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Abstract

Mutual interaction between biology and robots can significantly benefit both fields.

The richness and diversity in animal locomotion and movement provides an extensive

resource for inspiration in engineering design of robots. On the other hand, bio-

mimetic and bio-inspired robots play a critical role in testing hypotheses in biology

and neuromechanics. Modeling complex biological and mechanical movements is at

the core of this mutual interaction. Models and analytical tools are required for de-

coding and analysis of behavior in biological and mechanical systems, both at low level

(sensory systems and control) and high level (activity recognition). This dissertation

is focused on modeling approaches for biological and mechanical movements. We

first primarily focus on physics-based template modeling to answer a long-standing

question in animal locomotion: why do animals often produce substantial forces in di-

rections that do not directly contribute to movement? We examine the weakly electric

knifefish, a well-suited model system to investigate the relationship between mutually

opposing forces and locomotor control. We use slow-motion videography to study the

ribbon-fin motion and develop a physics-based template model at the task-level for
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tracking behavior. Using the developed physics-based model integrated with experi-

ments with a biomimetic robot, we demonstrate that the production and differential

control of mutually opposing forces is a strategy that generates passive stabilization

while simultaneously enhancing maneuverability, thereby simplifies neural control.

The second part of this work aims to propose a more general data-driven system-

theoretic framework for decoding complex behaviors. Specifically we introduce a new

class of linear time-invariant dynamical systems with sparse inputs (LDS-SI). In the

proposed framework, at each time instant, the input to the system is sparse with

respect to a dictionary of inputs. In the context of complex behaviors, the dictionary

may represent the dictionary of inputs for all possible simple behaviors. We propose

a convex optimization formulation for the state estimation with unknown inputs in

LDS-SI. We derive sufficient conditions for the perfect joint recovery and explore the

results with simulation. We demonstrate the power of the proposed framework in the

analysis of complex gestures in robotic surgery. Results are better than state-of-the-

art methods in joint segmentation and classification of surgical gestures in a dataset

of suturing task trials performed by different surgeons.

Primary Reader: Noah J. Cowan

Secondary Reader: René Vidal, Marin Kobilarov
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Chapter 1

Introduction

Animals and human produce extremely rich and robust behaviors in often complex

environment. The richness and diversity in animal locomotion and movement provides

an extensive resource for inspiration in engineering design of robots. On the other

hand, while even the most advanced bio-mimetic and bio-inspired robots still are

far behind their biological counterparts (in terms of robustness, sensing etc.), robots

also play a critical role in testing hypotheses in biology and neuromechanics. Mutual

interaction between biology and robots can significantly benefit both fields. Modeling

complex biological and mechanical movements is at the core of this mutual interaction.

Models and analytical tools are required for decoding and analysis of behavior in

biological and mechanical systems, both at low level (sensory systems and control)

and high level (activity recognition).

In the following sections, I discuss two common frameworks for modeling biological
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CHAPTER 1. INTRODUCTION

and mechanical movements: physics-based and data-driven approaches. At one side of

the spectrum, physics-based models derived, as the name suggests, from fundamental

laws of physics, are referred to as white box modeling approach. At the other side

of the spectrum, data-driven models are referred to as black box modeling approach.

I also briefly review how template and anchor models are utilized in physics-based

modeling of animal locomotion.

1.1 Physics-based and Data-driven Mod-

eling of Complex Movements

Developing a model from first principles, e.g. Newton’s laws, is sometimes a very

effective modeling approach for describing the dynamics of a physical system. For ex-

ample, a system of ordinary differential equations derived from fundamental physics

laws can accurately describe the dynamics of a set of connected masses, springs, and

dampers. Low-dimensional physics-based models have a long history in modeling ani-

mal locomotion [1–4] (see Section 1.2 for more details). For instance, one of the widely

used so-called models in legged locomotion is the spring-loaded inverted pendulum

(SLIP) model for describing human walking dynamics in the sagittal plane [2, 5].

Such a simple model, consisting of only a point mass and a spring, is certainly not

rich enough to encompass the whole range of walking dynamics. For instance, the

model excludes muscles and sensing; nevertheless, it provides accurate predictions for

2
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center-of-mass dynamics during steady-state locomotion [5].

Examining locomotion at a lower level reveals that muscles create forces in animals

(actuators create forces and torques in robots), the body has inertia and damping,

and the environment exerts reactions forces on the body. Thus the observed motion of

an animal is the result of these complex and often nonlinear interactions. Therefore,

at this level, locomotion should be investigated using more detailed high-dimensional

models. Closed-loop analytical solutions to physics-based models generally do not

even exist at such complexity. However, with recent technological advances in com-

putational power, high-fidelity computational models developed from laws of physics

can provide accurate predictions of locomotion dynamics [6].

While physics-based models have proven to be successful in modeling the dy-

namics of biological and mechanical movements, there are limitations. Physics-based

approaches for modeling complex behaviors at lower levels (e.g., the spiking activity

of all motor neurons) may lead to a very complex model that does not accurately

capture high-level behavior. This might be in part due to the lack of knowledge of

reliable physical models of the components, and / or due to lack of knowledge of the

topology of interacting components.

Alternatively, data-driven system identification approaches aim to directly iden-

tify a dynamical model based on empirical data. In general, data-driven system

identification may take a black box approach in which only a general model struc-

ture is assumed (say, an ODE or frequency response function). Alternatively, in the
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so-called grey box approach, certain physics-based models might be integrated with

data-driven system identification. In this case, prior knowledge about the underlying

dynamical model informs and constrains system identification.

Most of classical system identification techniques exploit models by empirically

measuring both input and output data. In biology, for instance, detailed quantifi-

cation of behavior can be achieved by restricting the behavior to a limited number

and complexity of inputs and outputs. While input–output system identification is

preferable, in many cases such as the analysis of complex biological and mechanical

movements at lower levels, the input data is not accessible and more unified modeling

frameworks are required. Such “blind” system identification requires the develop-

ment and application of novel tools and techniques, as well as careful mathematical

characterization of the available observations.

1.2 Template and Anchor Models of Lo-

comotion

Locomotion is often a result of complex and nonlinear interaction between animal

and its environment. Despite the apparent complexity, many behaviors seem to result

from comparatively simple, low-dimensional patterns of movement. Low-dimensional,

task-specific models for the locomotor mechanics enable the application of control

systems analysis to decode the neural mechanisms for sensorimotor processing [1–4].
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These simple descriptive mechanical models, sometimes termed “templates” [2, 5],

are essential for understanding stability and control in biological systems and bio-

inspired robots [1, 7–10]. Template models are often low-dimensional simplified grey

box physical model that describe some of the salient features of the behavior at the

task level. As mentioned above, the dynamics of center-of-mass in legged locomotion

is well approximated by a simple point mass and spring in sagittal plane (SLIP model).

While the dynamics of the SLIP model is governed by the fundamental laws of physics,

such an oversimplified model is based on empirically refutable hypotheses [5]. On the

other hand, more elaborate and realistic high-dimensional models, sometimes termed

“anchors” [2,5] can facilitate the exploration of more detailed questions about closed-

loop control.

1.3 Thesis Organization

This dissertation is presented in two parts. In Part I we primarily focus on physics-

based template models and develop a task-level template model of the biomechanics

of the ribbon-fin of weakly electric knifefish during tracking behavior to understand

the role of mutually opposing forces during locomotion. Animals often produce sub-

stantial forces in directions that do not directly contribute to movement. For ex-

ample, running and flying insects produce side-to-side forces as they travel forward.

These forces generally cancel out, and so their role was a mystery. To investigate
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the relationship between antagonistic forces and locomotor control, we examined the

weakly electric glass knifefish Eigenmannia virescens, a well-suited model system that

produces mutually opposing forces using a single elongated fin. We develop a physics-

based template model of the biomechanics of the ribbon-fin of weakly electric knifefish

during tracking behavior. The mechanics-based model is integrated with biological

experiments and force measurements from a biomimetic robot in a multidisciplinary

approach. We show that mutually opposing forces can enhance both maneuverabil-

ity and stability at the same time, although at some energetic cost. In addition to

challenging the maneuverability–stability dichotomy within locomotion, our results

challenge the same tradeoff within the engineering of mobile robots. This may inspire

the exploration of a new set of strategies for the design and control of mobile systems.

The presented results in Part I also benefits the neuromechanical field. The me-

chanics of locomotion dictates the control problem confronted by the nervous system.

The glass knifefish perform a behavior—refuge tracking—that can be modeled as a

single degree of freedom behavior, greatly facilitating neuromechanical control sys-

tems modeling. Toward the end of Part I of this thesis we revisit a control-theoretic

framework for making neural control predictions in glass knifefish, and provide a

discussion based on the validated plant model developed in this work for tracking

behavior.

In Part II of this dissertation we aim to propose a general framework with impli-

cations in the data-driven analysis of complex biological and mechanical movements.
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Specifically, we introduce a new class of linear time-invariant dynamical systems with

sparse inputs. Linear dynamical systems are widely used to model time-series data

including simple human movements, dynamic textures, and surgical video data. In

all mentioned examples the output is modeled as a stationary ARMA process. We ar-

gue that most biological and mechanical movements are categorically non-stationary.

On the other hand, sparse representation theory has a long history in signal process-

ing community. Sparsity embodies the notion that quite often very complex (and

high-bandwidth) signals can be represented as a combination of surprisingly few ba-

sis vectors. While notion of sparsity has been incorporated in the context if linear

dynamical systems, most of the prior works assume that the states, initial conditions,

or innovations are sparse. In our view, we believe these notions of sparsity are fun-

damentally limited. We formally introduce the linear dynamical systems with sparse

inputs (LDS-SI) in chapter 7. We then study a fundamental problem of state estima-

tion with unknown (and non-stationary) inputs by proposing a convex optimization

problem. We derive theoretical sufficient conditions for perfect joint recovery of initial

state and unknown inputs. We also present the simulation results for perfect recovery.

Finally, we demonstrate the power of the proposed framework in the analysis of

complex gestures in robotic surgery. More specifically, we show that a classification

algorithm based on a very simple linear dynamical system with sparse inputs improve

the state-of-the-art methods in segmentation and gesture classification of a data set

including suturing task trials recorded by da Vince surgical robot system.
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Part I

Task-Level Dynamical Model For

Tracking Behavior in Eigenmannia

virescens
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Chapter 2

Motivation

2.1 Why task-level mechanics-based tem-

plate models? Why biomimetic robots?

The nervous system processes the sensory information for closed-loop control of

task-level locomotion, such as tracking behavior [11,12]. The mechanical plant defines

the way motor signals are transformed into forces and movements, and so discovering

the neural controller [13–17] of a biological system greatly benefits from a task-specific

mechanical model of the underlying locomotor dynamics [3, 7, 11]. Low-dimensional,

task-specific models for the locomotor mechanics enable the application of control

systems analysis to decode the neural mechanisms for sensorimotor processing [1–4].

These simple descriptive mechanical models, sometimes termed “templates” [2,5], are
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essential for understanding stability and control in biological systems [1, 7, 8].

