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Abstract—In this work, we introduce a new class of linear
time-invariant systems for which, at each time instant, the
input is sparse with respect to an overcomplete dictionary of
inputs. Such systems may be appropriate for modeling a system
which exhibits multiple discrete behaviors orchestrated by the
sparse input. Although the input is assumed to be unknown,
we show that the additional structure imposed on the input
allows us to recover both the initial state and the sparse, but
unknown, input from output measurements alone. For this
purpose, we derive sufficient observability and sparse recovery
conditions that integrate classical observability conditions for
linear systems with incoherence conditions for sparse recovery.
We also propose a convex optimization algorithm for jointly
estimating the initial condition and recovering the sparse input.

I. INTRODUCTION

Linear dynamical systems (LDSs) are widely used for
modeling and classification of time-series data, including
dynamic textures [1], [2], surgical video data [3], [4], and
human movements [5]-[7]. In human gait classification, for
example, time series of simple human gaits, such as walking
or running, are modeled as the output of a stationary LDS
[5]. Since two LDSs corresponding to the same gait (e.g.,
walking) are expected to be closer to each other (in the
space of LDSs) than two LDSs corresponding to different
gaits (e.g., walking and running), gait classification can be
achieved by defining a suitable distance in the space of LDSs,
such as the Martin distance [8], Binet-Cauchy Kernels [9],
or the align distance [10]. In practice, however, complex
motor behaviors are categorically non-stationary. Moreover,
many different motor behaviors are performed by the same
human. Therefore, a better model may be to assume that
the dynamics of the human are the same across multiple
behaviors. In this case, however, how do we capture the fact
that the same human can perform different behaviors?

Sparse representation theory is a very powerful approach
to capturing multiple classes in data. Sparsity embodies the
notion that very complex (and high-bandwidth) signals can
often be represented as a linear combination of surprisingly
few basis vectors. To model multiple classes, one can assume
that signals from different classes activate different sets of
basis vectors; thus classification can be done by looking at
which basis vectors are activated.
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These ideas from sparse representation theory has found
widespread applications in data acquisition [11], machine
learning [12], computer vision [13], and neuroscience [14].
Unfortunately, ideas from sparse representation theory have
not yet been exploited in dynamical systems theory for the
purpose of modeling and recognition of complex behaviors.
Some ideas from sparse representation theory have been
explored in the context of observer design for linear systems
[15]-[17] (see section II-C for more details). However, such
approaches assume that the states, initial conditions, or
innovations are sparse. While promising, such notions of
sparsity for linear systems may limit the class of systems
that can be described. For example, if the state xj, is sparse,
a state transition to zpy; = Azj need not give a sparse
vector 41, unless A satisfies strong conditions (such as
being a generalized permutation matrix).

A. Paper Contributions

In this paper, we propose an alternative approach to
incorporating notions from sparse representation theory into
linear systems theory. In particular, we introduce a new class
of linear time invariant (LTI) systems with sparse inputs. The
input at each time step is assumed to be sparse with respect
to an overcomplete dictionary of inputs. This dictionary of
inputs is meant to encode the flexibility necessary to drive
a wide variety of possible behaviors of the system. At each
time instant, a small subset of dictionary atoms (“behaviors”)
is selected by the sparse input. In this way, a wide range
of complex behaviors can be orchestrated by choosing an
appropriate sequence of sparse inputs. In contrast to LDSs
with stationary inputs (e.g. ARMA models), this approach
may facilitate modeling of complex and inherently non-
stationary biological movements and their control.

In general, without any particular assumptions on the
parameters of the dynamical model, the structure of the
deterministic (or distribution of the stochastic) inputs, or the
relative dimension of the dynamical system, input and mea-
sured output, the problem of recovering the initial condition
of an LDS with unknown inputs is an ill-posed problem.
The problem of designing Luenberger-type observers for
linear systems with unknown inputs or disturbances has been
widely studied [18]-[20] (and the references therein). The
prior works have established few necessary and sufficient
conditions on the parameters of the system for the existence
of a stable observer and some of the observer design proce-
dures provided an estimation of the unknown input as well.

