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Explicit error coding can mediate gain
recalibration in continuous bump attractor
networks

Gorkem Secer 1,2,3 , James J. Knierim 2,3,4,6 & Noah J. Cowan 1,3,5,6

Continuous bump attractor networks (CBANs) are a prevailing model for how
neural circuits represent continuous variables. CBANs maintain these repre-
sentations by temporally integrating inputs that encode differential (i.e.,
incremental) changes to a given variable. The accuracy of this computation
hinges on a precisely tuned integration gain. Experiments have shown that the
brain can recalibrate this gain using ground-truth sensory information, yet
existing CBAN models rely on biologically implausible or currently unknown
plasticity rules for recalibration. Here, we demonstrate that ring-type CBANs
can recalibrate their integration gain through two mechanisms that rely on
well-established, biologically plausible forms of plasticity. In the first
mechanism, the spatially distributed synapses conveying incremental infor-
mation to the attractor are plastic, allowing the integration gain to become
transiently inhomogeneous during recalibration. In the second, plasticity is
implemented in other components of the network, keeping the gain homo-
geneous during recalibration. Both mechanisms require explicit error signals
that drive plasticity. We instantiate each mechanism within a CBAN, demon-
strating their potential for biologically plausible, adaptive coding of con-
tinuous variables.

The brain’s ability to represent continuous variables, such as location,
time, and sensory information, is fundamental to our understanding
and interaction with the external world. A compelling theoretical fra-
mework for how the brain constructs these representations is pro-
vided by continuous bump attractor networks (CBANs) in a diverse
range of brain functions, such as orientation tuning in visual cortex1,
working memory2,3, evidence accumulation and decision-making4–7,
and spatial navigation8–12.

The CBAN is a class of recurrent neural network that maintains
persistent patterns of population activity through interactions among
its neurons. This persistent activity typically forms the shape of a
‘bump’when visualized on an appropriate topological arrangement of

neurons (knownas a low-dimensionalmanifold), such asaplane, circle,
or torus13. Although the shape of the activity bump is constrained by
network dynamics, its center location can vary along this low-
dimensional manifold, corresponding to different values of the enco-
ded continuous variable. Neural activity consistent with these key
properties of CBANs, namely, the activity bump and the low-
dimensional manifold, have been observed in recordings from var-
ious regions of the mammalian brain that encode continuous
variables14–16. More conclusive and direct evidence for CBANs has been
found in the central complex of the fly brain, where a biological CBAN
encoding the fly’s heading angle, a continuous variable, has been
identified based on the connectome and a combination of calcium
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imaging and optogenetics17–20. While these experimental findings
support the idea of brain circuits employing CBANs to represent
continuous variables, the neural mechanisms that enable CBANs to
accurately update their representations in response to changes in
continuous variables remain incompletely understood.

CBANs update their representations of a continuous variable
based on twodistinct types of inputs. The first type provides ‘absolute’
information, namely, the true value of a continuous variable, such as
spatial location relative to visual landmarks or the item to be held in
working memory. When this absolute information is available, it pro-
vides input to a specific location on the CBAN’s low-dimensional
manifold that is associated with the true value of the continuous
variable. In response to this localized input, the internal dynamics of
the CBAN create a basin of attraction on its low-dimensional manifold
towardwhich the activity bumpgravitates, bringing the representation
into close alignment with the actual value of the continuous
variable21–23. This theoretical phenomenon has been experimentally
observed in the biological CBAN within the fly central complex17 and,
more indirectly, in the spatially tuned neurons of the hippocampus
and entorhinal cortex—two regions modeled as CBANs in the mam-
malian brain24–28.

In contrast to the first type of inputs providing absolute infor-
mation to the CBAN, the second type provides ‘differential’ informa-
tion, namely, the changes in the continuous variable. Sources of such
inputs may be, for instance, self-generated movements providing
velocity information in the context of spatial navigation or sensory
cues serving aspieces of evidence in the context of decision-making. In
response to these inputs, the internal dynamics of the CBAN shift the
activity bump along its low-dimensionalmanifold—in a process akin to
mathematical integration—such that the bump’s location reflects the
value of the continuous variable. However, the encoding accuracy of
this integration process depends critically on an additional factor,
namely, the integration gain of the network that relates the cumulative
change in the continuous variable to the updating of the bump loca-
tion in a proportional manner29,30. If this gain factor is miscalibrated,
the result of the CBAN’s integration process begins drifting away from
the true value of the continuous variable; simply stated, it accumulates
error. In the presence of absolute information sources such as visual
landmarks in the context of spatial navigation, the aforementioned
‘basin’ mechanism corrects errors, preventing them from accumulat-
ing. However, without absolute information, error accumulation con-
tinues due to the miscalibrated integration gain. The error
accumulation may eventually cause, for example, a CBAN that inte-
grates evidence to reach a decision threshold (associated with activa-
tion of a specific neuron above a certain level4) either too soon or too
late. Likewise, a miscalibrated CBAN integrating an animal’s angular
head velocity may overestimate or underestimate the correct head
direction. Thus, a finely tuned integration gain is crucial for a CBAN to
accurately encode a continuous variable based on inputs with only
differential information.

Recent data from time cells and place cells of the rodent hippo-
campal formation, hypothesized to rely on CBANs31, showed that the
brain’s integration gain is indeed a plastic variable whose value is
adjustedbasedon the feedback fromabsolute information sources32,33.
In the first study that demonstrated this phenomenon on place cells33,
the virtual visual landmarks, which provided the absolute information,
weremoved as a function of the animal’smovement on a circular track.
This manipulation induced persistent errors between the encoded
location, derived from angular path integration, and the actual loca-
tion relative to the moving landmarks. Consequently, the brain reca-
librated its integration gain, adjusting it in both direction and
magnitude to reduce the positional encoding error. The recalibration
was most evident after the landmarks were extinguished: The space
encoded by place cells during pure path integration either expanded
or contracted, depending on the direction of the preceding landmark

manipulation. PresentCBANmodels treat the integration gain either as
a constant set via carefully chosen, hard-wiredmodel parameters (e.g.,
synapticweights)11,12,34–36 or as a variable learned via plasticity rules that
are not biologically plausible37 or are unproven38. Although these
models showed the possibility of gain tuning, fundamental insights
into the error-based neural mechanisms underlying this tuning are
missing. Therefore, given the biological relevance and theoretical
importance of this recalibration phenomenon, an open question
remains:What are the critical factors enabling a CBAN to recalibrate its
integration gain based on feedback from absolute information
sources?

In thepresent paper,weaim to address this question andgenerate
testable physiological predictions about the neural mechanisms
underlying gain recalibration in brain circuits that encode continuous
variables. As a representative problem,we focus onhippocampal place
coding and theoretically investigate how visual landmarks—an abso-
lute information source—might recalibrate the integration gain of a
CBAN encoding an animal’s position on a circular track33. We identify
two distinct gain recalibrationmechanisms within a ring attractor. The
first mechanism involves Hebbian plasticity in the synaptic connec-
tions between the differential inputs and the attractor, allowing the
integration gain to become spatially inhomogeneous during recali-
bration. This inhomogeneity can be transient, fading away as the sys-
tem continually uses the feedback from absolute information sources
for recalibration. In contrast, the second mechanism features non-
plastic differential-input synapses and maintains spatially homo-
geneous integration gain during recalibration, with path-integration
gain plasticity arising through nonsynaptic mechanisms. Importantly,
we provide strong theoretical evidence that in CBAN models, both
recalibration mechanisms depend on explicit error signals at the
neuronal level, unlike error correction that can occur automatically
without explicit error signaling (Fig. 1A). Our findings predicts a pre-
viously untested functional role for the absolute information sources
within the putative CBAN circuits of the brain and highlight a critical
modification to prior CBANmodels, which lack an explicit error signal.
Finally, we propose modified CBAN models incorporating explicit
error signals to recalibrate their integration gains. Our approach and
the organization of the paper can be found in Fig. 1B.

Results
Model setup: ring attractor network
A CBAN is a recurrently connected neural network where neighboring
neurons excite one another and inhibit distant neurons according to a
connectivity pattern known as local excitation and global inhibition1,39.
This connectivity gives rise to a persistent bump of activity as a stable
equilibrium state of the system. For large networks (i.e., in the limit as
the number of neurons goes to infinity; but see40) where this con-
nectivity pattern remains consistent across the network, the equili-
brium states form a continuum, known as attractor states39,41–43. The
arrangement of neurons and the exact pattern of the recurrent con-
nectivity determine the topology of this attractor. In the case of a ring
attractor, neurons are arranged as a topological ring11. By sustaining an
activity bump whose location can be shifted around the ring based on
external inputs (i.e., the differential and absolute information sources),
a ring attractor network is well-suited to represent a variable on a
closed curve (e.g., the angular location of an animal on a one-
dimensional (1D) circular track). Because integration-gain recalibration
has beendemonstrated inplace cells of rats runningon a circular track,
we choose to model this process with a ring attractor, a computa-
tionally tractable framework naturally suited for encoding circular
variables.

Various architectures have been proposed for ring attractors8,10–12.
From this set of possible architectures, we restrict our analysis to the
three-ring architecture because of its consistency with the anatomy of
the fly central complex18,19 and its generalizability to higher
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dimensions36,44. For example, augmenting the 1D ring-arrangement of
neurons in this architecture to a 2D toroid naturally leads to an
attractor that is well-suited to represent two continuous variables13, as
in grid and place cells36,44. As the name suggests, the three-ring
attractor consists of three groups of neurons, each ordered in a ring
arrangement: a central ring, a clockwise (CW) rotation ring, and a
counter-clockwise (CCW) rotation ring8,11. Neurons within these three
rings are interconnected via intrinsic connections. Additionally, they
receive inputs via extrinsic connections from upstream neurons that
encode the velocity information (i.e., a ‘differential’ type of input) and
from a fourth ring that encodes the positional feedback from visual
landmarks (i.e., an ‘absolute’ type of input) (Fig. 2A).

