gw)?

We see in (8), that the open-loop optomotor response
is most sensitive to performance near G(w) = 1 (perfect
tracking performance). The heightened sensitivity in this
regime has two important implications: small measurement
errors will yield highly variable open-loop model predictions,
and, conversely, a diversity of open-loop models could have
generated the observed closed-loop performance. For this
common feedback topology, sensitivity improves to unity
as performance degrades. This trade-off must be a critical
consideration for system identification, to find the regime
of stimuli which elicit observable behavior and informative
model constraints, performance and sensitivity near unity.
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