In this paper, in addition to introducing the new modeling
framework, we demonstrate that it is possible to perfectly
recover both the initial state of the system as well as the



sparse input from measurements of the output alone. For this
purpose, we derive sufficient conditions for the observability
of the initial state and the recovery of sparse input. In
addition, we propose a convex optimization formulation to
jointly recover the initial condition and the sequence of
unknown, but sparse, inputs.

B. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II-A reviews basic concepts from sparse representation
theory and sparse recovery algorithms. Section II-B reviews
the classical observability and state estimation problems
for LTI systems with known inputs. Section II-C reviews
existing notions of sparsity for LDSs and relates them to our
approach. Section III introduces a new class of discrete-time
LDSs with sparse inputs. It proposes a convex optimization
formulation for the joint recovery of the initial condition
and unknown sparse inputs and derives conditions for the
correct recovery of both the initial state and the sparse inputs.
Simulation results and discussions are included in Section
IV, followed by a brief conclusion in Section V.

II. BACKGROUND ON SPARSITY AND LINEAR
DYNAMICAL SYSTEMS

A. Sparse Representation and Sparse Recovery

Compressive sensing (CS) and sparse signal recovery have
gained significant attention in recent years. The theory of CS
states that some sparse signals can be exactly and robustly
recovered from an underdetermined and possibly noisy set
of measurements. Specifically, consider a real-valued signal
x € R™. The signal x can be represented in a basis consisting
of m vectors in R™: U = [¢)1,99,...,1%y] € R™X™ as:

x =) isi= Vs, (M
i=1

where s = [s1,82,...,5m|’. Here, s represents the same
signal relative to the basis defined by the columns of W.

Sparse representation theory is predicated on the idea that
most real signals admit a sparse representation with respect to
some properly chosen basis. More specifically, given a signal
x € R™, a basis (or dictionary) ¥, = can be represented as
x = Ws, where the signal s is S-sparse, namely it has at
most S non-zero elements, ||s||p < S < m. To fix notation,
the support of s, supp(s) = {i|s; # 0}, is the set of indices
corresponding to the non-zero entries and ||s||o = |supp(s).
Consider a linear measurement of the entries of the signal
z: y = ¢Tx. This measurement can be viewed as the
inner product of the measurement vector ¢ and the signal
x: y = (¢,x). Assuming we have p measurement vectors
({¢i}t_,,p < m), the underdetermined sensing matrix, ®,
is constructed by taking the ¢I’s as its rows:

y=®xr = PUs = 0Os. 2)

Equation (2) is an underdetermined system of equations
and in general there exists infinite number of solutions.
However, under some remarkably general conditions on the

sensing matrix ®, it turns out that one can recover s exactly
from far fewer samples (p < m) of the signal than predicted
by the Nyquist sampling theorem. Concretely, the sparse
solution to the underdetermined system of equations y = Os
can be found by solving the following optimization problem:

Py : min ||s|lo subject to y = Os. 3)
seR™

However, in general this is an NP hard, combinatorial and
non-convex optimization problem. There are two main ap-
proaches to solving such a non-convex optimization problem:

1) Heuristic greedy algorithms such as Orthogonal
Matching Pursuit (OMP) [21], attempt to directly solve
Py by finding the columns of © (known as the atoms of
the dictionary in a sparse overcomplete representation)
that have the highest correlation with the measurement.

2) Convex relaxation methods such as Basis Pursuit (BP)
[22], which solve the convex optimization problem:

P mﬂi§n Is|l1 subjectto y = Os. 4)
seR™

Three main categories of theoretical guarantees establish
that under appropriate assumptions, the convex problem P;
is equivalent to the non-convex problem Fy: exact recovery
condition [23]; restricted isometry property (RIP) [24]; and
mutual coherence [25]. Among these, mutual coherence is
the easiest one to compute. Specifically, the mutual coher-
ence of a matrix © is defined as the maximum absolute value
of the coherence between normalized columns:

6701
1(©) = max : (5)
i.317#3 (|0 [116;
It is shown in [25] that if the matrix © satisfies

then the S-sparse solution to P can be obtained by solving
the convex problem P;. In other words, the angle between
the normalized columns of the matrix © should be above
some threshold.