Our ultimate goal is to garner insights into how the three-ring
attractor network’s integration gain—hereafter referred to as the path-
integration (PI) gain—can be recalibrated by visual landmarks. Intui-
tively, the PI gain determines how much the activity bump shifts
around the central ring for a given amount of the animal’s movement
in physical space. To attain our goal, we will first reduce the complex

network dynamics into a simplified, 1D differential equation39. Prior
work derived such models for networks wherein the synaptic weights
are constrained to be spatially uniform and static45,46. Here, we relax
some of these constraints and develop a simplified model of the ring
attractor network, progressively, starting from the central ring (Sec-
tion “Control theory reveals algorithmic conditions for PI-gain recali-
bration”). We next include rotation rings to model the response of the
network dynamics to self-movement inputs, which reveals an analy-
tical expression of PI gain and its spatially distributed structure (Sec-
tion “The need for an explicit error code to meet the algorithmic
conditions for PI-gain recalibration”). Finally, we extend the simplified
model to include thepositional feedback fromvisual landmarks,where
we observe how the strength of this feedback may be modulated by
changes in the PI gain during recalibration (Section “The visual ring
provides gain-dependent positional feedback that corrects path inte-
gration”). This simplified model allows us to rigorously identify algo-
rithmic conditions (Section “Control theory reveals algorithmic
conditions for PI-gain recalibration”) for PI-gain recalibration, from

CW vel.
neuron rotation

CW ring
rotation

CCW ring

visual
ring

central
ring

CCW vel.
neuron

A

(i) (ii)

(iii)

Neuron location ψ
0-π π0

C

r c(
t,ψ
)

1

3
2

44

2

4

55

3

-π π0

0

Distance ψ

B D

Fi
rin

g 
ra

te

CW CCW
Animal's velocity

0

Fig. 2 | Ring attractor networkmodel10,36,44,93. A Schematic representation of the
model. The central ring forms the main body of the model based on its recurrent
connections (labeled with ①). Its reciprocal offset connections with the rotation
CW and CCW rings (labeled with ② and ③) create a push-pull mechanism that
modulates the intrinsically controlled neural activity of the central ring based on
external inputs from the CW and CCW velocity neurons (labeled with ④). An
additional external input is provided to the central ring from the visual ring
(labeledwith⑤), corresponding to a set of sensory neurons that are tuned to visual
landmarks.B Synapticweight functionW c�c : S

1 ! R that describes the recurrent

connections within the central ring according to the well-known local excitation
and global inhibition pattern. C Numerical demonstration of how recurrent con-
nectivity within the central ring can autonomously maintain a persistent activity
bump. Simulation of the central ring neurons was started with initial conditions
that were assigned pseudo-randomly (light green line labeled with (i)). Within ̃ 100
milliseconds, a bump of activity emerges (medium green line labeled with (ii)).
Eventually, the firing rates converge to an equilibrium, forming a persistent bump
of activity (dark green line labeled with (iii)). D Tuning curves of CCW and CW
velocity neurons are shown with blue-dashed and red-dashed lines, respectively.
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Fig. 1 | Conceptual overview and methodological roadmap. A Conceptual
illustration of the main question addressed in the present paper: If a CBAN (Con-
tinuous Bump Attractor Network) has an inaccurate integration gain, its repre-
sentation of a continuous variable accumulates errors. A classical finding from
decades of CBAN research is that these representational errors are automatically
corrected by ground truth signals—a process known as the “ground truth fix"91,92—
without requiring an explicit code of the error at the level of single neurons. This
raises the question of whether a CBAN can automatically learn from these errors
and recalibrate its integration gain without an explicit error code. In this paper, we

present theoretical evidence that an explicit error signal, in the formof a rate code,
plays a crucial role in the recalibration of the CBAN's integration gain. Because
classical CBANs without an explicit error code lack the ability to recalibrate their
integration gain, their representational errors continue to accumulate at the same
rate until the ground truth signals become available, at which point they are cor-
rected (red line). In contrast, a CBAN equippedwith an explicit error codedoes not
only correct representational errors but also recalibrates its integration gain,
gradually reducing the rate at which errors accumulate over time (green line).
B Our technical approach and how it is organized across the paper.
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which we derive the mechanistic requirements for a network to
implement the recalibration (Section “The need for an explicit error
code to meet the algorithmic conditions for PI-gain recalibration”).

Ansatz solution to central-ring dynamics. Parameterizing a neuron
basedon its angleψ∈ S1 in the circularneural space,we canexpress the
dynamics of the central ring as follows:

τc
∂rcðt,ψÞ

∂t
= � rcðt,ψÞ+ σ W c�cðψÞ⊛ rcðt,ψÞ+ Iextðt,ψÞ

� �
: ð1Þ

Here, rc(t,ψ) denotes the firing rate of the central ring neuronψ at time
t, τc denotes the synaptic time constant of central ring neurons, ⊛
denotes the circular convolution operation, σ denotes an activation
function (chosen as a rectified linear unit) in our current study),
Iext(t, ψ) denotes external synaptic inputs to the central ring, and
W c�c : S

1 ! R denotes a rotationally invariant synaptic weight func-
tion that describes the recurrent connections (① in Fig. 2A) (Fig. 2B). At
the limit, as the network size increases39,41,42, the recurrent connectivity
leads to stabilization of a persistent “bump” of neural activity, a hall-
mark of the CBANs.

The activity bump is constrained by the network dynamics to take
nonzero values in a limited range (i.e., compact support) and to have a
symmetric shape with a single peak θ (i.e., even symmetry about the
peak) (Fig. 2C). This peak location, which corresponds to the internal
representation of the animal’s position, can vary along the central ring
in response to external synaptic inputs Iext. Even though we are unable
to obtain an exact analytical solution to the central-ring dynamics in
Eq. (1) to fully describe this dynamic response,we can ‘guess’ a solution
form that can describe its general properties without relying on a

specific function as follows:

rcðt,ψÞ= r̂cðψ� θðtÞÞ: ð2Þ

Here, r̂cðψ� θðtÞÞ denotes a function, such as a thresholded Gaussian
or a sinusoid11,21,47–50, describing the persistent activity bump with the
previously mentioned symmetry and width properties (see Supple-
mentary Note 3 for further details), and ψ = θ(t) denotes the bump
location associated with its peak (Fig. 3A). The guess wemake with the
function r̂c is termed an ansatz solution. Assuming that the activity
bump’s symmetric shape and compactly supported width remain
fixed, the ansatz solutionenables us toderive a 1Ddifferential equation
that governs the dynamics of the bump location θ in response to
external inputs Iext. The external inputs are provided by neurons of the
rotation rings and the visual ring (see Supplementary Note 1 for an
analytical expression of these inputs). We progressively incorporate
these parts into our model in the following subsections.

Rotation rings provide inputs for angular path integration via a
spatially distributed gain. We begin with the rotation rings that
combine positional information and self-movement velocity informa-
tion based on inputs from two afferent sources: (i) The central ring
provides the positional information, represented by its bump location,
to both rotation rings through the synaptic weight functions
W c�cw, W c�ccw : S1 ! R (② in Fig. 2A). (ii) Velocity-dependent differ-
ential firing of CW and CCW ‘velocity’ neurons, namely, ucw = u0 − αcwv
and uccw = u0 + αccwv (Fig. 2D), signal the animal’s velocity v to the
respective rotation rings through synaptic weights W v�cw, W v�ccw :

S1 ! R (④ in Fig. 2A). Combining these inputs, we obtain ansatz
solutions r̂cw, r̂ccw to the CW andCCW rotation rings’ firing rates under

A

Neural space 

Fi
rin

g 
ra

te

CCWCW

B

Neural space 
CCWCW

E

Pos. error ( )      Neural space
0-π π

0

Fi
rin

g 
ra

te

D

Neural
spaceP

I g
ai

n 
( )

0.6

1.4

1.0 Physical
space

Fi
rin

g 
ra

te
 1.0

0.0 2ππ02ππ0

N
eu

ro
ns

Position in physical space

B
um

p 
ve

l.

0

0

Movement vel.

C

Fig. 3 | Models of the ring attractor’s position representation. A The repre-
sentation θ, decoded from the peak location of an ansatz solution r̂c.
B Implementation of angular PI based on the push-pull mechanism formed by
reciprocal connections between the central (green) and rotation rings (CCW: blue,
CW: red). The top row shows the balanced inputs from these rotation rings about
the central ring’s current activity-bump location θ when the animal is stationary
(v =0). Themiddle and bottom rows show the imbalance in these synaptic inputs in
the direction of the animal’s movement (middle: v > 0; bottom v < 0), which in turn
shifts the activity bump in the same direction. C Cartoon illustration of neural
dynamics given in Eq. (3). Top left: Circular track. Top right: Internal representation
of this trackwith a spatially inhomogeneous PI gain k(θ) ranging from0.6 at θ =π to
1.4 at θ = 0. The bump location θ corresponding to the network’s position repre-
sentation is visualized by the pale brown rat. As the rat moves through physical
space with velocity v, the representationmoves through neural space according to
k(θ)v. Middle: The relationship between the bump velocity dθ

dt and the animal’s

velocity v. Bottom left: Firing rate map of uniformly distributed cells in a `tradi-
tional' networkmodelwith a global PI gain k(θ) = 1. Bottomright: The same ratemap
for a network model with spatially inhomogeneous PI gain k(θ). D Left shows the
central ring’s activity bump (green) and the bump-shaped synaptic input onto the
central ring from the visual ring (pink). Right shows the model β of the stabilizing
visual feedback emerging from the interaction between these two bumps as a
function of the error—namely, the discrepancy θ⋆ − θ. As indicated by the opacity of
the lines, this feedback may depend on the value of the PI gain. E Cartoon illus-
tration of neural dynamics given in Eq. (5). The pale brown rat symbolizes the
internal representation θ as in C, whereas the medium brown rat symbolizes the
actual location θ⋆ as represented by the visual drive. The temporal change in θ is
controlled by the PI term k(θ)v and the visual feedback term β(θ⋆ − θ, k0) as
visualized by two arrows acting on the pale brown rat. Left shows a case where the
PI has a low gain k(θ) < 1, thus underestimating the position relative to the land-
marks. Right shows the overestimation case due to “high” PI gain.
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the assumption that the synaptic dynamics of rotation rings are suffi-
ciently fast as described in Supplementary Note 3. These solutions
describe an activity bump within the rotation rings, derived from the
ansatz r̂c for the central ring.

The rotation rings project reciprocally back to the central ring via
offset connections,where a CW/CCWrotation-ring neuron at a specific
location in the angular neural space connects to a central ring neuron
at a slightly offset location in the same direction (③ in Fig. 2A), giving
rise to a feedback push-pull structure. How does this connectivity
structure respond to external inputs from the velocity neurons? If we
assume that the CW and CCW components are symmetric in both the
synaptic weights of the push-pull connectivity and the baseline firing
rates of the velocity neurons (a commonlymade assumption), then the
rotation rings fire equally when the animal is immobile (i.e., v = 0). As a
result, they provide balanced inputs to the central ring, keeping the
bump location θ unchanged ðdθdt =0Þ. In contrast, inputs from the CW
and CCW velocity neurons modulate the activity of the respective
rotation rings differentially when the animal is moving (v ≠ 0). This
modulation causes the input from the rotation rings to become
imbalanced about the central ring’s current activity bump. In response
to this imbalance, the central ring shifts its activity bump at a rate
proportional to the animal’s velocity (Fig. 3B). This process is knownas
angular path integration; hereafter, we refer to it simply as path
integration (PI).