More elaborate models, sometimes termed “anchors” [2, 5] can facilitate the ex-

ploration of more detailed questions about closed-loop control. Multidisciplinary

approaches integrate computational models and experiments with biomimetic robots

to study the locomotor mechanics in more details and with higher accuracy. With

advances in computing, high-fidelity simulations have categorically improved our un-

derstanding of various locomotor strategies in different species [18–21]. On the other

hand, biomimetic robots enable us to experimentally validate the mechanical mod-

els [7,19,22,23], and to explore the effect of parameters beyond their biological ranges,

providing insight as to where the biological performance lies within the range of the

wider range of possible mechanical solutions [7, 24].

Although there are many task-level modelings for flight control [25–27] and ter-

restrial locomotion [1, 2], to date there are remarkably few experimentally validated

task-level plant models for swimming fish [7], despite the fact that the mechanics of

fish locomotion has been widely studied for decades [13,28–31].

2.2 Mutually Opposing Forces in Locomo-

tion

Animals routinely generate substantial “antagonistic” (mutually opposing) forces

during locomotion that either cancel out at each instant of time, or average to zero
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over each gait cycle [26, 32–35]. This is surprising because the production of an-

tagonistic forces requires the activation of muscles and yet, since the forces sum to

zero, they do not contribute to movement of the center of mass of the animal. Such

antagonistic forces are not only present during forward locomotion but also in hov-

ering for animals such as hummingbirds, hawkmoths, and electric fish; these animals

produce large antagonistic forces and exhibit extraordinary maneuverability during

station-keeping [11, 16, 36, 37]. In this thesis, we demonstrate that active generation

and differential control of such antagonistic forces can eliminate the tradeoff between

stability and maneuverability during locomotion.

Stability is generally defined as the resistance to, and recovery from, disturbances

to an intended trajectory [38]. While maneuverability can be defined in several ways

[39,40], it is perhaps most generally recognized as the relative amplitude of the control

signal required to change movement direction [41]. That is, if a small change in the

control amplitude effects a rapid change in direction, the system would be considered

highly maneuverable. The potential for a tradeoff between the resistance to changes in

direction, and the ability to change direction, appears self-evident [35,38,41,42], and

indeed this tradeoff is considered a fundamental challenge for the engineering design

of airborne, submarine, and terrestrial vehicles [42–45]. Many swimming, flying, and

running animals, however, appear to use locomotor strategies that are extremely

stable and yet facilitate the control of extraordinary maneuvers [26,38,46,47].

To investigate the relationship between antagonistic forces and locomotor control,
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we studied the glass knifefish Eigenmannia virescens that hovers and rapidly changes

direction while producing mutually opposing forces using a single elongated fin. We

developed a task-level mechanics-based model to study theses mutually opposing

forces. The computational model—validated by force measurements from experiments

with biomimetic robot—revealed that mutually opposing forces improve the fore–

aft maneuverability and concurrently enhance the passive stability by providing a

damping-like force to reject perturbations.

In addition to challenging the maneuverability–stability dichotomy within locomo-

tion, our results challenge the same tradeoff within the engineering of mobile robots.

This may inspire the exploration of a new set of strategies for the design and control

of mobile systems.

2.3 Roadmap and Contributions

In Chapter 3 we examine the glass knifefish Eigenmannia virescens, a well-suited

model system, which produces mutually opposing forces during a hovering behavior.

Kinematics data of the knifefish ribbon-fin is quantified through a set of biological

experiments.

Based on biological experiments explained in Chapter 3, Chapter 4 presents a

task-level mechanics-based model for tracking behavior in Eigenmannia virescens.

We also use a biomimetic knifefish robot to measure the forces generated by the fin.

12
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Simulation results validated by experiments with the biomimetic robotic fin reveals

that mutually opposing forces can eliminate the tradeoff between maneuverability

and stability.

We conclude Part I in Chapter 5, and provide a discussion on the role of mechanics

in decoding sensory systems.

2.4 Dissemination

During the process of completing Part I of this dissertation, portions of the work

have been reported at several scientific meetings [23, 48, 49], a paper [7], and was

reviewed in [50]. Some figures and text in this dissertation appeared in these publi-

cations.
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Chapter 3

Counter-propagating Waves in

Eigenmannia virescens

3.1 Why weakly electric knifefish?

To investigate the relationship between antagonistic forces and locomotor control,

we studied the glass knifefish Eigenmannia virescens. These fish hover and rapidly

change direction while producing mutually opposing forces using a single elongated

fin (Figure 3.1(A)). Glass knifefish, like other knifefish, generate thrust force primar-

ily through undulatory motions of an elongated anal fin [21, 30, 51]. The ribbon fin

consists of 217 ± 27 ventrally pointing rays (Table 4 from [52]; all statistics are quoted

as mean ± standard deviation unless otherwise noted), with each ray independently

controlled by a set of muscles. These rays are oscillated in a plane transverse to
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the body axis, and can be coordinated to produce a wave that travels longitudinally

along the fin. In this study, we integrate biological experiments (Figure 3.2), com-

putational modeling and experiments with a biomimetic robot (Figure 3.1(B) and

Figure 4.1) in order to understand how the fish achieves both stability and maneu-

verability during rapid adjustments of its fore-aft position. Eigenmannia and other

similar species of knifefish often partition their ribbon fin into two inward-counter-

propagating waves [51]. The fin kinematics can be idealized as a pair of inward-

traveling waves with parameters including oscillation frequency (f), wavelength (λ)

and angular amplitude (θ) (Figure 3.1(C)). We term the point where these two waves

meet the “nodal point”. While much is understood about the kinematics and me-

chanics of unidirectional traveling waves in a fluid [13,28–30,53,54], far less is known

about counter-propagating waves [51,55], particularly in relation to control.

3.2 Methods

3.2.1 Experimental apparatus

A schematic of the experimental setup is shown in Figure 3.2(A). An electric

pump circulates water in the flow tunnel. A refuge machined from a 15 cm segment

of 2-inch diameter PVC pipe was mounted parallel with the flow in the middle of

the test section. The bottom half of the pipe was removed to allow the fish to be

video recorded through a window on the bottom of the test section. The refuge was
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Figure 3.1: Three testbeds considered in this paper include the glass knifefish, a
biomimetic robot, and a model of the swimming dynamics. (A) The glass knife-
fish Eigenmannia virescens. Experiments with a biomimetic robot match force
measurements predicted by a computational model of ribbon-fin propulsion. (B)
The biomimetic robot has a ventral ribbon-fin to emulate the fin of knifefish. The
biomimetic robotic fin consists of 32 independently controlled rays, allowing for a wide
range of fin kinematics such as counter-propagating waves. (C) The fin is modeled
as a pair of inward-traveling waves. Directions of head and tail waves, and kinemat-
ics of the ribbon-fin are shown in this schematic: angular deflection (θ), wavelength
(λ), lengths of the two waves (Lhead and Ltail), length of whole fin (Lfin), temporal
frequency (f), and nodal point (red circle).
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positioned far enough away from the bottom of the tank to avoid boundary layer

effects. A high-speed camera captured video from below.

The experimental test section of the flow tunnel (Figure 3.2 (A)) is approximately

90 cm long, 25 cm wide and 30 cm deep. Steady-state flow speed through the tunnel

can be adjusted using a frequency controller connected to the electric pump. Flow

speed in the test section was calibrated, as a function of pump frequency, by timing

small drops of colored die as they traversed a known distance through the test section,

at pump frequencies from 0 to 60 Hz in increments of 3 Hz that resulted in flow speeds

from 0 to 15 cm/s (flow speed = 0.25×pump frequency, R2 = 0.996).

A pco.1200s high-speed camera (Cooke Corp, Romulus, MI) with a Micro-Nikkor

60 mm f/2.8D lens (Nikon Inc., Melville, NY) captured video from below. The video

was captured at 100 frames per second for all trials.

3.2.2 Biological experiments

Adult Eigenmannia virescens, obtained through commercial vendors, were housed

in community tanks. Experiments were performed in the custom flow facility de-

scribed above. In both the flow facility and housing tanks, water temperature was

maintained at approximately 25-27◦C, and conductivity was approximately 150-250

µS/cm. All experimental procedures were reviewed and approved by the Johns Hop-

kins University animal care and use committee and follow guidelines established by

the National Research Council, the Society for Neuroscience, and previously estab-
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lished methodologies [56].

Individual fish (N=5) were placed in the test section of the flow tunnel. Without

training, the fish tend to swim into and stay inside the PVC tube [11, 57]. When

we varied the steady-state flow speed, the fish typically remained stationary relative

to the refuge. A single trial consisted of a fish remaining stationary in the tube by

swimming forward (into the flow) at the flow speed. Trials were conducted at flow

speeds from 0 to 12 cm/s in 1.5 cm/s increments. The order of these nine trials

was pseudo-randomized, and three replicates (sets) of trials were collected for each

individual, totaling 27 experiments per fish. Note that we only examined forward

swimming for experimental convenience, since the fish often tend to reorient them-

selves into the flow. However, the fish readily swim both forward and backward when

tracking a refuge ( [11,16]) and when they do swim backward, the nodal point shifts

rostral to its 0 position as expected.

For each trial, several seconds of data were collected. Using open source code [58]

written for MATLAB (The Mathworks Inc., Natick, MA, USA), the overall fore-aft

position of the fish was tracked from the video. One second of data (100 frames) of

steady-state swimming was selected by inspection of the position plotted as a func-

tion of time. This one second of data was used to quantify the kinematic parameters

of both the rostral and caudal traveling waves. The nodal point, positions of both

ends of the fin, and the peaks and troughs of the fin were manually digitized for

each trial (Figure 3.2(B)). The fin height profile, h(x), was digitized for each indi-
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vidual fish (Figure 3.6) for use in the computational fluid model, below; fish were

lightly anesthetized in buffered MS222 (Tricaine-S, Western Chemical, Inc., 0.2g/L)

for photography.

These data were post-processed using a custom MATLAB script to compute the

rostrocaudal nodal shift, wavelength, frequency, and amplitude of angular deflection

of the two waves. For each trial, amplitude of angular deflection was fitted for each

wave assuming it remains constant for all rays along each half of the fin.

A B

Figure 3.2: Experimental apparatus. (A) Steady state flow (0-12 cm/s) direction is
shown. The fish keeps itself stationary relative to the PVC tube and kinematics of
the ribbon-fin are recorded from below through an angled mirror. (B) One annotated
frame recorded from the experiment is shown. Both ends of the fin and nodal point
are shown in red. All peaks and troughs of head and tail waves are shown with green
and orange dots, respectively.

3.2.3 Amplitude of angular deflection

In a 2D snapshot of ribbon-fin captured from bottom view, digitized peaks and

troughs correspond to the fin rays that are oscillating with the amplitude of angular
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deflection at that instant (orange and green circles in Figure 3.2 (B)). Using all

digitized peaks and troughs in 100 video frames, an envelope curve was calculated for

each wave. In Figure 3.6, envelopes for tail and head waves of a representative fish

are shown in orange and green respectively. At each tested flow speed, the amplitude

of angular deflections for all fin rays along the tail and head waves, namely θt and θh,

were calculated by minimizing a sum of squared differences between the 2D projection

of fin rays and the envelopes of digitized data from fin motion.