The standard techniques in CS hold for signals that are
sparse in the standard basis (¥ = I) or in some proper
orthonormal basis. Rauhut et al. [26] showed that similar
techniques could be applied to recover signals that are sparse
with respect to an overcomplete dictionary. More recently,
Candes et al. [27] provided theoretical guarantees adopted
to overcomplete and redundant (coherent) dictionaries.

B. State Estimation for Deterministic LTI Systems
Consider an LTI system of the form:

Tk GR",uk € R™
yr € RP.

Tht1 = Axy + Quy, 7
yr = Cy,
Here, A € R™*™ is called the dynamic matrix, C' € RP*" is
the observation matrix, x is the state, y;, is the output, and
uy, in the input signal.
For the linear system defined in (7), let

YN =[y0.91 45, yn—1) €RM )



denote the vector of all outputs up to time N. Likewise, let

Un = [ug,uf,uj, ... ,ujy_o]" € RV-D™ 0 (9)

denote the vector of all inputs up to time /N. One can easily
show that

Yn = Onzo +T'nUn, (10)
where Oy is the observability matrix:
C
CA
On = (11)
CA.N_I
and
0 0 )
cv 0 0
CAN=2¢¥ CAN—-3w cv

State estimation is one the fundamental problems in LDS
theory. The state estimation problem typically boils down to
recovering the sequence of states from inputs and outputs
over time, i.e., Uy and Yy. Indeed a system is typically
defined to be observable if one can recover any xy from
measurements of the inputs and outputs. It can be easily
verified from (10) that if the input and output sequences are
known, the initial condition zy can be recovered if and only
if the rank of the observability matrix Oy is n.

When the inputs are unknown, as assumed in this paper,
if there are fewer outputs than inputs, i.e. p < m, recovering
the inputs is an ill-posed problem. In this case it is not clear if
and how to reduce this to a standard state estimation problem,
which requires knowing the inputs to solve (10).

C. Prior Work on Sparsity in Linear Dynamical Systems

Several attempts have been made to incorporate sparsity
in the context of LDSs. Most attempts can be categorized
depending on how or where sparsity is imposed, e.g., sparse
parameters, sparse states, or sparse inputs. In this section we
provide a review of these trends.

1) LDSs with Sparse Parameters and Sparsity in System
Identification: 1In this setting, sparsity in the parameter
space is assumed and exploited for system identification and
model order reduction (i.e., approximating a given complex
system with a simple system of lowest order). Often sparsity
inducing norms or constraints are used in an optimization
framework. One of the earliest example includes [21], [28]
where system identification and model order reduction are
posed as the problem of choosing an efficient representation
(fewest number of coefficients) of the frequency response
of an LDS in the so-called rational wavelet basis. Some
other examples in this category include [29]-[32]. Topology
identification of large-scale sparsely connected dynamical
networks can also be facilitated with a sparsity inducing
regularizer [31], [32].

2) LDSs with Sparse States: Recently, a number of filter-
ing and smoothing algorithms have been proposed for recov-
ering time-varying sparse signals whose temporal evolution
can be modeled by an LDS [15], [17], [33]. These algorithms
are mostly targeted at compressive sensing of time-varying
sparse signals and they usually require limiting assumptions
in the temporal evolution model such as slow changing spar-
sity patterns of the signal. In a different approach, Wakin et
al. [16] studied the observability of linear systems with sparse
high-dimensional initial state and randomized compressive
measurements. Overall, while enforcing sparsity on the states
results in promising state estimation algorithms of sparse
time-varying signals, we believe this notion of sparsity is
fundamentally limited. For example, if we consider an LDS
Trr1 = Axy, then if xy, is sparse, Az need not to be sparse
except for a special matrix A (e.g., a permutation).