Under the classical assumptions (e.g., the movement causes a
weak differential change in the inputs to the central ring), the ansatz
solutions, r̂c, r̂cw, r̂ccw can be used to derive a simplified model for the
PI process—specifically, a 1D differential equation governing the tem-
poral evolution of the position representation θ. Applying the
dimensionality reduction protocol detailed between Supplementary
Notes 2 to 3.2, this model takes the following form:

dθ
dt

= kðθÞv: ð3Þ

This equation shows that the PI process updates thebump location θ in
proportion to the animal’s velocity vwith a gain factor k(θ). This factor
simply represents the ring attractor network’s PI gain, and its analytical
expression takes the following form:

kðθÞ= �b

τck ∂r̂c
∂ψ k2

Z2π

0

∂2 r̂cðψ� θÞ
∂ψ2

X
i2fcw, ccwg

αiW i�cðψÞW v�iðψÞ sign½r̂iðψ,θ, 0Þ�dψ:

ð4Þ

Here, i denotes the index of the summation, representing either the
CW or CCW rotation ring, α denotes the absolute value of the slope
of the velocity neurons’ tuning curves, b denotes the value of the
offset in the connections between rotation rings and the central ring,
and ∥ ⋅ ∥ denotes the magnitude (i.e., root-mean-square) of an
expression. Intuitively, this equation shows that the PI gain emerges
from the interaction between external velocity inputs and the
attractor’s recurrent dynamics, which together process and trans-
form the animal’s movement into the bump’s movement. In this
interaction, if the synaptic processes operate more quickly (lower
time constant τc), the network responds more rapidly to the velocity
inputs, resulting in an increased PI gain. Similarly, larger synaptic
weights in Wi−c (corresponding to rotation-to-central ring synapses)
or in Wv−i (corresponding to velocity-to-rotation ring synapses), or
steeper velocity-neuron slopes α enhance the velocity input onto the
central ring, accelerating the bump movement, thereby increasing
the PI gain. The attractor’s bump magnitude, however, has the
opposite effect. A larger bump magnitude resists movement,
requiring stronger inputs, hence resulting in a reduced PI gain. A
detailed account of how every parameter in Eq. (4) influences the PI

gain will be given in Section “The need for an explicit error code to
meet the algorithmic conditions for PI-gain recalibration”, where we
explore how temporal changes in network parameters can recali-
brate the PI gain over time.

Beyond showing how network parameters relate to the value of PI
gain, our derivation of Eq. (4) uncovers a previously unknownproperty
of the PI gain within a ring attractor model: The PI gain is locally dis-
tributed across the network, as governed by the spatially distributed
synaptic weights in the pathway from the velocity neurons onto the
central ring (② and ④ in Fig. 2A). When these weights are spatially
uniform (i.e., having the same profile and magnitude), as has always
been assumed in previous work11,36,45,46, the PI gain is independent of
the bump location, resulting in an ideal model with a single, global PI
gain under all conditions. If the synaptic weights ever become het-
erogeneous (a possibility we revisit later), however, this ideal state is
no longer maintained; instead, path integration occurs with a PI gain k
that varies as a function of the bump location θ (Fig. 3C). One may
wonder why we even care about this seemingly strange possibility. As
will be evident later, for a subset of biologically plausible gain recali-
bration mechanisms (e.g., tuning the distributed synaptic weights
from the velocity neurons to the rotation rings), such inhomogeneities
in the PI gain are inevitable—though they may diminish with repeated
use of feedback from landmarks. By contrast, for other mechanisms
(e.g., tuning the slope α of the velocity inputs), the system can always
maintain a single, global PI gain. Nevertheless, our derivation of Eq. (4)
applies to both cases and forms the foundation of our analytical
investigation of the PI-gain recalibration.

The visual ring provides gain-dependent positional feedback that
corrects path integration. Next, we include in our simplified model
the influenceof external inputs fromthe visual ring (Fig. 2A). The visual
ring receives no explicit inputs; instead, its neurons are presumed to
autonomously fire at specific locations of the animal relative to land-
marks, capturing the absolute positional information received from
visual landmarks available at each position (modeling how egocentric
visual processes can calculate position from landmarks is beyond the
scope of this paper). Through the synaptic weight function W vis�c :

S1 ! R (⑤, in Fig. 2A), this firing of the visual ring provides the central
ring with a bump-like synaptic input encoding the animal’s “true”
position θ⋆ relative to landmarks51,52.

In the ring attractor model, the network’s position representation
θ is anchored to this bump-like synaptic input that encodes the posi-
tional feedback θ⋆ from landmarks, as observed in numerous experi-
mental studies on head direction and place cells24–27. To determine a
simplified, approximate model for how θ varies under this anchoring
effect, we again apply the dimensionality reduction. Assuming that the
visual ring provides a weak and narrow bump-like input, this applica-
tion leads to the differential equation

dθ
dt

=βðθ? � θ, kðθÞÞ+ kðθÞv, ð5Þ

where k(θ)v denotes the PI inputs as in the previous section and β :

S1 ×R ! R is a function modeling the influence of visual inputs on θ.
See Supplementary Note 3.3 for details and the assumptions.

Onemight think that the influenceof the visual ringwoulddepend
exclusively on the mismatch between the ring attractor bump and the
visual ring bump. However, according to our derivation, the visual
input, β, influences the system through two mechanisms: a direct
effect, which depends on the discrepancy θ⋆ − θ, and an indirect effect,
mediated through the PI gain k(θ). The direct effect aligns the sign of β
with the discrepancy θ⋆ − θ, forming a negative feedback loop that
pullsθ towardθ⋆ (Fig. 3D). Indeed, thismechanismalone is sufficient to
explain landmark correction in traditional ring attractormodels,where
the PI gain is fixed due to static network parameters. In a ring attractor
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model capable of recalibrating its PI gain, however, the direct effect
alone can be insufficient because some network parameters that may
be updated to recalibrate the PI gain k(θ) may also modulate the
landmark correction β, altering its ability to correct discrepancies
θ⋆ − θ (these parameters are explored in Section “The need for an
explicit error code to meet the algorithmic conditions for PI-gain
recalibration” below). To account for this dual impact, the simplified
model in Eq. (5) incorporates dependence of β on the indirect effect
k(θ). That is, the model can capture dynamic changes in the landmark
correction when there is a change in a network parameter associated
with a change in the PI gain.Whenpresent, this indirect effect based on
the PI gain k(θ) modulates only the amplitude of β without altering its
sign (different lines in Fig. 3D). See Supplementary Note 3.3 for details
and an alternative form of the β.

Together, these direct and indirect effects model the β function
and how it anchors the attractor’s representation θ to the “true" value
θ⋆ measured relative to landmarks. When the animal is stationary (i.e.,
v = 0), the direct feedback provided by β ensures θ → θ⋆. During the
animal’s movement, however, the PI-related term, k(θ)v updates θ
basedon the animal’s velocity,whileβ continues to anchorθ towardθ⋆.
A well-balanced combination of these terms anchors θ around θ⋆

(Fig. 3E). Therefore, Eq. (5) provides a simplified framework that cap-
tures the combined influence of PI and visual feedback on the ring
attractor network’s position representation, forming the basis for our
subsequent analysis of the algorithmic and mechanistic conditions
necessary for successful PI-gain recalibration.

Algorithmic and mechanistic requirements for PI-gain
recalibration
Experiments showed that the PI gain of the rodent hippocampal sys-
tem is a plastic variable that can be recalibrated by visual landmarks33.
In Section “Control theory reveals algorithmic conditions for PI-gain
recalibration” below, we leverage the analytical tractability of Eq. (5), a
simplified model of the ring attractor network, to identify the algo-
rithmic conditions required for recalibration of its PI gain. Then, in the
subsequent Section “The need for an explicit error code to meet the
algorithmic conditions for PI-gain recalibration”, we use Eq. (4), the
analytical expression of the ring attractor’s PI gain, to map these
algorithmic conditions from the simplified model back to the high-
dimensional network dynamics as mechanistic prerequisites for
implementing PI-gain recalibration.

Control theory reveals algorithmic conditions for PI-gain recali-
bration. To understand the computations required at an algorithmic
level for PI-gain recalibration within a ring attractor network, we first
revisit the experimental conditions that led to this recalibration
phenomenon33; In those experiments, an animal moved on a circular
track while an array of visual landmarks was rotated around the track
as a function of the animal’s velocity and an experimentally controlled,
visual gain factor, k⋆. When k⋆ < 1, the landmarks moved in the same
direction as the animal, decreasing the perceived speed; when k⋆ > 1,
the landmarks moved in the opposite direction as the animal,
increasing the perceived speed; when k⋆ = 1 (veridical condition), the
landmarks remained stationary. To model these experimental condi-
tions in a ring attractor network, we assume that the visual drive,
representedby its bump locationθ⋆,moves through the circular neural
space at a rate equal to the animal’s velocity v times the visual gain k⋆,
namely, dθ?

dt = k?v. The experiments in ref. 33 showed that prolonged
exposure to these visual conditions recalibrated the animal’s PI gain,
resulting in a strong correlation between the average value of the PI
gain measured over many laps after the landmarks were removed and
the final value of the visual gain k⋆ before the landmark removal. What
does this result imply in the context of a ring attractormodelwhere the
PI gain k is a spatially distributed network parameter? Because the
experiments measured the recalibrated PI gain from neural activity

over many laps, the results suggest that the ring attractor network
must adjust its PI gain such that the PI gain’s spatial
averagek0≜ 1

2π

R 2π
0 kðθÞdθ converges to the visual gain k⋆, namely,

limt!1k0ðtÞ= k?. We refer to this exact convergence as complete
recalibration. At this stage, themechanistic details of how recalibration
can occur remain unclear—specifically, whether the ring attractor
adjusts its PI gain uniformly across the neural space, maintaining the
same value everywhere, or whether some degree of spatial inhomo-
geneity emerges spontaneously during the recalibration process. By
focusing on the PI gain’s spatial average k0, nevertheless, we ensure
that our subsequent analysis remains robust to such mechanistic dif-
ferences, as long as any potential spatial fluctuations in the PI gain,
defined as kac(θ) ≜ k(θ) − k0, remain within a reasonable range, an
assumption that will be further clarified in the following paragraphs.

We proceed by posing a question: What variables in the ring
attractor network are important for updating k0? We searched for a
general equation that canmodel these updates based on neural activity
levels within the network and the current value of the synaptic weights,
assuming an environment with spatially homogenous feedback from
visual landmarks (See Supplementary Note 4.1 for further details and
assumptions). This search led to a surprisingly simple equation

dk0

dt
= g0ðk0,θ

? � θ, vÞ, ð6Þ

where g0 : R× S1 ×R ! R denotes a function that instantiates the
instantaneous change in k0 based on three variables: the current gain
k0, the animal’s velocity v and the difference between the visual drive’s
position representation θ⋆ and the ring attractor’s position repre-
sentation θ. By contrast, the update does not directly depend on the
specific values of θ or θ⋆ because of the assumed spatially uniform
visual feedback across the environment. Although there are infinitely
many g0 functions of the form in Eq. (6), some of them may fail to
result in PI-gain recalibration, i.e., k0 not converging to the visual gain
k⋆. We thus ask what are the necessary and sufficient properties of the
PI-gain update rule g0 for k0→ k⋆ (i.e., the fundamental features shared
by all successful update rules)?

To seek these fundamental properties,we revisit Eq. (5) alongwith
the positional feedback dθ?

dt = k?v from landmarks andwith the fact that
the PI gain’s spatial average k0 varies according to Eq. (6). Perfect
convergence of k0 to k⋆ through this update rule would imply that the
error between these two gains, namely ~k ≜ k? � k0, approaches zero.
We refer to this error ~k in the PI gain’s average component as the
gain error.