3.3 Results

3.3.1 Nodal point shift

Using high-speed videography at 100 frames per second, the kinematics of the

ribbon fin of five fish were digitized during station keeping (Figure 3.2 and Figure 3.6).

Individual fish were placed in the test section of the flow tunnel. When we varied

the steady-state flow speed, the fish typically remained stationary relative to a refuge

mounted in the flow tunnel. A single trial consisted of a fish remaining stationary

in the refuge by swimming forward (into the flow) at the flow speed. For each trial

and flow speed, we analyzed one-second intervals (100 video frames) while the fish

maintained position. Trials were conducted at 9 flow speeds (flow moving from head

to tail in all cases) between 0 and 12 cm/s in increments of 1.5 cm/s. The order

of these nine trials was pseudo-randomized, and three sets (replicates) of trials were
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collected for each individual, totaling 27 experiments per fish. The masses of the

individuals averaged 2.80 ± 0.72 g. The fin and body lengths were 7.36 ± 0.57

cm and 11.59 ± 0.71 cm respectively. As shown in Figure 3.3(A), the ribbon fin

typically organized itself into two inward-counter-propagating waves. In four trials at

the highest speed tested (12 cm/s) the ribbon fin had transitioned into a single wave

traveling from head-to-tail.
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Figure 3.3: Eigenmannia virescens partitions its fin into two inward counter-
propagating waves that produce antagonistic thrust forces. (A) Both ends of the
fin and the nodal point (red cross), all peaks and troughs of the head wave (green cir-
cles), and all peaks and troughs of the tail wave (orange circles) were tracked during
station keeping at different swimming speeds. The nodal position at t = 0 was taken
as the reference for rostro-caudal position. Nodal point shift, ∆L, from 0 cm/s flow
speed (no ambient flow) to 4.5 cm/s flow speed of a representative data set is shown
in (A). (B) The nodal point shifts caudally as a function of flow speed approximately
linearly. At each tested flow speed, the average over all replicates of data is shown
with a filled circle. Shaded regions indicate the full range of nodal point shifts for all
trials and all fish.

We found that the nodal point moved toward the tail as a function of increased

head-on flow speed (Figure 3.3(B)). The nodal point shift, ∆L = Lflow − Lhov, was
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measured for each trial; here, Lhov corresponds to the nodal point position during

hovering (U = 0) and Lflow corresponds to the test condition (U > 0). Other kine-

matic parameters varied less substantially with flow speed (Figure 3.4). The nodal

point shift of one replicate from one fish was an outlier quantitatively and therefore

was removed from statistical analyses (see section 3.3.4 and Figure 3.7). All other

replicates from all fish were quantitatively similar within and across individuals.

3.3.2 Other wave parameters varied minimally with

flow speed

For each trial, wavelengths of the tail and head waves, λt and λh, were computed

by averaging the rostro-caudal distances between all adjacent pairs of peaks and

troughs in each wave, over one hundred video frames; see Figure 3.4 (A). The tail and

head wavelengths varied minimally as a function of flow speed, trending downward

and upward slightly for tail and head waves respectively at the highest swimming

speeds. Similarly, the maximum angular deflection of both waves varied minimally

as a function of steady state flow speed; see Figure 3.4 (B). The temporal frequency

of tail and head waves (fT and fH) was calculated for all trials. For the 4 trials at

U = 12 cm/s there was only one single traveling wave from head to tail. Temporal

frequencies averaged over all trials as a function of steady state swimming speeds are

shown in Figure 3.4 (C). Using the data shown in Figure 3.4 (A) and (C), wave speed
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Figure 3.4: Ribbon-fin kinematics as a function of steady-state flow speed. At each
tested flow speed, the average over all replicates of data is shown with a filled circle.
Shaded regions indicate the full range of a given kinematic parameter for all trials
and all fish. (A) Wavelength of the tail (red) and head waves (blue) remain nearly
constant across flow speeds. (B) The angular amplitude of the tail wave (red), and
head wave (blue) also remain nearly consistent across flow speeds, although there is
a small trend, particularly for the tail wave. (C) Similar to wavelength and angular
amplitude, the temporal frequency of the tail wave and head wave also remains nearly
constant, particularly for lower swimming speeds. (D) Wave speed (V = λf) of the
tail (red) and head (blue) waves are roughly equal at lower swimming speeds.
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(V = λf) of the tail and head waves are shown in Figure 3.4 (D). At lower swimming

speeds, where we believe the counter-propagating waves strategy is the dominant

mechanism for control, the wave speeds of the two waves (product of wavelength and

temporal frequency) are very similar. Note that despite differences in frequency and

wavelength, these differences result in roughly equal wave speed in the two waves, i.e.

the two waves travel at approximately the same speed during slow swimming (i.e. near

hovering). The difference becomes more significant at higher swimming speeds. While

beyond our present scope, this deviation could possibly be explained by the transition

from counter-propagating waves strategy to single traveling wave strategy. In other

words although nodal shift serves as the dominant strategy for modulating the thrust

force at low speed swimming, the role of other kinematics such as frequency and

wavelength may become important at higher swimming speeds. Lastly the tail wave

becomes very short (shorter than one complete wavelength) at the highest swimming

speeds tested. As a result there may be subtle artifacts associated with estimating

the tail wavelength in the digitization process.

In Figure 3.4 the shaded regions depict the entire range of variation across all

trials and all individuals. While there was moderate variability across individuals,

each individual was extremely consistent. At each tested flow speed, the standard

deviation of the angular deflection for each of the five individual fish was between

0.1 to 7.2 deg for the tail wave (θt), and 0.1 to 4.7 deg for the head wave (θh).

Similarly, the standard deviation of the wavelength for each of the five individual fish
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was between 0.1 to 0.26 cm for the tail wave (λt), and 0.1 to 0.3 cm for the head wave

(λh). The standard deviation of frequency for each of five individual fish was between

0.1 to 2.3 Hz for the tail wave (ft), and 0.1 to 1.6 Hz for the head wave (ft). The

standard deviation of wave speed for each of five individual fish was between 0.02 to

4.85 cm/s for the tail wave (Vt), and 0.01 to 1.84 cm/s for the head wave (Vh).

−1 0 1 2 3 4 5
0

2

4

6

8

10

12

Figure 3.5: Histogram of temporal frequency difference between tail and head waves.
Blue and red bins correspond to trials where the tail wave has a higher and lower
temporal frequencies respectively.

An unexpected and interesting finding was that the two distinct waves often os-

cillated at different frequencies, causing the two distinct waves to roll in and out of

phase with one another at the nodal point. The temporal frequency difference be-

tween tail and head waves (fT −fH) was calculated for all trials except for the 4 trials
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at U = 12 cm/s for which there was only one single traveling wave. Trials from the

outlier replicate described above were excluded from the analysis. In 84.4% of trials

(shown in blue) the tail wave was oscillating at a higher frequency than the head

wave. While beyond the scope of the current study, this finding might be of interest

in studying the central pattern generators (CPG), the neuronal circuits that produce

multiple oscillatory patterns of muscle activity and rhythmic movements.

3.3.3 Ribbon-fin tapers at both ends
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Figure 3.6: 2D bottom view: Ribbon-fin is tapered at both ends. The fin height profile
was digitized for each individual fish. The fin height profile for a representative fish
is shown in blue. Envelope of all digitized peaks and troughs is shown in orange (tail
wave) and green (head wave). 2D visualization of the fin with fitted θt and θh is
shown in black.

The height of the ribbon-fin is not constant along the body, and the fin is tapered

at both ends. For use in a computational fluid model, and calculation of amplitude
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of angular deflection of fin rays from the 2D motion of the ribbon-fin (fin motion was

captured from the bottom view as explained in methods), the fin height profile, h(x),

was digitized for each individual fish. Fish were briefly anesthetized and positioned

to capture a lateral image. The fin height profile of a representative trial is shown in

Figure 3.6. The blue curve depicts h(x) and −h(x) of an individual fish. Envelope of

all digitized peaks and troughs is shown in orange (tail wave) and green (head wave)

during steady state swimming at U = 3 cm/s.

3.3.4 Outlier replicate in biological data

0 2 4 6 8 10 12

0

1

2

3

4

5

Figure 3.7: One replicate of data was removed from the statistics: Measured nodal
shift for the outlier replicate is shown in purple.

As explained in 3.3.1, the kinematics of the ribbon-fin of five fish were digitized in

this study and at each tested flow speed, three replicates of data were collected. The
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nodal shift of the third replicate collected for Fish 3 followed the qualitative trends

of other replicates, but was an outlier quantitatively. Measured nodal shift of this

replicate is shown with a different color (purple) in Figure 3.7.

3.4 Discussion

Counter-propagating waves modulate fore-aft thrust for hovering: During station

keeping, the net forces over the body include the antagonistic thrust forces generated

by the head and tail waves, as well as the drag force over the body and pectoral fins.

While nonzero net force is necessary for transient movement and unsteady swimming,

net forces over the fish body must sum to zero during station keeping.

Eigenmannia modulates net thrust, generated by the two waves, mainly by moving

the nodal point. When there is no ambient flow, the nodal point remains near the

middle of the fin. If the ribbon fin were not tapered at its ends, and kinematic

parameters of the two counter-propagating waves were identical, then in theory the

nodal point would be exactly in the middle of the fin. For relatively slow flow speeds—

under 12 cm / s in this study—the tail wave travels against the flow while the head

wave travels along with, although faster than, the flow. Moreover, the nodal point

moves caudally as the steady state swimming speed increases during upstream station

keeping. This produces two competing effects in the amount of force generated by

each wave: a change of length (and thus area) of each wave, and a change in the
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relative velocity between the waves and the ambient flow. Although the tail wave

(Ltail) shortens, the relative velocity between the tail wave speed (Vt = λtft) and

flow speed (U) increases (Vt − (−U) = U + Vt). By contrast, although the head

wave (Lhead) lengthens, the relative velocity between the head wave speed (Vh =

λhfh) and flow speed decreases (−Vh − (−U) = U − Vh). As a result of these two

competing effects—namely decrease/increase in fin length and increase/decrease in

relative velocity between the ribbon-fin wave speeds and the flow speed—antagonistic

forces generated by the two waves balance each other during station keeping.
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Chapter 4

Task-level Dynamical Model and

Bio-inspired Robotic Fin

4.1 Introduction

Glass knifefish Eigenmannia virescens hovers in place with extraordinary preci-

sion. An undulating ribbon-fin runs along the body, enabling knifefish to rapidly al-

ternate between forward and backward swimming without changing body orientation.

Knifefish routinely partition the ribbon-fin into two counter-propagating waves [7,59],

recruiting the frontal portion of the fin to generate forward thrust (a wave traveling

from head-to-tail) with the rear section (tail-to-head wave) generating opposing forces.

In stationary hovering, these opposing forces cancel each other. These waves meet

at the “nodal point”. Observation from biological experiments in chapter 3 revealed
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that glass knifefish modulates the net fore–aft force, primarily, by moving the nodal

point.