3) LDSs with Sparse Inputs: Sparse input models have
mostly been used for modeling spike trains, i.e., signals
that are sparse in time. For instance, blind deconvolution
with ¢; regularization for recovering spike trains has long
been applied in the context of seismic signal processing
[34]. However, such approaches and more recent ones have
been limited to single-input single-output systems, usually
with finite impulse response [34], [35]. More recently, in
[36] a similar approach has been proposed for modeling
multivariate time series of human actions as the output of an
LDS driven by a one dimensional spike train. This work also
proposes an alternating minimization framework for jointly
recovering the train of input spikes and the LDS model
parameters. This approach is an example of blind system
identification or deconvolution. The main limitation of this
approach is that the input class may be too restrictive, and
may not be able to generate complex dynamic behavior.
In contrast, in our proposed LDS with sparse inputs much
more complex dynamics can be modeled through the use
of a rich input dictionary. Some other works (e.g., [17])
consider sparse inputs as noise rather stimulus, i.e., as an
undesired signal that should be suppressed. To the best of our
knowledge, imposing sparsity at the input of MIMO LDSs
while including an overcomplete dictionary for the input
(thus allowing a rich class of inputs) is a novel approach
that has not appeared in the literature so far.

III. STATE ESTIMATION AND INPUT RECOVERY FOR
LINEAR SYSTEMS WITH SPARSE INPUTS

Sparse representation theory applies to the recovery of
static sparse signals from a small number of measurements,
while observability theory focuses on the estimation of the
system state (or initial conditions) of a dynamical system.
How can these two ideas be combined to estimate both
the initial conditions and the input signals? In this section,
we show how to extend sparse representation theory to a
dynamical context. We first propose a new class of LDSs
with sparse inputs. We then propose a framework to jointly
recover the initial condition and the sparse inputs and derive
conditions for the correctness of the recovery. Next we
assume that the initial condition is known (or without loss



of generality is set to zero) and discuss the step-by-step
recovery of sparse inputs.

A. Linear Dynamical Systems with Sparse Inputs

In this subsection, we introduce a new class of LDSs
whose input wug at each time step is sparse with respect to
an overcomplete dictionary of inputs ¥, namely, ||ux|lo < S
(S < m). Formally, a linear dynamical system with sparse
inputs (LDS-SI) is a system of the form:

Ty = Axg + Vg, xp € R up, € R™, |Jugllo < S

13
yr = Cxy, yr € R?, ()

where n and m are possibly large. Notice that the support and
value of the input are not constrained over time in our model.
Sparsity of the input at each time step means that, at any
given time, only a few columns of the basis W get excited, but
in as few as m/S steps, all of the columns could be excited,
depending on how the support varies over time. Notice also
that the overall behavior of LDS-SI systems is nonlinear.
In fact, we can think of the proposed LTI systems with S-
sparse inputs of dimension m as an LTI system with switched
inputs of dimension S, hence a switched LTI system, where
the number of discrete states is ('g).

B. Joint Recovery of the Initial Condition and Sparse Inputs

In the classical linear state estimation setting, one assumes
that the parameters of the model (I'y and Oy ) and the input
and output sequences (Uy and Yy ) are known. Then, the
estimation of the initial conditions boils down to inverting
the matrix, Op, which can be done if and only if the
observability matrix Oy has rank n.

In this paper, we assume that the sequence of inputs, Uy,
is also unknown. If p < m (fewer measurements than inputs),
then (10) is an under-determined problem and in general
an infinite number of solutions exist: there are Nm + n
unknowns and only Np measurements (Nm +n > Np). To
address this issue, in this paper we consider a special set of
inputs to the LDS, namely input signals, ug, that are sparse
at each time step (k = 0,1,2,..., N —1). In other words we
study the inputs that are either sparse in the standard basis or
have a sparse representation with respect to an overcomplete
dictionary, ¥ [25]. In this case, a simple counting argument
suggests that a necessary condition for a solution to (10) to
be unique is that pN > n+ NS, where S is the sparsity level
of inputs at each time step, p is the number of measurements
at each step, and n is the dimension of dynamical system.
Therefore, we expect the smallest number of steps to be on
the order of N > n/p + NS/p. This is very intuitive since,
loosely speaking, n/p is the minimum number of steps to
recover o and NS/p is the minimum number of steps to
recover Uy.