When the gain error ~k is not zero, the influence of path
integration on the attractor’s position representation θ causes
some positional error ~θ≜θ? � θ relative to the visual drive θ⋆. If
the gain error were reduced, this positional error would also be
reduced, aligning the attractor’s representation more closely with
the visual drive. This coupling between the gain and positional
errors—namely ~k and ~θ—prompts us to analyze their temporal
progression to garner insights into PI-gain recalibration. To this
end, we consider a constant visual gain (as was the case during
the first and last epochs of the experiments in ref. 33, when
landmarks were present). We then analyze the local stability of
the errors ~k and ~θ, assuming that fluctuations in kac decrease
following the gain error ~k, while also making assumptions on the
properties of g0’s derivatives. This analysis identifies the algo-
rithmic conditions for complete recalibration, where k0 con-
verges exactly to k⋆, as follows:

Formal results
1. The animal cannot be stationary, otherwise complete recalibra-

tion (k0 → k⋆) is not possible.
2. Assuming that the animal remains inmotion (v ≠0), we found that

complete recalibration requires the PI-gainupdate rule g0 to share
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the same sign as the productof the animal’s velocity v and the ring
attractor’s positional error ~θ in some neighborhood of ~θ=0:

sign½g0ðk0,
~θ, vÞ�= sign½~θ v�: ð7Þ

3. Assuming that the animal’s speed is constant and ∣kac∣ ≈ 0, we
additionally found that the system is guaranteed to achieve
complete recalibration if this sign condition is satisfied.

The proofs of these formal results along with the specific
assumptions made are provided in Supplementary Note 4.2. The first
result states a trivial necessary condition: if the animal is stationary,
visual landmarks will fully correct positional error ~θ, making gain
errors ~k imperceptible. The second and third results establish the sign
condition in Eq. (7) as both necessary and sufficient. Simply stated,
recalibrating the PI gain of a ring attractor is equivalent to increasing it
when positional error and velocity align, and decreasing it when they
oppose each other. To understand the intuition behind this condition,
imagine walking along a circular track with a slightly miscalibrated PI
gain k0. Suppose your PI gain is under-calibrated (k0 < k⋆ = 1), meaning
that you consistently underestimate how far you have traveled. In this
case, if you walk CCW (v > 0), your internal position estimate θ lags
behind your true position θ⋆ in the CCW direction, resulting in a
growing positive positional error (~θ>0). Conversely, if you walk CW
(v < 0), the same underestimation instead causes θ to lag behind in the
CWdirection, leading to a negative positional error (~θ<0). The crucial
point is that in both movement directions, the product ~θv remains
consistently positivebecause the sign of both ~θ and v flip together with
movement direction. Likewise, if the PI gain is over-calibrated (k0 > k⋆),
the same reasoning shows that the product ~θv remains negative
regardless of movement direction (CCW or CW). Thus, the sign of ~θv
precisely indicates whether the PI gain should be increased or
decreased, and Eq. (7) simply formalizes this principle. Crucially, our
formal analysis only establishes that this sign condition needs to hold
within a specific range of errors around zero, rather than for arbitrarily
large positional and gain errors. This follows from the local nature of
our stability analysis, which investigates convergence within a

neighborhood of zero error. However, if the sign condition in Eq. (7)
never holds for any range of errors, then k0 simply cannot converge to
k⋆. On the other hand, as long as it holds within some range, recali-
bration is guaranteed—at least under the assumption of constant
velocity. Later, we will numerically demonstrate that this constant-
velocity assumption is likely not required, though a formal proof
relaxing this assumption remains as future work.

Our analysis so far provided insights into complete recalibration
of the PI gain. However, the data from33 showed that, on average, the
recalibration was only partial (75%). In such a case, the average PI gain
k0 may converge to a value k1

0 , which is biased towards, but not
necessarily equal to, the visual gain k⋆. In turn, if k1

0 ≠ k?, the system
may operate under some persistent, residual positional error ~θ= ~θ

1

that is not equal to zero. The question is whether the conditions for
complete recalibration also apply to partial recalibration. Assuming
that the landmark-correction β does not depend on the PI-gain, we
found that the same necessary and sufficient condition (Eq. (7)) must
still be satisfied, but nowwith respect to the residual positional error at
steady-state ~θ= ~θ

1
rather thanwith respect to the zero error aswas the

caseof complete recalibration. See SupplementaryNote 4.3 fordetails.
Below,we simulate Eqs. (5) and (6) alongwith two example PI-gain

update rules (g0) to numerically illustrate our analytical findings,
especially how specific functional forms of g0 determine the recali-
bration outcome. Additionally, these simulations offer intuition and
insights that inform the design of ring attractor networks capable of PI-
gain recalibration, as instantiated in Section “Implementing PI-gain
recalibration in a ring attractor”.

Example 1. The simplest PI-gain update rule satisfying the sign con-
dition (Eq. (7)) is

dk0

dt
= g0ð~θ, vÞ=μ ~θ v, ð8Þ

where μ denotes a positive learning rate. Because adjustment of the PI
gain ceases at zero positional error ~θ under this rule, the system
achieves complete PI-gain recalibration by reaching k1

0 = k? (top row,
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Fig. 4 | Numerical simulations of Eqs. (5) and (6) under two representative PI-
gain update rules given in Eqs. (8) and (9). For both simulations, we set the initial
condition k0(0) = 1, the landmark stabilization function βð~θ, k0Þ=0:66× sinð~θÞ, the
visual gain k⋆ = 1.5, and the learning rate μ = 0.02. The gain choices imply that the
initial value of gain error is ~kð0Þ=0:5. Additionally, we chose the constant η = 0.12
for the second example. A A smoothed velocity profile of an animal from an
experiment in ref. 33. B It shows trajectories of the network’s positional and gain
errors (left column), their interrelationship (middle column), and how the animal’s
velocity influences this relationship (last column), all obtained from the simulation
under the example PI-gain update rules: Eq. (8) (Example 1, top row) and Eq. (9)
(Example 2, bottom row). When the animal begins moving at t = 0, the positional
error ~θ (black line, left y-axis) quickly increases because of the nonzero gain error ~k
(red line, right y-axis). As the PI gain is modified, the gain error (~k) and, conse-
quently, the positional error diminishes gradually, eventually converging to steady

state. Their steady-state values are zero for Example 1 (complete gain recalibration)
while being nonzero for Example 2 (partial recalibration). The middle column
shows that although positional error strongly depends on gain error, it is also
influenced by other factors. This additional influence can also be observed in the
positional error progression in the left column. Although there is a general gradual,
convergent trend of the gain and positional errors, the positional error goes
through many fast, transitory changes around this trend. Close inspection reveals
that these fast changes are influenced by changes in the animal’s velocity. For
example, as animal slows down (v↓) around minute 5, the positional error
decreases (~θ #), eventually becoming zero (~θ=0) with the animal coming to a stop
(v = 0). This behavior of the positional error is best explained by themultiplication
of the gain error with the animal’s velocity. The right column verifies this analytical
expectation using simulation results.
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Fig. 4B). This numerical example demonstrates that the sign condition
(Eq. (7)) is sufficient for PI-gain recalibration even when the animal’s
velocity is not constant.

Example 2. Consider now a slightly more complex PI-gain update rule

dk0

dt
= g0ðk0,

~θ, vÞ=μ~θ v+μηk0v
2, ð9Þ

where μ denotes a positive learning rate as before, and η denotes a
constant that controls the magnitude of the additional velocity-
dependent term ηk0v2. This term practically acts as a positive bias on
top of the simplest PI-gain update rule (Eq. (8)) that satisfies the sign
condition. Aswewill see in Section “Implementing PI-gain recalibration
in a ring attractor”, whenwe introduceamodified ring attractormodel,
this update rule provides a more biologically plausible representation
of PI-gain recalibration in a ring attractor network than the simplest
update rule in the previous example.

Note that with the modified update rule in Eq. (9), the sign con-
dition in Eq. (7) remains satisfied—but now relative to a steady-state
positional error that may be nonzero depending on the velocity-
dependent bias term ηk0v2. The degree of recalibration also depends
on the magnitude of this term. If η = 0, for example, the bias is zero,
and the update rule reduces to the rule in Example 1, resulting in
complete recalibration (i.e., k1

0 = k?). Otherwise, recalibration is only
partial (bottom row Fig. 4B) with a steady-state gain error that is pro-
portional to both η and the animal’s velocity v (see Eq. (132) and the
analysis afterward in Supplementary Note 7.2 for a derivation).

The need for an explicit error code to meet the algorithmic condi-
tions for PI-gain recalibration. How can a ring attractor network
mechanistically implement Eq. (7), thealgorithmic sign condition for PI-
gain recalibration? To address this question, we investigate an analy-
tical expression of the spatial average of the ring attractor network’s PI
gain, k0, which can be simply obtained by averaging the PI gain k(θ) in
Eq. (4) over θ. The resulting expression identifies a number of terms as
possible neural loci for updating k0: (i) the synaptic time constant τc,
(ii) the offset b in the central-to-rotation ring connections, (iii) the
synaptic weight functions Wv-cw,Wv-ccw of the velocity-to-rotation ring
connections, (iv) the synaptic weight functions Wcw-c,Wccw-c of the
rotation-to-central ring connections, (v) the slope parameters αcw,αccw
quantifying the absolute value of the tuning slopes of velocity neurons,
(vi) the function r̂c describing the central ring’s persistent activity
bump, and (vii) the functions r̂cw, r̂ccw describing solutions to the
rotation ring’s persistent activity bump. Out of the seven terms, we
consider the last five (iii-vii) as candidates driving the PI-gain recali-
bration within the ring attractor model via temporal changes, impli-
citly assuming that the first two terms, the synaptic time constant τc
and the offset b are “hardwired” (i.e., time-invariant).

The rationale behind excluding the first two terms arises, in part,
from the limitations of our modeling approach. First, the rate-based
model of the ring attractor network does not include any cellular and
receptor details to capture possible temporal changes in the synaptic
time constant τc. Instead, our model includes τc as a “lumped para-
meter” reduction of complex phenomena that govern the changes in
membrane potential with ion flux through receptors; future work
could use biophysical modeling (e.g., ion channel kinetics) to investi-
gate how changes in τc could contribute to PI-gain recalibration, but
that is beyond the scope of the present study. Second, our model
employs a simplified one-to-one connectivity between rotation and
central rings, where each neuron in a rotation ring connects to only
oneneuron in the central ringwith afixedoffsetb. This contrastswith a
one-to-all connectivity, which would be necessary to capture plasticity
in b through gradual modulation of weights along the neural space.