To better understand the biomechanics of the ribbon-fin and the role of mutu-

ally opposing forces during locomotion, we developed a task-level mechanics-based

model for counter-propagating waves and a lumped plant model for station keeping

in Eigenmannia virescens. To validate our model and test our hypothesis we also

used a biomimetic knifefish robot to measure the forces generated by the fin.

Task-level mechanics-based model and force measurements from experiments with

biomimetic robot revealed that the net fore–aft thrust force varies linearly as a func-

tion of nodal point position, in contrast to the seemingly simpler strategy of single

traveling wave in which the generated thrust force exhibits a nonlinear profile as

function of temporal frequency or maximum angular deflection of the single traveling

wave [7, 24]. Simulations validated by experimental results with biomimetic robot

showed that the use of counter-propagating waves significantly improves the fore–

aft maneuverability (by decreasing the control effort), and concurrently enhances

the passive stability (stabilization without active feedback control) by providing a

damping-like force to reject the perturbations, thus simplifies control.
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4.2 Task-level Mechanics-based Template

Model for Ribbon-fin

We approximated the fin kinematics using two sinusoidal traveling waves, as is

standard for unidirectional waves [21,54]. The angle, θ, between each fin ray and the

sagittal plane oscillates, and the relative phase changes along the rostro-caudal axis

producing a traveling wave, modeled as a sinusoid:

θh(x, t) = θh,max sin

(
2π
( x
λh

+ fht
))

,

θt(x, t) = θt,max sin

(
2π
( x
λt
− ftt

))
.

(4.1)

Subscripts h and t stand for head and tail waves respectively, x denotes the coordinate

along the rostro-caudal axis, λh and λt are the head and tail wavelengths, and fh and

ft are the head and tail frequencies of fin oscillation. The kinematic parameters are

depicted in Figure 3.1 (C).

The computational model used in this study is based on a fluid drag model. This

model has been used in numerous numerical analyses [13, 53, 60], but this is the first

time this model has been applied to counter-propagating waves. The model applies

to flow regimes with high Reynolds number and neglects the fluid interaction. Under

the conditions of the experiment, the Reynolds number (Re = UL
ν

) can be estimated

in the range of 103 to 104 (νwater = 10−6m2/s, Lfin ≈ 0.1 m, for U ≈ 1-10 cm/s).
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Drag force applied to the propulsive infinitesimal element is given by:

~dF =
1

2
CDρdA[~u · ~ns]2 ~ns (4.2)

where CD is the coefficient of the drag depending on the shape (CD ≈ 2.5 in this

study, evaluated from robotic experiments), ρ is the density of the fluid, dA is the

area of the infinitesimal element, and ~ns is the unit normal to the surface at the

centroid of the infinitesimal element. See section 4.2.1 and 4.2.2 for the details of how

this model is used to estimate the nodal point gain (Equation (4.17)) and damping

constant (Equation (4.18)) for Eigenmannia, and leads to the plant model shown in

Equation (4.15).

4.2.1 Computational simulation

Here, we describe a computational model for computing the net force produced

by a single traveling wave. During the derivation below, we suppress the subscripts t

and h, which indicate tail and head waves, respectively, until we compute the overall

forces Ft and Fh in Equation (4.12), below.

As discussed above, drag force applied to the propulsive infinitesimal element is

given by:

~dF =
1

2
CDρdA[~u · ~ns]2 ~ns (4.3)

where CD is the coefficient of the drag, ρ is the density of the fluid, dA is the area of

the infinitesimal element, and ~ns is the unit normal to the surface at the centroid of
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the infinitesimal element (see below). The function ~u(x, r) is the relative velocity of

the centroid of the element on the fin and steady-state flow speed:

~u(x, r) = ufin(x, r)± U~i. (4.4)

The sign of the last term is negative for the rostral wave and positive for the caudal

wave, and

ufin(x, r) = r
∂θ

∂t

(
sin θ~j + cos θ~k

)
(4.5)

where r is the radial distance from the base of the fin ray to the centroid of the

infinitesimal element, x is the rostro-caudal coordinate of the element, and θ is angle

of the fin for the two waves, as defined in Equation (4.1).

The two-dimensional surface of a rectangular ribbon-fin can be parameterized as

a set of points in 3D:

~H = x~i− r cos θ~j + r sin θ~k. (4.6)

Here, x ∈ [Lmin, Lmax], is defined over the half-wave of interest, and the range of

r ∈ [0, h(x)] depends on the fin profile function, h(x) (see section 3.3.3).

Geometric properties of the surface such as the unit normal vector, ~ns, of the

surface at each point can be derived from the metric tensor [61]:

~ns =
1√

1 + r2θ2
x

[−rθx~i + sin θ~j + cos θ~k] (4.7)

where θx is ∂θ
∂x

.

Note that the normal, ~ns, is defined relative to one side of the fin, but that at each

local peak or trough of the fin, there is a switch in which side of the fin is traveling
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“upstream”; this switch depends on both the sign of θx and the wave direction which

is different for the head and tail waves. Thus, the normal vector for each infinitesimal

element on the surface of the fin is either ~n = ± ~ns. Using the normal vector for each

differential element, we have

~u · ~n =
(λf ± U)√

1 + r2θ2
x

(r|θx|) (4.8)

=
(V ± U)√
1 + r2θ2

x

(r|θx|) (4.9)

where V − U correspond to the head wave and V + U correspond to the tail wave.

Instantaneous net force is computed by integrating ~dF over the half-wave of interest;

the two half-wave forces can then be added to compute the total force on the fin.

The time averaged force over one period of fin undulation is zero for y and z (lateral)

components; this can be seen by the periodic y and z components in the unit normal

vector shown in Equation (4.7). The time averaged thrust force generated by each

half wave in the x direction can be computed by

|Fx| =
1

T

∫ T

0

∫ Lmax

Lmin

∫ h(x)

0

( ~dF · ~nx) dr dx dt

=
1

T

ρCD
2

(
2πθm
λ

)3

(V ± U)2

∫ T

0

∫ Lmax

Lmin

∫ h(x)

0

r3|cos 2π(x
λ
∓ ft)|3

(1 + r2θ2
x)

3/2
dr dx dt,

(4.10)

where ~nx is the unit vector in the x direction, V − U correspond to the head wave

and V + U correspond to the tail wave. In the analysis of forces generated by the

fin, we use the kinematic parameters measured for each individual trial (frequency,

wavelength, amplitude of angular deflection) which are assumed to remain constant
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over one period of undulation. The fin height function for each fish, h(x), is obtained

via digitization of the fin profile (see section 3.3.3). The net thrust force, generated

by the ribbon fin, is the summation of thrust forces generated by two half waves.

4.2.2 A plant model for station keeping in Eigen-

mannia

In addition to the detailed force analysis for each biological trial, in which the

digitized height profile is taken into account, here we further approximate the fin in

order to capture the essential structure of counter-propagating wave mechanics in a

lumped-parameter model. We assume the fin has a rectangular profile, i.e. the height

of fin is the same along the length of fin (note that this matches the morphology of

our biomimetic robot). Since in Equation (4.10) we are averaging the force over one

period of oscillation (T = 1/f), for a fixed r, the integrand becomes independent of

variable x. So the time averaged generated thrust is F ∝ Lfin(V ± U)2 where Lfin is

the length of the fin, V is the wave speed along the fin and U is the steady state flow

speed. Net force over the body includes the thrusts generated by the two waves, and

drag force over the body:

Fnet = Ft + Fh + Fdrag (4.11)

where subscripts t and h stand for tail and head respectively. If we take Lhead =

Ltail = L/2 as the reference for the nodal shift, ∆L = 0, generated thrust by each
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wave is:

Ft = −a(L/2−∆L)(V + U)2~i

Fh = a(L/2 + ∆L)(V − U)2~i

(4.12)

where a is a constant. Simplified expression for the net thrust generated by the two

waves is:

Ft + Fh = (κ+ γU2)∆L− βU (4.13)

where κ = 2aV 2, γ = 2a and β = 2aLV . For low-speed swimming (U2 ≈ 0), the last

equation can be further simplified to:

Ft + Fh = κ∆L− βU. (4.14)

For low speed swimming the drag force over the body is also negligible (Fdrag ≈ 0).

Moreover, during steady state swimming the net force over the body has to sum to

zero, Fnet = 0. Thus antagonistic forces generated by two waves should balance each

other according to Equation (4.11) (Ft + Fh ≈ 0). The second-order lumped model

can be used as a task-level plant model of the ribbon fin for low speed refuge-tracking:

mẍ+ βẋ = u(t) (4.15)

where β is the damping constant, and u(t) is the net thrust generated by the ribbon-

fin. In the case of counter-propagating waves u(t) = κ∆L, where κ is the nodal shift

gain.
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4.2.3 Linear quadratic controller to track a refer-

ence trajectory

The second-order lumped model (Equation (4.15)) can be written in state space:

ẋ = Ax +Bu(t) (4.16)

where A = [0 1; 0 − b/m] and B = [0; 1/m], with state vector containing the position

and velocity x = [x; ẋ]. By discretizing the linear system, an optimal affine control

law exists according to Table 4.4-1 from [62].

4.3 Biologically Inspired Robotic Fin Ex-

periments

We used a biomimetic knifefish robot [24, 55] to measure forces generated by

counter-propagating waves as well as assess freely swimming control strategies in one

dimension. Mechanical design constraints limited us to a larger length scale and longer

time scale than Eigenmannia. The fin consisted of 32 individually actuated rays and

measures 32.60 cm in length and 3.37 cm in depth. Figure 4.1 shows a schematic

of the force experiments, where the robot is suspended from an air bearing platform

from above. The platform was rigidly attached to mechanical ground through a 9 N

single axis force sensor (Futek Advanced Senor Technology, Irvine, CA, USA) along
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the fore–aft axis. The robot was fixed in all other translational and rotational axes.

The working section of the flow tunnel was 80 cm long, 22 cm wide, and 28 cm deep.

In the first set of force measurements, we varied the nodal point of counter-

propagating waves along the fin from −8.15 cm to 8.15 cm in increments of 1.63

cm (0 cm indicates the middle of the fin) while the robot was suspended in still wa-

ter. Force measurements were gathered at 1000 Hz and averaged over 5 seconds after

initial transients had dissipated. In the second set of force measurements, we varied

the flow speed of the water tunnel from 0 to 10 cm/s in increments of 0.5 cm/s while

keeping the nodal point of the counter-propagating waves fixed at 0 cm (in the mid-

dle of the fin). To test sensitivity to other kinematic parameters, we repeated both

sets of force experiments with varied frequencies and angular amplitudes as shown in

Table 4.1 and 4.2.