The above counting argument suggests that it may be
possible to recover both Uy and x( under some conditions.
However, it does not tell us how to recover Uy and xg.
As discussed in Section II-A, in general, finding a sparse
solution involves [y minimization (see (3)), which is a non-
convex and NP-hard optimization problem. To overcome

this, by analogy to the [; relaxation approach to recover
sparse signals, we propose the following convex optimization
problem to jointly recover the sparse inputs and non-sparse
initial condition:

[}nin lUn|l1 subjectto Yy = Onaxo+TnUn, (14)
N,»Z0

where

N-1
1UNl =D luxlh (15)
k=0

and x¢ and Uy are both unknown. This formulation is new
in that it proposes a means by which to recover the state and
unknown, but sparse, inputs. For the sake of simplicity, here
we have chosen to work with the [;-norm. However, prior
knowledge about the structure of the sparsity patterns can
lead to more effective structured sparsity-inducing norms in
the optimization formulation.

A comparison between the proposed optimization problem
in (14), the standard state estimation problem in (10) and
the standard sparse recovery problem in (4) sheds light on
the conditions required for perfect joint recovery. If in (14)
we assume that the input and output sequences are known,
then a necessary and sufficient condition to recover the initial
condition z is that the rank of the observability matrix be
equal to n. On the other hand, if in (14) we assume that
the initial condition and the sequence of outputs are known,
then a sufficient condition for stable and exact recovery of
the unknown sparse inputs is that the matrix 'y satisfies
conditions such as mutual coherence (see Equation (5)).
Note, however, that the proposed optimization problem in
(14) is slightly different from the standard sparse recovery
problem since the initial condition, x, is also unknown. One
may be tempted to concatenate the matrices Oy and I'y to
form My = [(’) N I N], and verify the mutual coherence
condition on My for the perfect joint recovery of xy and
Uyn. However, notice that the /; norm is imposed only on Uy
and the initial condition z is generally not sparse. Therefore,
the sufficient condition for the joint state estimation and
sparse recovery in (14) does not follow directly from the
incoherence conditions applied directly to 'y or M.

The above discussion motivates the need for deriving new
conditions for joint state estimation and sparse recovery. The
following proposition gives a sufficient conditions for the
correctness of the solution of problem (14).

Proposition 1. Let 11 be the projection onto the orthogonal
complement of the column space of the observability matrix
On. If On is full rank and the projected matrix Iy is
incoherent, oy and Uy can be uniquely recovered from Yy
as the solution to (14).

Proof. Since Oy is full rank, it follows from (10) that we
can solve for the initial condition xy as a function of the
unknown input sequence Uy as

zo = (OKON)1OL (YN —TnUy). (16)



Substituting this expression for xy back into the optimization
problem in (14) we obtain

I[I]lin lUn|l1 subject to Y =TInpUp, (17)
N

where Y = I[IYy, I'm = IT'y, and II is the projection
matrix onto the orthogonal complement of the column space
of the observability matrix Oy, which is given by:

I =1-On(O}OnN)"'OF, (18)

where [ is the identity matrix of appropriate size.

The formulation in (17) is a standard /; minimization
problem, where Yr; are the measurements, I'rp is the dic-
tionary, and Uy is the sparse vector to be recovered. As
a consequence, sufficient conditions for the correctness of
the recovery of Uy follow directly from the incoherence
conditions applied to I'y (see Equation (5)). Once Uy is
recovered from (17), xg can be recovered from (16). ]

Note that Proposition 1 assumes that Uy, the vector of
all inputs, is sparse. This assumption does not necessarily
require the input signal to be sparse at each time step.
Therefore, Proposition 1 applies to systems that are more
general than (13) in which the input at each time step is
assumed to be S-sparse. As a result, the perfect joint recovery
condition in Proposition 1 may be too strong for (13), and
weaker conditions could be obtained by using a different
sparsity inducing regularizer in (14).

C. Sequential Input Recovery with Zero Initial Conditions

An alternative to batch recovery is to estimate each input
sequentially as each new output becomes available. Since the
input signal at each time step, u;, is sparse with respect to the
dictionary W, step-by-step sparse recovery of the unknown
input signal can be formulated as follows:

G = argmin |luglly subject to  Gry1 = CPuy  (19)
Uk
where
k—1
§1 =1 and ng = Yk+1 — Z CAk_J ‘1/11]' (20)
j=0

for k = {1,2,..., N—1}. This procedure is potentially more
efficient in terms of computational cost, because each step
solves an optimization problem with far fewer variables and
constraints compared to the batch recovery.