We then analyzed the relationship between the temporal change
in each of the remaining five candidate terms and the resulting tem-
poral change in the PI gain k0. Regardless of which term drives the
changes in the PI gain, we find that rate-based encoding of the posi-
tional error ~θ is critical for the ring attractor network to implement the
sign condition (Eq. (7)), which is both necessary and sufficient for PI-
gain recalibration. However, the specific nature of the error code
depends on the driver term. As we shall show, if the PI-gain recalibra-
tion is implemented by plastic changes in the velocity pathway of the
circuit (iii-iv), then the error signalmust take the formof a rate code for
the instantaneous difference between θ⋆ and θ. In contrast, if the
recalibration is implemented elsewhere in the circuit (v-vii), then the
error signal must take the form of a rate code for the time integral of
the error between θ⋆ and θ. Finally, it should be noted that these
findings are derived using our previous analytical results (Eqs. (4–7))
and are therefore subject to the same assumptions.

Recalibration via plasticity in the velocity pathway is supported by
a rate code of the instantaneous positional error. As previously
implied in Section “The need for an explicit error code to meet the
algorithmic conditions for PI-gain recalibration”, the PI gain can be
altered by modifying the strength of the velocity-dependent synaptic
inputs onto the central ring. To this end,wefirst consider amechanism
that adjusts the ring attractor’s PI gain through Hebbian plasticity in
the pathway from velocity neurons to the central ring. This pathway
includes the synaptic weight pairWv-cw,Wv-ccw, describing the strength
of velocity-to-rotation ring connections (④ in Fig. 2A), and the pair
Wcw-c, Wccw-c, describing the strength of rotation-to-central ring con-
nections (③ in Fig. 2A). According to Eq. (4), the CW and CCW com-
ponents of these weight pairs influence the PI gain in an additive
manner. Because of the aforementioned CW–CCW symmetry
requirement inSection “Theneed for anexplicit error code tomeet the
algorithmic conditions for PI-gain recalibration” (i.e., the inputs to the
central ring must be balanced for stability of PI during immobility
periods), however, we assume that the CW and CCW components
undergo the same temporal changes, ensuring that their individual
contribution to PI remains symmetric. This symmetry assumption
implies that if the value of k0 changes as per the algorithmic sign
condition in Eq. (7), then the individual contribution of CW and CCW
components must be in the direction of the product of the animal’s
velocity v and the positional error ~θ. To identify the mechanistic
underpinnings of such symmetric recalibration of the PI gain’s spatial
average k0, we revisit Eq. (4). By differentiating this equation with
respect to time and considering Hebbian plasticity in the velocity
pathway, we find that the algorithmic condition translates into a
mechanistic constraint as follows:

Hebbian plasticity of the velocity-to-rotation ring connections
(Wv-cw,Wv-ccw): Controlling the strength of velocity inputs onto the ring
attractor, these weights directly affect the movement speed of the
activity bump for a givenmovement speed of the animal. This effect is
locally instantiated as the weights are spatially distributed across the
ring. Thus, when Hebbian plasticity modifies the weightsWv-cw,Wv-ccw

in a spatially inhomogeneous manner—due to unequal activation of
neurons across the bump—movement speed of the bump begins to
exhibit local variations depending on its location along the ring. As a
result, the PI gain is updated non-uniformly. Despite these local var-
iations, however, the spatial averages of the weights Wv-cw, Wv-ccw

always remain positively correlated with the spatial average k0 of the
PI gain.

The fact that k0 is proportional to average strengths of these
synapses constrains the mechanisms by which their Hebbian plasticity
can achieve recalibration. Specifically, satisfying Eq. (7)—a necessary
and sufficient condition for PI-gain recalibration—requires that the rate
of change of the average strengths of these synapses must be in the
same direction as the product of the animal’s velocity (v) and the
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network’s positional error (~θ), namely:

sign
d
dt

ðW v�cwÞavg
� �

= sign
d
dt

ðW v�ccwÞavg
� �

= sign½~θ v�: ð10Þ

Because the pre-synaptic side of these synapses consists of velocity
neurons whose firing rates vary monotonically with the animal’s
velocity v, Hebbian plasticity can satisfy the above equality only if the
firing rates of the post-synaptic neurons, namely, the rotation rings,
similarly exhibit a monotonic relationship with the instantaneous
positional error, ~θ (Fig. 5B-1). This required error tuning within the
CW and CCW rotation rings must also reflect the differential sign of
velocity tuning within the CW and CCW velocity neurons (previously
shown in Fig. 2D) to ensure that both CW and CCW pathways satisfy
Eq. (10).

Intuitively, this error-rate code within the rotation rings enables
the network to detect whether it is lagging behind or advancing ahead
of reality, which in turn recruits Hebbian plasticity to adjust the
strength of the synapses controlling the movement speed of the
bump, effectively “speeding it up”or “slowing it down” asneeded.Over
time, this adaptive adjustment will result in recalibration of the PI gain.
See Supplementary Note 5.1 for mathematical details.

Hebbian plasticity of the rotation-to-central ring connections
(Wcw-c,Wccw-c): Just as the velocity-to-rotation ring synapses can

recalibrate the PI gain through locally occurringHebbian plasticity, the
rotation-to-central ring connections (Wcw-c,Wccw-c) can also contribute
to its recalibration. In both cases, plasticity occurs in a spatially
inhomogeneousmanner due to the non-uniformactivation of neurons
across the bump. Fortunately, just as we saw for the velocity-to-
rotation ring connections, the average strength of the rotation-to-
central ring synapses remains positively correlated with the spatial
average k0 of the PI gain.

Therefore, as in the previous case, if the network satisfies
Eq. (7)—a necessary and sufficient condition for recalibration—via
Hebbian plasticity of rotation-to-central ring synaptic weights Wcw-c,
Wccw-c, then it must modify their average strengths in the same
direction as the product of the network’s positional error and the
animal’s velocity. In the case of velocity-to-rotation ring synapses,
meeting this requirement necessitated a rate code for error on the
postsynaptic side, since the pre-synaptic neurons were assumed to
encode only velocity. Here, however, neither side of the rotation-to-
central ring connections is inherently constrained in this way,
meaning that the positional error could, in principle, be encoded on
either the pre- or post-synaptic side, provided that the velocity is also
encoded. This encoding can occur in two ways: either the firing rate
of a single ring (rotation or central) varies monotonically with both
negative and positive instantaneous errors (Fig. 5B-2), or each ring
exhibits monotonic tuning for only one direction of error, such that
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Fig. 5 | Neural mechanisms of PI-gain recalibration based on a numerical
simulation of Eqs. (5) and (8). A Temporal progression of the animal's velocity v
(from an experiment33) and other variables: gain (k0), positional error (

~θ, and the
time-integral of the error. Model parameters and initial conditions are the same as
Example 1 in Fig. 4B. Similar to that example, the positional error reduces, as the
system recalibrates its PI gain. BMechanistic constraints for recalibration through
plasticity in the velocity pathway. (B-1) and (B-2) correspond to plasticity in the
velocity-to-rotation ring and in the rotation-to-central ring connections, respec-
tively (for simplicity, only one rotation ring is shown.). The weight profiles of these
connections—Wv-rot and Wrot-c (solid lines)—may be modified through Hebbian
plasticity (dashed lines). The average PI gain k0 remains positively correlated with
their average strengths. B-1: If Hebbian plasticity modifiesWv-rot to drive k0 toward
the visual gain k⋆, then the mean firing rates of CCW (blue) and CW (red) rotation
ringsmust vary over time, inversely with one another, to encode the instantaneous

positional error (bottom row of B-1). B-2: Alternatively,Wrot-c is modified, themean
firing rates of either the rotation or the central rings must vary to encode the same
positional error (bottom rowofB-2). Unlike B-1, our analysis does notdetermine the
direction of this error-dependent variation in B2, so the direction of the depicted
tuning curve is arbitrary. C Mechanistic constraints for recalibration via other
mechanisms; each row follows a similar schema as the mechanisms in B: (C-1)
Velocity neurons' slopes as the locus of plasticity. (C-2) Rotation rings' widths as the
locus of plasticity. (C-3) The central ring’s bump magnitude as the locus of plasti-
city. If the average PI gain k0 converges to k⋆ through changes in any of these neural
loci, then the time-integral of the error must be encoded in themean firing rates of
a ring population. In the case ofC-1 andC-2,CCW (blue) andCW (red) rotation rings
are the sources of this integral-of-error rate code. In the case of C-3, the central ring
(green) is the source. Note that the directions of these error codes (i.e., the tuning-
curve slope) flip if the animal moves in the the opposite direction than panel A.
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together they cover the full range. Mathematical details are provided
in Supplementary Note 5.2.

As we prove in the relevant Supplementary Notes (referenced
above), Hebbian plasticity in a component of the velocity pathway
cannot modify the PI gain k0 as required by the algorithmic sign con-
dition in Eq. (7), unless thefiring rates of either the rotation rings or the
central ring encode the instantaneous positional error via monotonic
changes. Since this sign condition was previously identified as both
necessary and sufficient for PI gain-recalibration in a ring attractor
network (Section “Control theory reveals algorithmic conditions for PI-
gain recalibration”), it follows that a rate-coded representation of the
network’s instantaneous error is equally essential for PI-gain recali-
bration through Hebbian plasticity in the velocity pathway. Once the
network includes both a rate code of the instantaneous positional
error and Hebbian plasticity in the velocity pathway, synaptic weights
undergo activity-dependent modifications that integrate this error
signal over time. Consequently, the weights gradually track the time
integral of the positional error, which serves as a proxy for the PI gain
(Fig. 5A), ultimately recalibrating the PI gain. Put differently, the
synaptic weights continuously accumulate past discrepancies,
enabling the ring attractor network to fine-tune its PI gain dynamically.

Plasticity elsewhere is supportedby a rate codeof the time-integral
of the error. We next consider the scenariowhere the synaptic weights
along the velocity pathway are hardwired (i.e., constant). Instead, PI-
gain recalibration is driven by temporal changes in one of the three
firing-rate related terms. These terms include the parameters αcw, αccw
describing the absolute value of the velocity neurons’ tuning slope, the
ansatz functions r̂cw,̂rccw describing the rotation rings’ activity bumps,
or the ansatz r̂c describing the central ring’s activity bump. In the
previous case, where plasticity occurred in the velocity pathway,
synaptic weights tracked the time-integral of the positional error
through Hebbian modifications, ultimately recalibrating the ring
attractor’s PI gain. But how can the ring attractor achieve the same
outcome in the absenceof synaptic plasticity? Aswe showbelow, firing
rates themselves varying according to the time-integral of the posi-
tional error is equally effective for PI-gain recalibration. Unlike synaptic
plasticity in the velocity pathway, which recalibrates the PI gain
through locally accumulating modifications, temporal changes in the
firing-rate-related terms act globally across the neural space, ensuring
that recalibration occurs uniformly, without introducing any spatial
inhomogeneities into the PI gain.