For fore–aft trajectory tracking experiments, we removed the force sensor to allow

the robot to swim freely forwards and backwards, as shown in Figure 4.1(B). A linear

encoder provided feedback on the position of the robot along the fore–aft axis of

the water tunnel. At a cycle rate of 10 Hz, a microcontroller gathered this position

feedback, derived robot velocity, calculated the control signal based on the control

law described previously (linear quadratic controller), and sent the control signal over

a serial line to the microcontroller dedicated to control of the robot rays. Position,

time, and the control signal were logged for later analysis.
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Free motion on frictionless air bearings

Variable 
Flow Speed

Mechanical 
ground

Force sensor

A

B

Figure 4.1: Experimental setup for the knifefish robot. (A) The knifefish robot
was suspended into a water tunnel from a frictionless air-bearing system above. To
measure force, the platform was rigidly attached to mechanical ground through a force
sensor. Force measurements were collected for varying fin kinematics and flow speeds.
(B) For the virtual refuge tracking experiments, the robot was allowed to move freely
along the longitudinal axis. A linear encoder provided positional feedback of the
robot. Experiments included controlling either fin oscillation frequency or nodal shift
of counter-propagating waves to follow sinusoidal trajectories of varying frequency
and amplitude.
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4.4 Results

4.4.1 Mutually opposing forces during locomotion

can eliminate the tradeoff between maneu-

verability and stability

The effect of nodal point position on the net thrust force generated by two inward-

counter-propagating waves was investigated using a biomimetic robot (Figure 3.1(B)

and Figure 4.1) and a computational model. In the first set of experiments with

the biomimetic robot, the nodal point position was varied while other properties of

the traveling waves were held constant (see section 4.4.2). Thrust forces generated

by the two traveling waves were also predicted numerically. The measured forces as

a function of nodal point shift closely match simulated forces from our model; see

Figure 4.2(A). The thrust force varied linearly as a function of nodal point shift. We

define the nodal point shift gain, κ, as the ratio of the measured net force to the nodal

point shift:

κ =
FThrust

∆L
. (4.17)

This parameter indicates the change in force given a unit change in nodal point

position, and is used as a metric for fore-aft maneuverability of counter-propagating

waves. Note that the nodal shift gain, κ, increases as a function of frequency (f)

and angular amplitude of counter-propagating waves (θ) (Figure 4.6). κ increases
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approximately quadratically with the frequency (Figure 4.2(B)).

We also discovered that passive damping emerges with counter-propagating waves.

Specifically, a damping force opposing the direction of velocity perturbations increases

linearly as a function of the speed of the animal relative to the flow. To measure this

drag-like term in the robotic setup, the nodal point was held at the center of the

robotic fin (∆L = 0), making the lengths of the fin dedicated to the tail wave (Ltail)

identical to the length of fin dedicated to the head wave (Lhead) (see section 4.7).

The measured forces produced by the biomimetic robot vary linearly as a function

of steady-state ambient flow and closely match simulated forces from our model; see

Figure 4.2(C). Here we define the damping constant, β, as the ratio of the measured

damping force, F , to the flow speed, U :

β = −FDamping

U
. (4.18)

Larger values of the damping constant correspond to greater stability, in the sense that

the time constant associated with recovery from perturbations is the ratio of inertia

to damping [26,46,63]. Note that the damping constant increases with frequency (f)

and angular amplitude (θ) of counter-propagating waves (Figure 4.7). In particular,

the damping constant increases linearly with frequency (Figure 4.2(D)).

This damping force arises from body fore-aft velocity (longitudinal perturbations)

when there are two inward-counter-propagating waves along the ribbon fin. Whole

body fore-aft velocity causes asymmetries in net velocities of the counter-propagating

waves (V ) relative to the fluid (U). Depending on the direction of perturbation
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the relative velocity for one half wave becomes V − U while for the other becomes

V + U . The resulting forces are proportional to the square of the relative velocities

(see section 4.2.1). The net effect of these forces, which are individually quadratic in

the relative velocity, is a net damping force that is linear in body fore-aft velocity.

This damping force tends to reject velocity perturbations, as it opposes the direction

of motion. Indeed, force measurements in a robotic experiment (explained above)

reveal that such damping forces exist and vary linearly as a function of translational

body velocities. Deceleration due to this passive linear damping force is proportional

to the (perturbed) body velocity:

ẍ ∝ −βẋ. (4.19)

As a result, counter-propagating waves passively act to reject perturbations, resulting

in an exponential decay of the body velocity.

As described above, the net thrust generated by two inward counter-propagating

waves varies linearly as a function of nodal point shift, and the ability to change

directions rapidly is captured by the nodal shift gain, κ (Figure 4.3(A)). By con-

trast, consider the problem of maneuvering using a single traveling wave that can

reverse direction, as parameterized by the frequency, f . Here, negative frequency

corresponds to a reversal of the traveling wave, thus resulting in negative thrust. As

previously shown using the same biomimetic robot [24], our model indicates that force

is nonlinear as a function of frequency, and is insensitive to changes in frequency near

f = 0 (Figure 4.3(B)). Thus, using only a single traveling wave, the nonlinear relation
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Figure 4.2: Biomimetic robot experiments and simulations. (A) Measured forces
varied linearly as a function of nodal shift (∆L). The slope is termed the nodal
shift gain. (B) The counter-propagating waves were driven at four frequencies (see
Table 4.1 (Set 1) for parameters). The nodal shift gain varied nonlinearly as a function
of frequency. (C) Forces acting on the robotic fin varied approximately linearly as a
function of steady-state flow speed when the nodal point was held in the middle of
the fin (∆L = 0); the negative of the slope was termed the damping constant. (D)
The damping constant varied linearly as a function of frequency (see Table 4.2 (Set 1)
for parameters).

between force and the traveling wave speed (parameterized by f) creates an effect

known in control systems theory as a “dead zone” [64]. In other words, modulating
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the force around zero requires large changes in f for small changes in desired force,

and hovering control requires rapid full fin reversal. Thus, modulating the thrust force

by moving the nodal point might provide Eigenmannia with greater maneuverability

during rapid changes in the direction of swimming when compared to changing the

direction of a single traveling wave, as depicted in Figure 4.2(A-B).
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Figure 4.3: (A-B) Comparison of thrust generation by varying only one kinematic
parameter predicted by the computational model. (A) Net thrust force is a linear
function of nodal position. Nodal point is in the middle of the fin when ∆L = 0. (B)
Net thrust force by a single traveling wave along the fin is nonlinear with zero slope
at f = 0, namely Force ∝ f |f |. Negative frequency means wave direction is reversed.
Note that near zero net thrust, large changes in frequency are required to generate
small changes in force, since the graph has a slope of 0 at f = 0. The fin does not
move when f = 0.

To test the ease of controlling rapid changes in direction in the biomimetic robot,

we developed a simple lumped-parameter task-level dynamic model, or “plant”, for
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station keeping (Equation (4.15)) in section 4.2.2):

mẍ+ βẋ = F (4.20)

where m is the robot’s mass, β is the damping constant, and F = u(t) is the net

thrust force generated by the ribbon fin. The longitudinal position, velocity, and

acceleration are denoted by x, ẋ, and ẍ, respectively. We designed a linear quadratic

tracking controller [62] to track a reference trajectory along the longitudinal axis.

This is similar to the natural tracking behavior of electric knifefish [11, 16, 37]. Con-

trol inputs to the robot were chosen to be either nodal point shift (∆L) for the

counter-propagating wave strategy of thrust modulation, or frequency (f) for the

unidirectional traveling wave strategy. For each desired amplitude (0.5 cm to 7.0 cm)

and control strategy (single traveling wave versus counter-propagating waves), three

replicate biomimetic robotic tracking experiments were conducted. Our hypothesis

is that counter-propagating waves afford more maneuverability for small movements

than a single traveling wave. If correct, the ratio of the control effort for using a sin-

gle traveling wave compared to the control effort for using counter-propagating waves

would sharply increase as the desired amplitude of the reference trajectory goes to

zero.

Indeed, using both control policies (Figure 4.4(A-I, B-I)), the robot tracked the

desired trajectory well (Figure 4.4(A-II, B-II)), but the ratio of the root-mean-square

(RMS) of the normalized control signals, ( f
fmax

)rms : ( ∆L
∆Lmax

)rms, increased dramat-

ically as the amplitude of movement decreased (Figure 4.5). That is, the nodal
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Figure 4.4: Comparison of tracking performance using two different control strategies.
(A-I, B-I) The control signals (blue, red, orange, and green) for counter-propagating
waves (∆L) and a single traveling wave (f) are shown for four different reference
trajectory amplitudes (A = 1 cm, 2 cm, 5 cm, and 7 cm, respectively). (A-II, B-
II) The biomimetic robot positions (same color scheme) closely track the reference
trajectories (black).
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Table 4.1: Fin kinematic parameters for force measurement in the first robotic
experiment.

Experimental set f (Hz) θ (deg) # waves (Lfin / λ)

Set 1 1, 2, 3, 4 30 4

Set 2 3 20, 25, 30 4

point controller, compared to the unidirectional wave controller, renders the system

increasingly more maneuverable as movement amplitude decreases, confirming our

hypothesis (Figure 4.5). Using the validated computational model, the nodal point

shift gain and damping constant corresponding to measured kinematics of Eigenman-

nia were also computed. Predicted control effort ratios for Eigenmannia, shown in

Figure 4.5, reveal the same trend observed in biomimetic robot experiments.

4.4.2 Nodal shift gain in robot and Eigenmannia

Kinematic parameters used for the robotic experiment are shown in Table 4.1.

In each trial, the net longitudinal force was measured as a function of nodal shift.

Nodal position was varied from -8.15 cm to 8.15 cm, measured from the middle point

along the fin, with 1.63 cm increments. 1.63 cm was equivalent to 5 percent of the

robotic fin length. In Figure 4.6 (A-B), the measured forces are shown as a function

of nodal shift. Results reveal that the thrust varies linearly as a function of nodal

shift. Figure 4.6 (A-B) also reveal that the nodal shift gain increases as the temporal
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Figure 4.5: The ratio of the root-mean-square (RMS) of the normalized commanded
control signals (( f

fmax
)rms : (

∆L
∆Lmax

)rms) depends on the reference trajectory amplitude.
The model predicts that this RMS ratio tends to infinity as the reference amplitude,
A, goes to zero, strongly favoring counter-propagating waves when the goal is stable
hovering (A ≈ 0). Predicted and measured ratios for the robot closely match each
other. Predicted ratios for Eigenmannia are based on traveling wave kinematics
obtained during hovering (U = 0 cm/s). Uncertainty bars represent variability in
kinematics of different subjects.
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frequencies of counter-propagating waves and the amplitude of angular deflection of

fin rays increase respectively. Nodal shift gains, corresponding to the results shown in

Figure 4.6(A), as a function of temporal frequency (f) are depicted in Figure 4.6 (C).

Nodal shift gain, κ, is increasing roughly quadratically as a function of frequency, f .

Finally, using the kinematics measured corresponding to hovering in biological

experiments, nodal shift gain was estimated for Eigenmannia. In each set of simula-

tions, the kinematic and morphological parameters of the model were set match the

kinematics measured with no ambient flow trial (U = 0) in the biological experiments.

Nodal position was varied from −10 mm to 10 mm. Simulation results for three repli-

cates of a representative fish are depicted in Figure 4.6 (D). Forces generated by the

head wave, tail wave, and the net thrust forces are shown for three replicates. Each

color represents the result for one replicate (set) of data. The results reveal that the

force generated by the two waves increases linearly as a function of nodal position.