Notice that a sufficient condition for this convex program
to recover a sparse solution is that the matrix C'¥ be
incoherent. However, this sparse solution need not coincide
with the true sparse solution, as the step-by-step recovery
procedure disregards some of the linear constraints from
the equation (10), hence it is not equivalent to the batch
procedure in (14). In fact, the overall performance of the
step-by-step recovery hinges on stable and exact recovery of
the input signals at each time step. Failure in recovering the
input signal in any one step results in the propagation of the
error for the rest of the steps. The challenge of capitalizing
on the efficiency of step-by-step recovery, while not being

hampered by a failure along the way, is an important problem
but is beyond the scope of the present paper.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed convex optimiza-
tion algorithms on synthetically generated time-series data.

A. Experimental Setup

The data was synthesized by simulating (13) to generate
times series data for a wide range of parameters of the LDS-
SI. The entries of the dynamic matrix, A € R"*", were
generated as i.i.d. samples from a Gaussian random variable
with mean zero and standard deviation 1/y/n. It has been
shown that the distribution of eigenvalues of these random
matrices obey the circular law as n — oo [37]. To ensure
the stability of the A matrices generated in our experiments,
sampled matrices with eigenvalues of maximum modules
greater than 0.9 were discarded. The dictionary matrix ¥
was generated in the same way as A, but without enforcing
stability. In all experiments, the entries of the measurement
matrix, C' € RP*", were generated as i.i.d. samples from a
standard normal distribution. The value of each entry of the
non-sparse initial condition, xg, was sampled uniformly on
[—5,5]. For the input signal with sparsity level S at time
step k, supp(uz) is a set of S integers sampled uniformly on
[1,m] (||supp(ug)|| = S). The values of the non-zero entries
of uy, were also sampled uniformly on [—5, 5].

Values for the number of steps, N = 50, and the
dimension of the inputs at each time step, m = 50, were
kept fixed in all our experiments. The supports and values
of the input were allowed to vary from step to step. The
dimension of the dynamical system was varied from 10 to 50
with increments of 10, i.e., n € {10, 20, 30, 40, 50}. For each
choice of n, the dimension of the measurements was varied
from 5 to n with increments of 5, i.e. p € {5,10,...,n}.
For each combination of n and p, the sparsity level of
the inputs at each time step was varied from 1 to 20, i.e.
S € {1,2,3,...,20}. This range of sparsity allows for up
to 40% of the entries of u; to be nonzero at each time step
(Smax/m = 20/50 = 0.4).

Each replicate of the experiment consisted of 600 sets of
simulations. Ten replicates of the experiment were carried
out. In all simulations we used the CVX software package
[38], [39] to solve the optimization problems.

B. Joint Recovery of the Initial Condition and Sparse Un-
known Input

The probability of perfect joint recovery as a function
of the sparsity level of the inputs at each time step, S,
and the dimension of measurements at each time step, p, is
shown in Fig. 1. The probability of perfect joint recovery is
estimated using 10 simulated replicates. For a given number
of measurements, p, and for the range parameters explored
in this study, the ratio of the dimension of the dynamical
system to the number of inputs, n/m, does not significantly
change the level of sparsity that admits perfect recovery. This
can be seen by comparing the results in Fig. 1(A) and (B)



for p < 30 (where both systems were simulated). Note that
this ratio, n/m, is the ratio of the number of rows to the
number of columns of the dictionary matrix, V. Of course,
as n gets very small compared to the number of inputs,
the overcomplete dictionary becomes highly coherent (as an
extreme example when n = 1, (V) = 1) and it becomes
impossible to exactly recover the sparse input. Notice that

Input dimension, m=50,
A State dimension, n=50 B
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Fig. 1. Probability of perfect joint recovery estimated from 10 simulated
replicates. Probability (scale on right) is given as a function of the sparsity
level of the input at each time step, and the measurement dimension. (A)
n = m = 50. Dimension of the dynamical model equals to the number of
inputs at each time step. (B) 30 = n < m = 50. ¥ is an overcomplete
dictionary.

the initial state may be recovered independently from the
inputs and directly from the measurements. For example,
when p > n joint recovery becomes trivial in the sense that
the initial condition can be recovered independently from
the inputs, directly from the first measurement, yg = Cxo,
provided the observation matrix, C', has rank n.