Changes in the slopes of velocity neurons’ tuning curves (αcw, αccw):
The slopes of velocity neurons’ tuning curves determine how strongly
they respond to movement. If the network detects that its position
estimate is consistently off, adjusting these slopes would allow it to
scale its velocity signals accordingly, effectively “speeding up” or
“slowing down” to better align with reality. This indicates a direct
relationship between the PI gain and the slopes of velocity neurons.
Indeed, such a relationship can be seen in Eq. (4) where the velocity
neurons’ absolute slope parameters αcw, αccw act as a positive multi-
plicative factor on the value of the PI gain. Therefore, a change in these
slope parameters leads to a commensurate change in the entire profile
of the PI gain, thereby its spatial average k0 without introducing any
inhomogeneities. Because this one-to-one positive relationship is
similar to the ones studied in the previous section (despite the dif-
ference in inhomogeneities), we can again infer that satisfying the
algorithmic sign condition (Eq. (7)) for the PI-gain recalibration is
subject to the slope parameters αcw, αccwvarying in the direction of the
product of the animal’s velocity (v) and the network’s positional error
(~θ), namely,

sign
d
dt

αcw

� �
= sign

d
dt

αccw

� �
= sign½~θ v�: ð11Þ

This requirement implies that, when the animal is moving in one
direction (as was the case in the recalibration experiments33), the
change in the slope parameters is monotonically related to the posi-
tional error, reflecting its value on a moment-to-moment basis with a
sign additionally depending on the sign of the velocity. As the velocity
signals are transmitted to the rotation rings via synaptic connections,
gradual changes in their tuning slopes—driven by instantaneous
positional error—accumulate over time, leading to cumulative adjust-
ments in the firing activity of the rotation rings. Consequently, the
mean firing rate of the rotation rings reflects the accumulated
positional error over time, varying monotonically with the time-
integral of the error (Fig. 5C-1). Mathematical details are provided in
Supplementary Note 5.3.

Changes in the persistent activity bump of the rotation rings
(r̂cw,̂rccw): The rotation rings are responsible for providing the central
ring with the movement signals from the velocity neurons, which in
turn shifts the activity bump in tandem with the animal’s movement.
Intuitively, each rotation ringneuron acts like apulley, transmitting the
‘force’ from a velocity neuron to its counterpart in the central ring,
which eventually moves the activity bump. Hence, as more rotation
ring neurons become active (i.e., wider rotation-ring bump r̂cw, r̂ccw),
they provide broader synaptic input to the central ring, effectively
amplifying the ‘pulling force’ on the activity bump. This results in a
greater movement speed of the bump overall, leading to a commen-
surate increase in the PI gain globally without introducing any spatial
inhomogeneities. By analyzing Eq. (4) in Supplementary Note 5.4, we
indeed find a positive relationship between the widths of the rotation
rings’ activity bumps and the average PI gain k0. This positive rela-
tionship is similar to the previous case regarding the slope parameters
αcw,αccw. Thus, like in the previous case, satisfying Eq. (7) requires the
rotation rings’ activity widths to varymonotonicallywith the product of
the animal’s velocity and the positional error. Consequently, when the
animal is traveling in one direction (say forward), the widths of the
rotation rings’ activity bumps must increase monotonically with the
time-integral of the error (Fig. 5C-2). All else being equal, this implies a
similar monotonic increase in the average firing rate of rotation rings
with the time-integral of the error. The direction of this monotonic
relationship is reversed if the animal moves in the other direction. See
Supplementary 5.4 for mathematical details. Despite its similarity to
the previousmechanisms in requiring a rate code of error, the present
mechanism slightly differs in its capacity to recalibrate the PI gain.
Unlike previous mechanisms, which in principle has no obvious limits
on the range of values PI gain can be recalibrated to, the present
mechanism, which involves changes to the rotation rings’ bump
widths, is inherently constrained. Themaximumbumpwidth is limited
by the circular topology and its assumed relationwith the central ring’s
bump width (Assumption 2 in SI).

Changes in the persistent activity bump of the central ring (r̂c):
Consider as an example that there are two networks with the same
Gaussian bump profile but one has a higher peak firing rate. In this
case, if all else is equal, the network with the higher firing requires
higher velocity inputs to shift its activity bump from point A to point B
at the same time as the other network (analogous to the greater force
required tomove amoremassive object). This need for higher velocity
inputs independent of the bump location indicates an inversely cor-
related relationship between the central ring’s bump magnitude and
the PI gain’s value at all locations, thus its average k0. This relationship
can also be verified from Eq. (4) wherein the denominator includes a
term proportional to the bump magnitude, which itself is positively
correlated with the central ring’s mean firing rate. Thus, satisfying the
algorithmic condition for PI-gain recalibration is subject to a
mechanistic constraint that is similar to the previous case in spirit but
slightly different due to the inverse effect:When the animal is traveling
in the positive direction, the central ring’s average firing rate must
decrease monotonically with the time-integral of the error (Fig. 5C-3).
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Change in the movement direction reverses the direction of this rela-
tion. See Supplementary Note 5.5 for details.

As proved in the relevant Supplementary Notes (referenced
above), a ring attractor networkwith a hardwired velocity pathway and
a fixed synaptic time constant τc and connection offset b cannot
modify its PI gain k0 as required by the algorithmic sign condition in
Eq. (7), if none of its rings encode the time-integral of the error as
described above (i.e., if they all remain invariant relative to the time-
integral of error). Given that the sign condition is necessary for PI-gain
recalibration, thisfinding indicates that a rate code of the time-integral
of the positional error is equally essential for PI-gain recalibration in a
ring attractor network lacking plasticity in its velocity pathway,
synaptic time constant, and connection offset. While our analysis does
not determine the precisemechanisms for generating such a rate code
or the specific temporal variations in related terms (e.g., the slopes of
velocity neurons), our findings do not rule out the possibility that
some form of plasticity elsewhere in the network may be necessary to
achieve them. Regardless of the underlying mechanism, however, the
PI gain is no longer encoded in the synaptic weights: instead, it is
encodedwithin the firing rates that track the time-integral of the error,
a proxy of the PI gain (Fig. 5A). Taken together with our previous
findings, we conclude that a rate code of the instantaneous positional
error or its time integral is crucial to recalibrate the PI gain of a ring
attractor network with a fixed synaptic time constant τc and connec-
tion offset b.

Implementing PI-gain recalibration in a ring attractor
In this section, we propose a ring attractor network model to achieve
PI-gain recalibration through a mechanism developed from our theo-
retical findings. Briefly, the model utilizes plasticity in the velocity
pathway and its mechanistic prerequisite: a rate code for the instan-
taneous positional error. Like classical models, the proposed model
also corrects accumulated PI errors based on feedback from land-
marks. As described in the following subsections, we develop this
model from the classical ring attractor network by introducing two
specific modifications to its extrinsic connectivity. These modifica-
tions enable gain recalibration by inducing inhomogeneous synaptic
weight changes that gradually fade as the PI gain approaches its target
value. Additionally, we present a conceptual model in Supplementary

Note 6 that recalibrates its PI gain without relying on any synaptic
plasticity. Instead, it adjusts the activity bump’s magnitude based on
the time-integral of the error, as illustrated in Fig. 5C-3, that is enco-
ded by a line attractor53–55. Unlike the detailed model described in the
rest of the present section, this conceptual model applies gain
adjustments globally, ensuring that the PI gain remains spatially
homogeneous at all times. Together, these models demonstrate how
explicit error coding at the level of individual neurons can support PI-
gain recalibration and highlight the robustness of our theoretical
results across different implementation approaches.

Connectivity modifications. We begin by adding Hebbian plasticity
into the velocity-to-rotation ring connections of the classical ring
attractor network (M1 in Fig. 6A). Based on our theoretical results,
specifically Fig. 5B-1, we know that recalibrating PI gain through this
plasticity requires CCW and CW rotation rings to respectively increase
and decrease their firing rates monotonically with the instantaneous
positional error in the network’s representation.

In the classical ring attractor, the visual drive—a necessary com-
ponent for computing these error codes—is provided to the central
ring via topographic excitatory connections. However, this setup is
incompatible with the required properties of the error codes in two
aspects: First, because the CCW and CW rotation rings derive their
activity bump from the central ring via symmetric connections, the
classicalmodel’s visual drive cannot change them in distinct directions
(e.g., an increase inCCWaccompaniedby a decrease in CWwith error),
as required by the aforementioned error code. Second, because
topographic connections within the classical model align the visual
drive symmetricallywith the attractor’s activity bump in the absenceof
errors, positive and negative positional errors affect the attractor’s
average firing rate similarly (e.g., both error directions lead to an
increase), failing to induce the required monotonic changes.

To overcome these limitations of the classical ring attractor, we
remove the topographic connections between the visual and the
central rings and introduce offset inhibitory connections from the
visual ring onto the rotation rings (M2 in Fig. 6A). Specifically, we
connect the visual ring to theCCWrotation ringwith aCCWoffset and
to the CW rotation ring with a CW offset. Note that these offset
connections are distinct from the existing offset connections

Fig. 6 | Amodified ring attractor networkmodel. A Schematic representation of
the model. Solid and dashed lines denote hardwired and plastic connections,
respectively. Arrow and circle terminals denote excitatory and inhibitory connec-
tions, respectively. The labels M1 and M2 correspond to the two modifications
made to the classical model. B Illustration of how CCW rotation ring’s firing rate
(blue) variesmonotonically with the positional error (θ⋆ − θ). Middle column: Zero
error (θ⋆ = θ). Although the visual ring’s activity bump is aligned with that of the
central ring (top row) in this error-free state, the CCW offset in the visual-to-CCW
rotation ring connections introduces some misalignment between the inputs to
the CCW rotation ring (middle row), resulting in moderate activity levels (bottom
row). Left column: CW error (θ⋆ − θ < 0). In this case, the visual-ring bump asso-
ciatedwith θ⋆ is shifted CW relative to the central-ring bump associatedwith θ (top

row). Because of the CCW offset in the visual-to-CCW rotation ring connections,
the inhibition from the visual ring becomes more aligned with the excitation from
the central ring at the level of synaptic inputs (middle row), thereby reducing the
firing rate of the CCW rotation-ring bump (bottom row). Right column: CCW error
(θ⋆ − θ > 0). Here, the visual-ring bump associatedwith θ⋆ is shiftedCCWrelative to
θ (top row), and the CCW offset in the visual-to-CCW rotation ring connections
places inhibition further away from the CCW rotation ring’s active neurons (middle
row), thereby increasing the firing rate of the rotation-ring bump (bottom row).
C Tuning curve depicting the relationship between the rotation rings' mean firing
rate and the positional error for a given velocity. The color coding is the same as in
panel A.D Illustration of how CW (left) and CCW (right) rotation rings' firing rates
depend conjunctively on the animal’s velocity and the positional error.
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between the rotation and central rings. Unlike the existing rotation-
to-central ring connections that implement PI, the newly added equal
and opposite offset connections between the visual and rotation
rings enable the CCWandCW rotation rings to increase and decrease
their firing rates, respectively, as a monotonic function of the net-
work’s positional error (Fig. 6B, C). However, in networks with a
narrow visual ring bump, this monotonic relationship is maintained
only within a limited range of positional errors: once the positional
error exceeds a certain threshold (which increases with the visual
ring’s bumpwidth), the inhibitory visual inputs escape the excitatory
input from the central ring’s activity bump, rendering the rotation
rings’ firing rates insensitive to further errors (Supplementary
Fig. 6A-B). Nevertheless, as we show next the system automatically
corrects errors as they occur, preventing them from accumulating,
thereby helping the rotation rings maintain their error code within
the monotonic range.