Simulation results for four other individual fish are similar to the results shown in

Figure 4.6 (D). The nodal shift gain, κ, was 0.0209 N/m (std = 0.0084 N/m) over all

replicates of data.
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Figure 4.6: Force measurements from the robotic setup (nodal point shift gain):
(A) For a constant angular amplitude (θ = 30◦), forces generated by robotic fin is
shown for different frequencies. (B) For a constant frequency (f = 3 (Hz)), forces
generated by robotic fin is shown for different angular amplitudes. (C) Nodal shift
gain computed from a linear fit to the results shown in panel (A) are depicted as a
function of frequency. κ varies nonlinearly as a function of f . Computational results:
(D) Measured kinematics of Fish 4 from three replicates of the data during hovering
(no ambient flow) are used as inputs for the computational model. Computed forces
as a function of nodal shift (∆L) are shown. Three color (red, green, and blue)
correspond to three replicates (sets) of data. Forces generated by the head wave are
shown with (+), forces generated by the tail wave are shown with (×) and the net
force produced by the two waves are shown with circles.
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Table 4.2: Fin kinematic parameters for force measurement in the second robotic
experiment.

Experimental set f (Hz) θ (deg) # waves (Lfin / λ)

Set 1 1, 2, 3, 4 20 4

Set 2 3 20, 25, 30 4

4.4.3 Damping constant in robot and Eigenman-

nia

Kinematic parameters used for the robotic experiment and simulation were the

same as those shown in Table 4.1. The nodal point was held at the center of the robotic

fin (∆L = 0), thus the lengths of the two counter-propagating waves were equal.

Ambient flow speed was varied from 0 to 10 cm/s with 0.5 cm/s increments. Only

the robotic fin was submerged in this experiment. The measured forces as a function

of steady-state ambient flow are shown in Figure 4.7 (A-B). From Figure 4.7 (A-B) it

can also be observed that the damping constant increases as the temporal frequencies

of counter-propagating waves and the amplitude of angular deflection of fin rays

increase. Damping constants, corresponding to the results shown in Figure 4.7 (A),

as a function of temporal frequency (f) are depicted in Figure 4.7 (C). Damping

constant, β, is increasing linearly as a function of temporal frequency, f .

Finally, the damping constant was calculated for the Eigenmannia. Similar to the

simulations explained in the previous section, in each set of simulations, kinematic
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parameters of the model were set to the kinematics captured during zero flow speed

(U = 0) in the biological experiment. The nodal position remained fixed at ∆L = 0.

The steady-state flow speed was varied from −5 cm/s to 5 cm/s. Predicted forces

generated by each wave and the net force are shown in Figure 4.7 (D), and as shown,

the damping forces increase linearly as a function of nodal position. Simulation results

for four other individual fish are similar to the results shown in Figure 4.7 (D). The

damping constant, β, was 0.0053 N.s/m (std = 0.0019 N.s/m) over all replicates.
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Figure 4.7: Force measurements from the robotic setup (damping constant): (A)
For a constant angular amplitude (θ = 20◦), forces acting on the robotic fin are
shown for different frequencies. (B) For a constant frequency (f = 3 (Hz)), forces
acting on the robotic fin is shown for different angular amplitudes. (C) Damping
constant computed from a linear fit to the results shown in panel (A) are depicted as
a function of frequency. β varies linearly as a function of f . Computational results:
(D) Measured kinematics of Fish 4 from three replicates of the data during hovering
(no ambient flow) are used as inputs for the computational model. Computed forces
over the ribbon fin are shown as a function of steady state flow speed (U). Three color
(red, green and blue) correspond to three replicates (sets) of data. Forces generated
by the head wave are shown with (+), forces generated by the tail wave are shown
with (×) and the net force produced by the two waves are shown with circles.
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Discussion

A key insight of the Wright brothers was that an aircraft must be both sufficiently

stable to maintain its flight path and simultaneously maneuverable enough to permit

its control [64, Ch. 1]. How animals manage this seemingly inescapable tradeoff [65,66]

is an open question, especially since many swimming and flying animals appear to

use locomotor strategies that are stable and yet facilitate the control of extraordinary

maneuvers [26,38]. One possibility is that highly maneuverable animals are passively

unstable, and stability is achieved solely via active feedback control using the nervous

system [67].

By adopting a locomotor strategy that relies on the generation of antagonistic

forces rather than a seemingly simpler strategy of moving the fin in either one direction

or the other, the glass knifefish achieves a dramatic improvement in maneuverability,

especially for small movements. This improvement in maneuverability is concurrent
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with, as shown in Chapter 4, a significant increase in damping that enhances passive

stability, although perhaps not without some energetic cost (see section 5.1). The fish

could, in principle, actively stabilize itself using feedback control of either the nodal

point (counter-propagating waves) or the frequency (single traveling wave). However,

counter-propagating waves offer two advantages: they passively reject perturbations

(increased passive stability) while also requiring substantially lower control effort

(increased maneuverability). Therefore, antagonistic forces eliminate the trade-off

between passive stability and maneuverability.

This strategy, which was discovered in measurements of the weakly electric fish

Eigenmannia and tested using a biomimetic robot and a computational task-level

model, may confer the same benefit in other animals that use antagonistic forces for

locomotor control. Small terrestrial animals with a sprawled biomechanical posture

appear to generate large lateral forces during forward running which have been postu-

lated to enhance stability and maneuverability [35], although it remains unclear how

such forces scale with body size. A mathematical model of high frequency flapping

flight suggests that the antagonistic forces generated by the opposing movements of

wings may similarly increase both maneuverability and stability [26]. It is interest-

ing to note that high-frequency flapping fliers necessarily generate mutually opposing

forces—they cannot readily turn these forces off during hovering. Eigenmannia, by

contrast, are ideal for studying the role of mutually opposing forces because in these

fish such forces result from a neural strategy not a biomechanical constraint.
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Mounting evidence suggests that the passive design of animal morphology facil-

itates control, thereby reducing the number of parameters that must be managed

by the nervous system [68, 69]. Here we describe a dynamical system that facili-

tates control by incorporating a similar design principle. Counter-propagating waves,

which paradoxically appear to be a more complex behavioral strategy than the gener-

ation of simpler uni-directional waves, nevertheless simplify locomotor control. First,

this strategy enhances stability and maneuverability as we have shown. Second, the

modulation of the speed and direction of a single traveling wave requires the simulta-

neous (and instantaneous) coordination across a distributed network of spinal circuits

whereas the modulation of the nodal point of two ongoing counter-propagating waves

permits control via the coordination of a small number of these segmental circuits.

How this motor coordination is achieved in the animal remains an open and interest-

ing question [70]. Nevertheless, these data suggest that the dynamic design of animal

morphology and their attendant neural systems are tuned [11,35,71,72] for simplified

task-level control.
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5.1 Energetic Cost

5.1.1 Mechanical energy during tracking and hov-

ering

In the limit, as the tracking amplitude goes to zero (and assuming no distur-

bances), the mechanical work done by a single traveling wave is zero, but even

for perfect hovering, counter-propagating waves are continuously doing work on the

surrounding fluid. It is natural to ask whether it remains costly to use counter-

propagating waves during tracking behavior.

To examine this question, we estimated the worst case mechanical energy required

for a single traveling wave for the largest amplitude tracking motion compared to the

energy required for simple hovering using counter-propagating waves as a conservative

measure of how much more it costs the animal to use this strategy.

The instantaneous power from each infinitesimal element is given by dP = − ~dF·~u,

where ~u is the instantaneous velocity of the element relative to the fluid and − ~dF is

the force applied by each infinitesimal element of the fin to the fluid. Total power

was estimated by integrating the dP over the fin. Mechanical work over each cycle

was then estimated by integrating P (t) over one period (5 s) of the tracking task

(Figure 4.4).
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5.1.2 Mechanical energy cost of counter-propagating

waves

We estimated mechanical cost of counter-propagating waves during hovering and

compared this to the cost during high-amplitude tracking using a single traveling

wave.

For the fish, hovering with counter-propagating waves requires 1.1 mJ of mechan-

ical work in 5 seconds while high-amplitude tracking using a single traveling wave

requires 0.35 mJ. Likewise, for the robot, hovering with counter-propagating waves

requires 1.7 J of mechanical work in 5 seconds while high-amplitude tracking using a

single traveling wave requires 0.4 J. That is, for our setting, the mechanical energetic

cost of counter-propagating waves is at least three times that of single traveling waves.

The mechanical energy required by each strategy is a factor which contributes

to metabolic cost, but we cannot conclude that the differences in metabolic cost are

commensurate to those in mechanical energy. Moreover, it is unknown whether the

metabolic expenditure for either strategy is significant with respect to the metabolic

budget.

5.2 A Few Loose Ends

• What happens to the tradeoff when counter-propagating waves are no longer

present?
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This study reveals that Eigenmannia can escape the trade-off between ma-

neuverability and stability at low swimming speed by employing the counter-

propagating waves strategy. Beyond 12 cm/s (or more precisely beyond the

swimming speed at which nodal point disappears) the drag on the fish may

provide a substantial enough opposing force to the single traveling waves thrust

so as to yield a similar passively stabilizing drag force, but without further

study this cannot be verified. It is likely that the fishs ability to rapidly in-

crease/decrease swimming speed saturates at high speed, but this is also not

known. In this case, the mutually opposing lateral forces e.g. created by the

pectoral fins, may provide the fish with enhanced turning ability, and we hope

that this study will inspire this sort of analysis in future studies.

• Relation between the ratio of the RMS of the commanded control signals and

ribbon-fin oscillatory frequency:

If the fish adopted a higher frequency (with all other parameters constant)

for each of its two inward-counter-propagating waves, the nodal shift gain (κ)

would be higher (see Figure 4.2(B)). This would further amplify the advantage

of counter-propagating waves in terms of maneuverability for low amplitude

tracking tasks, i.e. the RMS ratio curve (similar to the curve shown in Figure 4.5

but without normalizing the commanded control signals: frms:∆Lrms) would be

“higher” across all tracking amplitudes (Figure 5.1).
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Figure 5.1: The ratio of the root-mean-square (RMS) of the commanded control
signals increases at higher ribbon-fin oscillatory frequency.

Obviously, running the counter propagating waves at higher temporal frequen-

cies would require more energy consumption during hovering but provides the

fish with higher maneuverability. In other words larger nodal shift gain (κ) and

larger damping constant (β) are achieved at higher energetic costs.

• Relation between the ratio of the RMS of the commanded control signals and

ribbon-fin spatial frequency:

How control ratio may be affected by spatial wavelength, λ, of traveling waves?

It has been shown that the thrust generated by a single traveling wave varies

as a function of spatial frequency [21], and Figure 5(B) in [24]). Specifically,

the maximum generated thrust by a single traveling wave occurs at around
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L/λ = 2 to 3. We calculated how the nodal-shift gain varies as a function of

wavelength and also found that it reaches a local maximum at around L/λ = 2

to 3 (Figure 5.2). As a result, the RMS ratio of the commanded control signals

would also vary as a function of L/λ as shown in Figure 5.3.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

Figure 5.2: Nodal shift gain, κ, as a function of L/λ (L: fin length, λ: wavelength).