C. Mutual Coherence

The mutual coherence of the matrices, ¥, CW, I'y, and
I'r as a function of the dimension of the measurements at
each time step is shown in Fig. 2. Error bars show one
standard deviation variation across 10 replicates of simulated
data. For a fixed choice of n and m, the coherence of
the randomly sampled dictionary matrix, u(¥), does not
statistically change as a function of p (shown in green).
For a fixed choice of m (number of inputs), as n decreases,
the dictionary, ¥, becomes more coherent. As a result, for
a given dimension of the measurements, the coherence of
CWU also increases as n decreases. From the structure of

A Input dimension, m=50, B Input dimension, m=50,
| State dimension, n=50 | State dimension, n=30
— uN) n(w)
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Fig. 2. Mutual coherence of several matrices (see legend) as a function

of measurement dimension, p. The coherence of the I' ;v matrix is always
bounded from below by the coherence of C'W. (A) n = 50. (B) n = 30.
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Fig. 3. Visualization of the entries of I'y and I';y of a representative
simulation set for m = 50, N = 7,n = 50,p = 30. Note that in this
example, after projection onto the orthogonal complement of the column
space of Oy, the colors in the first few blocks (50 columns per block)
are more “muted” than before projection, suggesting that coherence is
compromised as verified numerically (see Fig. 2).

the matrix I'y (see (12)), it can be easily verified that its
mutual coherence, (') (shown in red), is always bounded
from below by u(C'¥) (shown in blue). Note that for almost
all simulations, the coherence of I' is larger than about 0.6.
Based on the sufficient recovery condition in (6), this implies
that the maximum sparsity level we can tolerate to guarantee
recovery, independent of the number of measurements, is
about 1.3. Experimentally, and for the joint recovery of the
initial condition and sparse inputs, this sufficient condition
turns out to be quite conservative as shown in Fig. 1.

D. Discussion on Optimization Formulation

One can jointly recover the initial condition and input by
first projecting both sides of the equation onto the orthogonal
complement of the column space of the observability matrix
(Op) as described in Section III-B. This approach appears
promising because one can first solve (17) to recover the
unknown inputs, Uy, and then solve (10) to recover the ini-
tial condition. Simulation results reveals that when (14) fails
to jointly recover the initial condition and unknown sparse
input, (17) also fails to recover the unknown input perfectly.
This result can be explained by comparing the coherence of
I'ny (before projection) and I'ry (after projection). As shown
in Fig. 2, the coherence of I';y (black) is always greater than
the coherence of I'y (see Fig. 3).

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new class of linear time-
invariant dynamical systems with sparse inputs (LDS-SI). In
the proposed framework, at each time instant, the input to the
system is sparse with respect to an overcomplete dictionary
of inputs. We proposed a convex optimization formulation to
jointly recover the initial condition and unknown but sparse
inputs of a linear dynamical system. While this formulation
allows the sparsity of the initial condition, and state-transition
matrices that preserve sparsity, it does not require these
potentially limiting assumptions. Simulation results show
that recovery of sparse inputs are achievable even for signals
that are sparse with respect to an overcomplete dictionary.

In this study, we did not assume any structured sparsity
pattern in the input signals. One possible example is the case
in which non-zero entries of control inputs are clustered. In



such scenarios, the performance of the optimization solver
may be improved by the use of norms that induce sparsity
at the group level (e.g., the [y /l> norm). Structured sparsity-
inducing norms other than /; can be formulated for the spe-
cific problem at hand [40]. Moreover, sparse representations
are shown to be useful for classification of unlabeled data
[12], [13]. In future work, we aim to extend the results of
the current study to the classification problem of segmented
data such as surgical gesture classification [4]. This will
require solving not only the state estimation and sparse input
recovery problem, but also the system identification and
dictionary learning problems.
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