Correction of errors by landmarks. A well-known feature of classical
ring attractor networks is their ability to correct PI errors based on the
excitatory visual drive onto the central ring as we model in Section
“The visual ring provides gain-dependent positional feedback that
corrects path integration” (remember the β function). With the inhi-
bitory offset connections onto the rotation rings replacing the original
excitatoryones onto the central ring, an important question iswhether
our model retains its landmark correction capability. As shown in
Fig. 6C, this replacement results in differential modulation of the
rotation rings’ firing rates by the positional error. This modulation
resembles how velocity neurons affect the rotation rings: when the
animal moves, the firing rate of one rotation ring increases while the
other decreases, thereby shifting the activity bump along the
central ring.

Thus, by encoding the positional error in directionally distinct
rate codes within the rotation rings, our model effectively converts
positional error into a “virtual velocity signal” which in turn shifts the

activity bump along the central ring in a manner that reduces
this error. We confirm this error correction mechanism in a
numerical simulation of our model. Following an abruptly introduced
positional error between the activity bumps of the central and
visual ring, the differential changes in the rotation rings’ firing
rates successfully realign the central ring’s activity bump with that
of the visual ring, analogous to a “visual fix” (Fig. 7A). By continuously
providing such a ‘fix’, this mechanism helps ensure that the
system operates not only within the dynamic range of its error-rate
code but also with minimal representational error. However, there
are certain cases where this error correction mechanism may
fail. For instance, if the positional error suddenly becomes too large—
exceeding the width of the visual-ring bump—firing rates of CW
and CCW rotation become nearly equal. In this case, they fail to gen-
erate an appropriate virtual velocity signal for realignment (Supple-
mentary Fig. 6C). Interestingly, this apparent limitation of our model
resembles experimental data from the rodent headdirection andplace
cell systems, where cue conflicts exceeding a threshold (typically
reported to be 45°–90°) led to a failure in realignment of the activity
bump27,56–58.

Recalibration of PI gain by landmarks. In addition to correcting
positional errors via error-rate codes within the rotation rings, our
model is also capable of recalibrating its PI gain when these error-rate
codes are pairedwithHebbianplasticity in the velocity-to-rotation ring
connections. Hebbian plasticity adjusts the synaptic weights based on
the correlated activity of pre- and post-synaptic neurons. In the
velocity-to-rotation ring connections, this adjustment occurs posi-
tively with the product of the animal’s velocity v (encoded byboth pre-
and post-synaptic neurons) and the positional error ~θ (encoded only
by post-synaptic neurons), ensuring that the PI gain’s spatial average
k0, whichdepends linearly on theseplasticweights, varies according to
~θ× v as required by Eq. (7), the algorithmic condition for its
recalibration.
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Fig. 7 | Numerical simulationof themodified ring attractor networkmodel.See
Supplementary Note 7.3 for details. A Correction of positional error by visual
landmarks. The top panel illustrates the convergence of the central ring’s bump
location (green) toward that of the visual-ring bump (pink), while the bottompanel
shows the mean firing rates of CW (red) and CCW (blue) rotation rings during this
correction process. B Recalibration of the PI gain. The top panel shows the con-
vergenceof the averagePI gain (green) toward the visual gain (pink), as the rat runs
100 laps according to the same velocity profile in Fig. 5A. The bottom panel shows
the positional errors (moving-averaged) driven by the discrepancy between the PI
gain k0 and the visual gain k⋆ during this process. At steady-state, k0 slightly
overshoots k⋆, leading to a small negative positional error, like Fig. 4B. C Emer-
gence of spatial inhomogeneity during PI-gain recalibration. The left panel shows
the evolution of the normalized weights of the velocity-to-rotation ring connec-
tions, with four representative samples (solid lines) taken as the PI gain approaches
steady state (opacity increases with time t ≥ 0). The dashed line shows the ideal
weight profile under perfect recalibration with no spatial inhomogeneity
(k(θ) = k⋆ = 1.4). The right panel quantifies the spatial inhomogeneity throughout

the recalibration process with the coefficient of variation (CoV) across the circular
neural space (black line; withmoving average in red). At the start of the simulation,
weights near the bump’s initial location are upregulated locally, increasing inho-
mogeneity. As the bump moves, synaptic changes propagate to other regions,
gradually reducing inhomogeneity. However, because the bump cycles through
the neural space, this process repeats each lap, creating periodic fluctuations in
spatial inhomogeneity (black line) at the same frequency as the bump’s traversal.
As recalibration progresses and the PI gain nears its target, themagnitude of these
synaptic adjustments diminishes, leading to a gradual stabilization of inhomo-
geneity. D The relationship between the PI and visual gains (green line) in com-
parison to the perfect recalibration case (dashed pink line). Observe the subtle
asymmetry in this simulated relationship. The simple algorithmicmodel previously
simulatedbasedon Eq. (9) aswell as our analyses of themodifiednetworkmodel in
SupplementaryNote 7.2 and Supplementary Fig. 7 predict a similar asymmetrydue
to the asymmetric influence of the squared velocity term on the steady-state PI
gain. Interestingly, similar asymmetries have been observed experimentally23,33,94.
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While this algorithmic condition establishes PI-gain recalibration,
it is unclear whether the model can reach a complete recalibration,
where the PI gain’s spatial average k0 would converge exactly to the
visual gain k⋆, or a partial recalibration, where k0 would converge to a
value only biased towards k⋆. As illustrated by the algorithmic Exam-
ples 1 and 2 in Section “Control theory reveals algorithmic conditions
for PI-gain recalibration”, complete PI-gain recalibration is achieved if
no additional variable other than the product of the animal’s velocity v
and the network’s positional error ~θ influences the temporal change in
the average PI gain k0. However, in our modified model, the pre-
synaptic side of the velocity-to-rotation ring connections solely
encodes the animal’s velocity v, whereas the rotation rings on the post-
synaptic side additively encode the positional error ~θ along with v
(Fig. 6D). As a result, Hebbian plasticity modifies the synaptic weights
not only by the product ~θ× v but also by the squared velocity v2. As
previously shown in Example 2 in Section “Algorithmic and mechan-
istic requirements for PI-gain recalibration”, this additional v2 term
implies that our model achieves only partial recalibration.

How close k0 gets to the visual gain k⋆ at the end of this partial
recalibration depends on the relative contributions of v2 and ~θ× v—
trade-off between the influence of error and velocity on the firing rates
of the rotation rings. Specifically, as the positional errormodulation of
rotation rings’ firing rates becomes more dominant relative to their
velocity modulation, the influence of the ~θ× v term increases relative
to the v2 term, enhancing the extent of the recalibration. To achieve
such dominance of the error modulation, we propose two minor
refinements in Supplementary Note 7.2 to the design of our modified
ring attractor, based on computational and theoretical analyses: (i)
using a sharper activity bump for the visual ring and (ii) incorporating
weak inhibitory connections from the visual ring to the central ring.
These minor refinements enhance gain recalibration without com-
promising error correction or path integration and are therefore
employed in our simulation studies.

In simulation, we test the performance of PI-gain recalibration
within our modified ring attractor network model for a simulated
rat running on a circular track while visual landmarks were moved as
per the visual gain k⋆. The simulation confirms our theoretical
expectations, showing that the network’s PI gain k0partially recalibrates
to the visual gain k⋆. During this recalibration, the PI gain inevitably
and quickly becomes spatially inhomogeneous because of non-uniform
weight changes from Hebbian plasticity across the neural space. As
the animal continues to move under spatially uniform visual feedback
from landmarks, however, these inhomogeneities within the PI gain
gradually reduce, eventually reaching a minimal level at which point
the PI gain closely approximates, though does not exactly match, the
visual gain k⋆ at all locations in the neural space (Fig. 7B, C). Therefore,
our modified ring attractor is capable of learning and maintaining a
reasonably well-tuned PI gain for a range of visual gains based on
feedback from landmarks (Supplementary Fig. 6D), unlike the classical
ring attractor, which lacks any such recalibration behavior. That said,
the recalibrationmay fail in ourmodel if the discrepancy between the PI
gain k0 and the visual gain k⋆ suddenly becomes very large, leading to
positional errors ~θ (recall from Fig. 4B that positional error is correlated
with the gain error) greater than the dynamic range of the error-
encoding scheme within the rotation rings. In such cases, our model
breaks free from landmark feedback, unable to recalibrate its PI gain
(Supplementary Fig. 6D). This simulated behavior aligns closely with
the response of CA1 place cells under large gain changes as reported
in ref. 33.

Discussion
Fine-tuning the gain factor of a neural integration computation is
crucial to maintain accurate representations of continuous variables
since the relationship between the sensing of the relative change in a
continuous variable and its actual value can fluctuate on both

developmental (e.g., changes in body size59) and behavioral (e.g.,
changes in locomotion effort due to a change in locomotion
surface60,61) time scales and even due to dynamic biological processes,
such as circadian rhythms, that can alter synaptic transmission and
intrinsic electrical properties of neurons62,63. Building upon previous
behavioral work on perceptual plasticity of human locomotion30,64,
experiments showed that a persistent conflict between self-motion
and external visual cues recalibrates the integrator gain of hippo-
campal place cells, demonstrating the first physiological evidence for
such fine-tuning33.

In the present paper, we investigated the algorithmic and
mechanistic requirements for gain recalibration in a ring attractor
network with a three-ring structure, a prevailing CBAN-type model for
encoding circular continuous variables. In CBAN models, when the
integration gain is inaccurate, an internal representation of a con-
tinuous variable slightly drifts relative to its actual value, resulting in
encoding errors. When absolute ‘ground-truth’ information (e.g.,
feedback from visual landmarks in the present study) is present, the
representational errors are corrected automatically through the
CBAN’s internal dynamics, without any need for an explicit code of the
error at the level of single neurons. In contrast to this automatic error
correction, our findings, conceptually summarized in Fig. 8, provide
strong theoretical evidence that fine-tuning the integration gain of a
CBAN may critically depend on an explicit error signal encoded within
thefiring rates of individual neurons. Overall, our results suggest a new
role for brain circuits hypothesized to form a CBAN and highlight a
critical modification to prior CBANmodels, which lack such an explicit
error signal. Beyond gain recalibration, this type of explicit error signal
could serve amore generalized function supporting novelty detection,
assessing the reliability of absolute information from external cues,
and building an internal sense of confidence in the accuracy of the
encoded continuous variable—potentially informing planning and
decision-making in complex behavioral tasks.