5.3 The Role of Mechanics in Decoding

Sensory Systems—Revisited

The mechanics of locomotion—how motor signals are transformed into movement—

dictates the control problem confronted by the nervous system [2, 4, 11, 35, 73]. The
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Figure 5.3: The ratio of the root-mean-square (RMS) of the commanded control
signals curves as a function L/λ (L: fin length, λ: wavelength).

glass knifefish provides an excellent system for examining the interplay between me-

chanics and sensing. These fish perform a behavior—refuge tracking [16]—that can be

modeled as a single degree of freedom behavior, greatly facilitating neuromechanical

control systems modeling.

Cowan and Fortune [11] developed a control-theoretic framework for making neu-

ral control predictions given two ingredients. First, one measures the closed-loop

tracking performance of the animal. Second, one uses a model of the locomotor

dynamics—together with the measured closed-loop transfer function—to predict how

the sensory information is processed by the nervous system (the neural controller).

This process turned out to be surprisingly sensitive to the assumptions about the
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locomotor dynamics. Our new analysis sheds light on this sensitivity.

5.3.1 A feedback control model of the glass knife-

fish

The glass knifefish, Eigenmannia virescens, is like an “aquatic hummingbird”: it

hovers in place with extraordinary precision, making rapid and nuanced adjustments

to its position in response to moving stimuli. How does the nervous system process

sensory information to control this behavior?

(cm)
refuge position

(cm)
�sh position

CA

B

vision

electro-
sense

neural
controller

ribbon �n &
�uid dynamics

Figure 5.4: (A) Glass knifefish Eigenmannia virescens tracking a moving shuttle. (B)
Bottom view: Glass knifefish modulating its fore-aft position by counter-propagating
waves. (C) A block diagram depicting the knifefish’s reference-tracking behavior.

It is reasonable to assume that, as the animal is swimming in the refuge, the

source of sensory feedback is the error signal : the position of the refuge relative to

the position of the fish [50]. If the fish swims forward, or the tube is shifted backward,

it creates visually and electrically identical stimuli. In this way, the fish’s motor

output—its fore-aft position—plays an equal (but opposite) role in the generation of

a sensory stimulus as does the movement of the tube itself. If we let x(t) denote the
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position of the fish, and r(t) denote the position of the refuge, we see that the nervous

system must process the difference, or error :

e(t) = r(t)− x(t). (5.1)

To complete the closed-loop diagram in Figure 5.4, this error signal is processed by

the neural controller to produce a motor command, u(t), which is in turn processed

by the locomotor mechanics (the so-called “plant”) to produce the position, x(t). In

transfer function notation, we have

E(s) = R(s)−X(s), (5.2)

U(s) = C(s)E(s), (5.3)

and

Y (s) = G(s)U(s). (5.4)

A rearrangement of these equations yields the closed-loop transfer function

Y (s)

R(s)
=

G(s)C(s)

1 +G(s)C(s)
=: H(s) (5.5)

These equations correspond to the simple closed-loop topology in Figure 5.4. It

is important to recognize what is missing from this topological model. All of the

feedback is modeled as relative to the reference. This might not be the case with

vestibular feedback, for example, which would best modeled relative to an inertial

reference frame.

65



CHAPTER 5. DISCUSSION

Using single-sine frequency response data, [11] fit a closed-loop transfer function

model of the following form:

H(s) =
0.73

0.023s2 + 0.17s+ 1
. (5.6)

where complex frequency s is measured in rad/sec. The transfer function is dimension-

less (cm/cm) because H(s) represents the frequency-dependent ratio of fish-to-shuttle

movement.

The central question from a neural control perspective is, how is the error signal

processed in order to modulate motor output? In our modeling paradigm, this is

captured by the transfer function C(s). Unfortunately, H(s), does not directly reveal

this, because there is another unknown in Equation (5.5), namely the mechanical

plant, G(s). Given the input–output response H(s), how sensitive is our prediction of

the neural controller transfer function, C(s), to different candidate structures for the

mechanical plant, G(s)? To answer this question, [11] opened the loop algebraically:

C(s) =
H(s)

(1−H(s))G(s)
(5.7)

They then posited two possible transfer functions for the locomotor dynamics. The

first was of the general form1

G1(s) =
1

bs
, (5.8)

where b is a damping coefficient. They referred to this model as the “kinematic plant

model”, because the control signal u(t) is modeled to be proportional to velocity. In

1In their original formulation, they neglected to include the factor, b; including this parameter
clarifies the model and rationalizes the units.
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the time domain, this would be written as follows:

bẋ(t) = u(t). (5.9)

Such a model would be reasonable in a context where damping forces dominate.

On the other hand, when damping is negligible (as Cowan and Fortune suggested

in their paper), one arrives at the “mechanics” transfer function

G2(s) =
1

ms2
, (5.10)

where m is the mass. Here, G2(s) represents the following differential equation

mẍ(t) = u(t). (5.11)

In this setting, u(t) is proportional to acceleration.

Surprisingly, Cowan and Fortune found these two transfer functions give categor-

ically opposite predictions regarding the transfer function of the controller. Specif-

ically, if one assumes a kinematic plant model, of the form of Equation (5.8), one

predicts that the nervous system is implementing a low-pass filter for control. This

prediction is referred to as C1(s) in Figure 5.5(B-C). On the other hand if one assumes

a mechanical plant model, Equation (5.10), one predicts that the nervous system is

implementing a high-pass filter, C2(s)!

Importantly, while it was clear from the data and analysis that the locomotor

mechanics were critical to making a good neural prediction, Cowan and Fortune did

not have a validated plant model. In other words, the transfer function models they

posited for the plant, G1(s) and G2(s), were based on physical reasoning, not data.
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5.3.2 A validated plant model for the glass knife-

fish

In these fish, fore–aft thrust force is primarily produced by undulatory motion of a

long ribbon-fin along the body. Glass knifefish routinely partition the ribbon-fin into

two counter-propagating waves: one traveling from head to tail (head wave) and one

traveling from tail to head (tail wave) [48,59]. These two waves meet each other at a

point somewhere in the middle of the fin; we term this point “nodal point”. During

hovering, the two waves generate opposing forces that cancel each other out.

Observation from biological experiments revealed that glass knifefish modulates

the net fore–aft force, primarily, by moving the nodal point [48]. As shown in Fig-

ure 5.5(A), nodal point is somewhere in the middle of the fin during hovering. While

the fish swims forward and backward, the nodal point moves caudally and rostrally

respectively. Computational task-level model and force measurements from experi-

ments with a biomimetic robot (see Chapter 4) revealed that the net fore–aft thrust

force varies linearly as a function of nodal point position. This is in contrast to the

seemingly simpler strategy of producing a single traveling wave in which the thrust

force exhibits a nonlinear profile as function of the speed of the traveling wave [7,24].

Simulations validated by experimental results with the robot showed that the use

of counter-propagating waves significantly improves the fore–aft maneuverability (by

decreasing the control effort), and concurrently enhances the passive stability (stabi-
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lization without active feedback control) by providing a damping-like force to reject

perturbations, thus simplifying control.

In addition to helping elucidate the mechanism by which these fish overcome the

trade-off between stability and maneuverability, the task-level “mechanical plant” de-

veloped in [7] can be reevaluated in the context of the closed-loop model, so that a

more accurate neural control prediction can be made using Equation (5.7). Specifi-

cally, Sefati et al. found that

G3(s) =
k

ms2 + bs
. (5.12)

Note that G1(s) and G2(s) used in [11] (see Equations (5.8) and (5.10), above) are

limiting cases of G3(s): neglecting the inertia leads to G1(s) and neglecting the damp-

ing force leads to G2(s). This new model confirms Cowan and Fortune’s hypothesis

that sensory processing would be better approximated by a high-pass filter, C3(s).

However, the new prediction is quite different in its details of the gain and phase re-

lationships compared to the previous predictions, C1(s) and C2(s) (Figure 5.5(B-C)).

5.3.3 Inescapable sensitivity of the control predic-

tion

Here, we revisit the question of the sensivity of the neural prediction. What is not

clear is if Cowan and Fortune’s finding—that the neural control prediction is sensitive

to the plant—is general, or resulted from an idiosyncratic detail of the organism or
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behavior at hand.

Given a fitted closed-loop transfer function H(s), it is apparent that C(s) depends

inversely on G(s). Specifically, note that frequency-dependent sensitivity of C as a

function of G is given by

S(jω) =
∂C

∂G
=

[
H(jω)

H(jω)− 1

]
1

G2(jω)
(5.13)

It is important to recognize that this sensitivity function is a frequency-dependent

calculation. It depends on the gain and phase of both the measured closed-loop

transfer function, H(jω), as well as the plant model, G(jω).

In general, engineered closed-loop control systems perform particularly well at

low frequencies: they track slowly varying stimuli with great precision. This is also

evident in many biological systems. For the fish, this means that if the shuttle were

moved and then held still, the fish would ultimately recover and “catch up” with the

refuge, achieving very low steady-state error.

In other words at low-to-intermediate frequencies, the fish performs excellent

closed-loop tracking, ergo H(s) has nearly unity gain and zero phase lag, and thus

|S(jω)|, which depends on 1/|H(jω)− 1|, will be large. At high frequencies, the pic-

ture is equally challenging: the sensitivity varies inversely with the square of the plant,

and since mechanical systems tend to be low-pass, |G(jω)| → 0 as s = jω →∞, and

thus |S(jω)| approaches infinity at high frequencies as well. By evaluating ∂C/∂H,

one can show that the control prediction is also quite sensitive to the fitted closed-loop

transfer function.
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Figure 5.5: (A) Eigenmannia virescens routinely partitions its ribbon-fin into two
counter-propagating waves that generate opposing forces. Both ends of the fin and
the nodal point (red cross), all peaks and troughs of the head and tail waves (green
circles and orange circles respectively) were tracked during station keeping at different
swimming speeds. Nodal point shift, ∆L, from 0 cm/s flow speed (no ambient flow)
to forward and backward swimming of a representative data set is shown. (B) Block
diagram of the closed-loop refuge tracking behavior. Different candidate models for
locomotion dynamics lead to different prediction of multi-sensory control. (C and D)
Gain and phase relationships of closed-loop transfer function, H(s), and predictions
of multi-sensory control based on different plant models.

In summary, it is critical to carefully characterize the closed-loop dynamics as well

as the plant model when trying to predict the control computations being performed

by the nervous system.
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Motivation

6.1 Data-driven System-theoretic Analy-

sis of Complex Time-series Data

Animals and human produce extremely rich and complex behavior. But it is this

richness that also makes the behavior decoding difficult. Despite this apparent com-

plexity, many behaviors seem to result from comparatively simple, low-dimensional

patterns of movement. This part of the dissertation aims to propose a new class of

linear time-invariant dynamical systems to study complex biological and mechanical

movements.

Linear dynamical systems are widely used to model time-series data, including

dynamic textures [74], surgical video data [75], and human movement [76, 77]. For
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instance, dynamic textures such as smoke, flame, etc. have been modeled as the

output of a linear dynamic system with Gaussian noise (Auto Regressive Moving

Average model) [74]. Simple human gaits such as walking, running, and jumping

have been modeled as the output of a stationary ARMA model [76]. We argue that

while stationarity may be a reasonable assumption for dynamic textures, most of

biological and mechanical movements are categorically non-stationary.