Limitations
Although our findings have been obtained through a detailed
analysis of a ring attractor, certain assumptions were made for
mathematical tractability, introducing limitations to our study. First,
we examined a ring attractor network with a three-ring topology8,
a choice supported by strong experimental evidence18,19 and its
adoption as the classical model for spatial representations in 1D and
2D36,44. Although our findings can be readily generalized to CBANswith
the same topology in higher dimensions, they may not extend as
readily to CBANs with different topologies, such as double-ring
attractors12. Second, we used a dimensionality reduction technique
to derive a simplified model of the ring attractor, based on which we
identified the algorithmic conditions for PI-gain recalibration. This
reductionprovides an accurate approximationwhen external inputs to
the attractor are relatively weak compared to its internal dynamics and
when the activity bump is symmetric and lives on a continuum. If these
assumptions fail, the accuracy of the reduced model degrades, in
which case our findings may become less relevant to the network’s
actual dynamics. For instance, smaller networks, such as the putative
attractor of the fly head direction system, may violate some of these
assumptions. Third, we carried out local stability analysis to derive the
necessary conditions for PI-gain recalibration. Although our analysis
established a rate code of the attractor’s positional error as such a
condition, it did not identify the dynamic range of this encoding
scheme because of its local nature, except that the dynamic range
must encompass zero error. Fourth, our search for the mechanistic
requirements for PI-gain recalibration was based on an exhaustive
analysis of the relationship between the model parameters of a ring
attractor and the value of its PI gain. In doing so, however,we excluded
two parameters, namely the synaptic time constant and the value of
the offset in the central-to-rotation ring connections, because of our
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model’s inability to include details about how they may change, as
explained in Section “The need for an explicit error code to meet the
algorithmic conditions for PI-gain recalibration”. Thus, while it remains
an open question, PI-gain recalibration may be influenced by the
plasticity of the excluded parameters, in which case our findings may
not be applicable. We leave the investigation of these limitations as
future work.

Continuous bump attractor network as an adaptive
Kalman filter
To identify algorithmic requirements for recalibration of the inte-
gration gain, we simplified the dynamics of the ring attractor
through a dimensionality reduction protocol described in39,45,46.
Similar approaches have recently been applied to explore the evo-
lution of high-dimensional neural data within low-dimensional
structures6,15,65. In our case, the dimensionality reduction yielded a
simplified 1D model of the ring attractor, capturing its response to
both differential inputs (e.g., velocity) and absolute positional
feedback from landmarks45,46,66.

Previous studies demonstrated that when multiple cues are
presented as inputs, the ring attractor network can, under certain
conditions and mechanisms, approximate Bayes-optimal cue
fusion22,67–70. If one of the cues provides only differential informa-
tion, such as an animal’s velocity, the network recursively integrates
and fuses the information, performing a Kalman-like filtering pro-
cess at each integration step45. In standard Kalman filtering, such
integration depends on a fixed internal model that assumes stable
parameters (see ref. 67 for a neural implementation of the standard
Kalman filter). In contrast, our analysis suggests that a ring attractor
with PI-gain recalibration acts as an adaptive Kalman filter, con-
tinuously tuning its integration gain over time. To achieve this
adaptive tuning, our model follows a specific algorithmic rule: the
integration gain must change in the same direction as the product
of the animal’s velocity and the model’s positional representation
error relative to the external reference. This rule aligns closely with
principles from adaptive control in engineered systems, where
similarmultiplicativemechanisms, like those in theMIT rule71, guide
parameter adaptation.

The need for explicit error signals in the continuous bump
attractor networks
Our theoretical analysis provided evidence that rate-based encodingof
the instantaneous value or the time-integral of the representational
error at the level of single neurons may play a critical role in the
recalibration of the integration gain within CBAN models. Intuitively,
without such explicit error-rate codes, the network does not have a
teaching signal that can guide the tuning of its integration gain. This
implies that, for CBAN models, learning the integration gain from
errors canbe a verydifferent neural process than correcting the errors,
which can occur automatically through network dynamics.

The hypothesized explicit error signal resembles reward and
sensory prediction error signals within themammalianbrain.Midbrain
dopamine neurons encode error in the internal predictions of reward
via monotonic changes in their firing rates72,73; they elevate their
activity with more reward than predicted, remain at baseline activity
for fully predicted rewards, and exhibit depressed activity with less
reward than predicted. Climbing fiber inputs to Purkinje cells of the
cerebellum encode errors in the predicted sensory consequences of
motor commands via changes in the rate and duration of complex
spikes74,75. Both midbrain and cerebellar rate-based error codes are
thought to act as teaching signals that recalibrate the internal models,
just like how a rate-based error code can act as a teaching signal that
recalibrates the integration gain of a CBAN.

To demonstrate the practical relevance of our theoretical find-
ings, we implemented explicit error codes in twodistinct ring attractor
models. The first is a detailed model, for which we showed through
systematic simulations that it can recalibrate its integration gain based
on a rate code of the instantaneous error combined with Hebbian
plasticity. The second is a conceptual model describing a potential
recalibration mechanism based on the time-integral of error without
any synaptic plasticity. These biologically plausible models, inspired
by our theoretical findings, represent advances over prior work, where
biologically implausible or unproven plasticity ruleswere used for gain
recalibration37,38. Moreover, unlike the prior work, which offered lim-
ited mechanistic insights, our work makes a concrete experimental
prediction: errors between representations in a CBAN and absolute
teaching signals must be encoded by the firing rates of some neurons

Fig. 8 | Snapshot of our key findings, approach, and paper organization. We
modeled the spatially tuned activity of hippocampal place cells on the circular track
surrounded by landmarks (LM, green objects) as a classical ring attractor network.
This classical model lacks an explicit error code and the ability to recalibrate its
integration gain, referred to as path-integration (PI) gain in the context of spatial
coding. To garner insight into the neural mechanisms that can achieve this recali-
bration, we first performed a dimensionality reduction in Section “Model setup:
ring attractor network”. This reduction led to an analytical expression of the PI gain
k along with a simple dynamical model of how the location θ of the network’s
activity bump is controlled by LM and PI. In contrast to previous work implicitly
assuming that CBANs' integration gain is a global parameter, we found that a ring
attractor network’s integration gain is a spatially distributed parameter. Under
certain conditions outlined in Section “The need for an explicit error code to meet
the algorithmic conditions for PI-gain recalibration”, this spatially distributed
parameter can become inhomogeneous, varying as a function of the bump

location. We then employed control theory techniques in Section “Control theory
reveals algorithmic conditions for PI-gain recalibration” to dissect the algorithmic
conditions for how the spatial average k0 of this distributed integration gain can be
recalibrated to a target value k⋆ and how zero positional error can be achieved,
together forming a 2D stable dynamical system as exemplified by the phase por-
trait. Mapping these conditions from the abstract, algorithmic level to the network
level in Section “The need for an explicit error code to meet the algorithmic con-
ditions for PI-gain recalibration”, we found strong theoretical evidence that, under
many conditions, PI-gain recalibration in a ring attractor network requires some
neurons' firing rates to encode either the instantaneous positional error or its time
integral. Finally, in Section “Implementing PI-gain recalibration in a ring attractor”,
we propose a ring attractor network with modified extrinsic connectivity and
Hebbian plasticity as an example CBANmodel that can recalibrate its PI gain based
on such an explicit error code.
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in the circuit. Testing for the presence of such error signals in brain
circuits that are thought to form a CBAN remains future work.

Implications of a distributed integration gain
Prior CBAN models implicitly assumed the integration gain to be a
single, global parameter of the network, independent of the value of
the encoded continuous variable11,36. Although the idea of different,
hard-wired integration gains has previously been suggested in the
context of location coding to explain the changes in the spatial scale
of place coding along the dorsal-ventral axis of the hippocampus29,
it has largely been assumed that the integration gains are constant
at all locations within an environment (but see ref. 45). In contrast,
our analysis of a CBAN network showed that the integration gain is a
spatially distributed parameter instantiated in the network’s array
of synaptic weights. If plasticity occurs in the synapses between the
differential (e.g., velocity) inputs and the attractor during recali-
bration, this distributed gain may temporarily become inhomoge-
neous, taking on different values across different locations in the
neural space (corresponding to different values of the encoded
continuous variable). This transient inhomogeneity, which is con-
tingent upon local synaptic plasticity in the pathway between dif-
ferential inputs and the attractor, is a strong experimental
prediction of our study. Under this prediction, we expect some
regions of the hippocampal map to compress while others
stretching, subtly warping how distances are represented across the
neural manifold throughout the recalibration process (similar dis-
tance warping in place cells can be caused by the presence of tex-
ture boundaries on the local surface76).

Theoretically, spatial inhomogeneity may be a stable state of the
system if the teaching signal (e.g., feedback from absolute ‘ground-
truth’ information sources) is available nonuniformly across the values
of the continuous variable (unlike the case we studied in Fig. 7B, C). As
a result, a CBAN becomes capable of adjusting its representation
metric locally (as in Fig. 3B), which promises flexibility in representing
different values of the continuous variable with uneven resolutions,
depending on, for instance, their behavioral significance77. This
representational flexibility, driven by the attainment of the inhomo-
geneous integration gain as a stable state, may offer a mechanistic
explanation for some experimental findings from spatial navigation
and decision-making literature. In the context of spatial navigation, a
CBAN can employ inhomogeneous integration gains to “over-
represent” certain locations, for instance nearby rewards or bound-
aries, as is seen in recordings from hippocampus and entorhinal
cortex78–87. In the context of decision-making, a CBAN with such
inhomogeneities can accumulate early or late evidence unevenly,
reproducing the so-called primacy and recency effects in the decision-
making literature88–90. Complementing the mechanisms proposed in
prior work4,45, our finding regarding the inhomogeneous integration
gain of CBANs offers an alternative explanation to an array of see-
mingly complex responses in spatial navigation as well as other brain
functions.

In this manuscript, we investigated whether a CBAN can auto-
matically recalibrate its integration gain without relying on an explicit
error code-just as it does for error correction (Fig. 1). Our findings
provide strong theoretical evidence that, unlike error correction,
which emerges spontaneously from network dynamics, recalibration
likely requires an explicit rate code of error at the level of individual
neurons. This distinction highlights a fundamental difference between
these two processes—error correction vs. integration gain recalibra-
tion—and underscores the general importance of explicit error coding
in adaptive neural computation.

Methods
Detailed derivations, proofs, and implementation details are provided
in the Supplementary Information materials, summarized below.

Theoretical analyses
• Supplementary Notes 1 to 3 cover derivation of the reduced ring-
attractor models introduced in Section “Model setup: ring
attractor network.

• Supplementary Note 4 derives the general PI-gain recalibration
rule and proves the necessary and sufficient conditions for its
stability (Section “Control theory reveals algorithmic conditions
for PI-gain recalibration”).

• Supplementary Note 5 proves the neural-mechanism require-
ments discussed in Section “The need for an explicit error code to
meet the algorithmic conditions for PI-gain recalibration”.

Computational analyses
• Supplementary Note 6 introduces the conceptual ring-attractor
model referred in Section “Implementing PI-gain recalibration in a
ring attractor”.

• Supplementary Note 7.2 details the design of the modified ring-
attractor model analyzed in Section “Implementing PI-gain
recalibration in a ring attractor”.

• Supplementary Note 7.3 describes the simulation procedures and
parameter values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are publicly available at
https://github.com/LIMBSlab/secer2025_expliciterror.git. Source data
are provided with this paper.

Code availability
All code that support the findings of this study are publicly available at
https://github.com/LIMBSlab/secer2025_expliciterror.git.
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