On the other hand, sparse representation theory has a long history in signal pro-

cessing community [78]. Sparsity embodies the notion that quite often very complex

(and high-bandwidth) signals can be represented as a combination of surprisingly few

basis vectors. In recent years, overcomplete representations have found widespread

applications in neuroscience [79], machine learning [80], computer vision [81], data

acquisition [82]. In signal processing, results from sparsity have led to the theory

of compressive sensing (CS), enabling one to completely side-step the well-known

Nyquist Sampling Theorem by reconstructing a signal from far fewer measurements

than predicted by Nyquist sampling theorem. The idea was popularized by the inven-

tion of a “single pixel camera”—a concept developed by researchers at Rice University,

in which they built a digital camera that takes a surprisingly small number of random

one dimensional (i.e. single pixel) projections of the scene. Using these “one pixel im-

ages”, the researchers demonstrated the successful recovery of a photographic image.

This and other applications to medical image reconstruction, computer vision and

machine learning have demonstrated the extraordinary applicability of the theory of
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sparse representations to real-world problems and data.

What does sparsity have to do with dynamical systems in general, and decoding

complex time-series data in particular? Interestingly, the recent results from sparse

representation theory have not yet revolutionized linear systems theory. In principle,

one could have thought of re-doing systems theory in the light of recent results on

sparse representation by measuring complexity of a system using sparsity of the state

(as opposed to low-rank). While some of these ideas have been explored in the

context of observer design for linear systems [83–85] (see section 7.1 for more details),

such approaches assume that the states, initial conditions, or innovations are sparse.

In our view, this notion of sparsity for linear systems dramatically limits the class

of systems that can be described. For example, if the state xk is sparse, a state

transition to xk+1 = Axk need not give a sparse vector, unless A satisfies some very

strong conditions.

In this part of the dissertation, we propose an alternative view to incorporate

notions of sparsity into linear systems theory. In particular, we consider a class of

LTI systems with unknown sparse inputs. The input at each time step is assumed to

be high-dimensional, and sparse with respect to an overcomplete dictionary of inputs.

Note that by changing the sparsity pattern of the input as a function of time, we

can generate non-stationary inputs. Moreover, the overall behavior of the proposed

system is nonlinear. In fact, linear dynamical system with switched inputs are a

particular case of our model. In the context of biological and mechanical movements,
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the dictionary of inputs may represent the dictionary of all possible simple behaviors.

At each time step, only a few dictionary atoms are excited by the sparse input,

orchestrating a specific behavior.

6.2 Roadmap and Contributions

In Chapter 7 we introduce the Linear Time-invariant Dynamical Systems with

Sparse Inputs (LDS-SI). We then consider one of the fundamental problems of linear

system theory: state estimation (initial condition recovery) with unknown inputs.

We propose a convex optimization formulation to jointly recover the initial condition

and the sequence of unknown, but sparse, inputs while supports and values of sparse

inputs are allowed to vary arbitrarily as a function of time. We derive sufficient

conditions for the perfect joint recovery. Simulation results are also presented.

In Chapter 8 we demonstrate the power of the LDS-SI framework in the analysis

of complex movements during a surgical task. In particular we propose an algorithm

for the segmentation and classification of surgical gestures. We end this chapter by

discussions and directions for future research.
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Chapter 7

LDS-SI: State estimation and input

recovery

In this chapter we consider a new class of linear time-invariant dynamical systems

for which the input signal is sparse, and address the fundamental problem of state

estimation of such systems assuming the sparse input is also unknown. In section 7.1

we provide a summary of how the notion sparsity has been previously incorporated in

the context of linear dynamical systems In section 7.2 we review compressive sensing

and sparse recovery algorithms. In Section 7.3 the classical observability and state

estimation problems of deterministic LTI systems are briefly discussed. In Section

7.4 we formally introduce a special class of discrete-time LTI systems with sparse

inputs at each time step. A convex optimization formulation for the joint recovery of

the initial condition and unknown sparse inputs is proposed. We derive the sufficient
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conditions for joint recovery of sparse inputs and initial state. Simulation results and

discussions are included in Section 7.5, followed by a conclusion in Section 7.6.

7.1 Linear Dynamical Systems and Spar-

sity

Several attempts have been made to incorporate sparsity in the context of linear

dynamical systems. Most attempts can be categorized depending on how or where

sparsity is imposed, e.g. sparse parameters, sparse states, or sparse inputs. In this

section we provide a review of these trends.

7.1.1 LDSs with sparse parameters and sparsity in

system identification

System identification and model selection applications date back to the early days

of the development of sparsity-based methods and some of the most widely used

methods are rooted in that literature. In this setting, sparsity in the parameter space

is assumed and exploited for system identification and model order reduction (i.e.,

approximating a given complex system with a simple system of lowest order). Often

sparsity inducing norms or constraints are used in constraints or in regularization in an

optimization framework. One of the earliest example includes [86, 87] where system
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identification and model order reduction are posed as the problem of choosing an

efficient representation (fewest number of coefficients) of the frequency response of

an LDS in the so-called rational wavelet basis. Another example is [88] where the

problem of model order reduction is posed as a lowest rank matrix approximation

using the so-called nuclear norm as a surrogate for rank. Various extensions to this

approach have been proposed e.g., [89–92]. Some other examples in this category

include [93–96]. In [94] it is shown that system identification of LTI ARX models and

input delay estimation of “sparse systems” are possible from few observations with

appropriate sparsity inducing regularization. Topology identification of large-scale

sparsely connected dynamical networks can also be facilitated with sparsity inducing

regularizer [95,96].

Sparsity based methods also have been applied to system identification in other

classes of dynamical systems e.g., time-varying, hybrid, switching, and nonlinear sys-

tems. In particular, identification of hybrid and switched LDSs for applications in

video segmentation has received considerable attention [97, 98]. [99] presents an l1

regularization formulation over the time-varying parameters of the model for the

problem of segmentation of time-varying ARX-models. In [100] system identification

for certain classes of nonlinear systems under time-variation with l1 regularization is

studied. In addition, `1 regularization over the time-varying parameters of the model

has been used for the problem of segmenting time-varying ARX models [99]. In [100]

system identification for certain classes of nonlinear systems under time-variation
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with `1 regularization is studied. In a rather conceptually different framework [101]

forms a dictionary of LDS models given a training set of time series data with an

application to dynamic texture recognition, where given a new sequence of data they

aim to find an LDS representation which is sparse in terms of the dictionary of LDSs.

A complication with such approaches is the nonlinear structure of the relevant space

of LDSs, which is difficult to take into account [102].

7.1.2 LDSs with sparse states

Recently, a number of filtering and smoothing algorithms have been proposed for

recovering time-varying sparse signals whose temporal evolution ca be modeled by

an LDS [83–85,103–105]. These algorithms are mostly targeted at compressive sens-

ing of time-varying sparse signals and they usually require limiting assumptions in

the temporal evolution model such as slow changing sparsity patterns of the signal.

For instance, Vaswani [83] proposed a modified Kalman filter algorithm for the es-

timation of time-varying spatially sparse signals with slow changes in the sparsity

patterns in “real time,” with applications in functional MRI. Asif et al. [104] presents

a homotopy algorithm to dynamically recover a sparse signal that changes slightly be-

tween measurements. Angelosante et al. [103] regularizes the Kalman smoother with

sparsity-inducing l1 norm for tracking applications. In [85] an l1 regularized optimiza-

tion is proposed to incorporate the sparsity constraints for the evolving sparse signals

as well as the error in the signal prediction (innovation). Ziniel et al. [105] presents a
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probabilistic signal model for time-varying sparse signals with slowly varying support

set. Smooth variations of active coefficient amplitudes are modeled as Gauss-Markov

process. Tracking and smoothing of such signals are carried out through belief prop-

agation. In a different approach, Wakin et al. [84] studied the observability of linear

systems with sparse high-dimensional initial state and randomized compressive mea-

surements.

Overall, while enforcing sparsity on the states results in promising state estimation

algorithms of sparse time-varying signals, we believe this notion of sparsity is funda-

mentally limited. For example, if we consider an LDS xk+1 = Axk, then if xk is sparse,

Axk need not to be sparse except for a special matrix (A) (e.g., a permutation).

7.1.3 LDSs with sparse inputs

Sparse input models have mostly been used for modeling spike trains, i.e. signals

that are sparse in time. For instance, blind deconvolution [106] with `1 regularization

for recovering spike trains has long been applied in the context of seismic signal pro-

cessing [107,108]. However, such approaches and more recent ones have been limited

to single-input single-output systems, usually with finite impulse response [107–110].

More recently, in [111] a similar approach has been proposed for modeling multivari-

ate time series of human actions as the output of an LDS driven by a one dimensional

spike train. Moreover, in an alternating minimization framework both the train of

input spikes and the LDS model are learnt. This approach is an example of blind sys-
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tem identification or deconvolution. The main limitation of this approach is that the

input class is impoverished enough and cannot generate complex dynamic behavior

(whereas in our proposed linear time-invariant dynamical system with sparse inputs

much more complex dynamics could be modeled by using a rich input dictionary).

Some other works (e.g. [85,112]) consider sparse inputs as noise rather stimulus, i.e.,

an undesired signal to be suppressed. To the best of our knowledge, imposing sparsity

at the input of MIMO LDSs while including and learning a dictionary of basis for the

input (thus allowing a rich class of inputs) is a novel approach and has not appeared

in the literature so far.

7.2 Compressive Sensing and Sparse Re-

covery

Compressive sensing (CS) and sparse signal recovery gained significant attention

in recent years, for good reason: the theory of compressive sensing states that some

sparse signals can be exactly and robustly recovered from an underdetermined and

possibly noisy set of measurements. Consider a real-valued signal x ∈ Rm. The signal

x can be represented in a basis consisting of m vectors in Rm: Ψ = [ψ1, ψ2, . . . , ψm] ∈

Rm×m:

x =
m∑
i=1

ψisi = Ψs (7.1)
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where s = [s1, s2, . . . , sm]T . Here, s represents the same signal relative to the basis

defined by the columns of Ψ. Sparse representation theory is predicated on the idea

that most real signals admit a sparse representation with respect to some properly

chosen basis. More specifically, given a signal x ∈ Rm, a basis (or dictionary) Ψ,

x represented as x = Ψs, where the signal s is S-sparse, namely it has S non-zero

elements, ‖s‖0 ≤ S � m. To fix notation, supp(s) = {i|si 6= 0} is the set of indices

corresponding to non-zero entries, ‖s‖0 = |supp(s)|. Consider a linear measurement

of the entries of the signal x: y = φTx. This measurement can be viewed as the inner

product of the measurement vector φ and the signal x: y = 〈φ, x〉. Assuming we have

p measurement vectors ({φi}pi=1, p < m), the underdetermined sensing matrix, Φ, is

constructed by taking the φTi ’s as its rows:

y = Φx = ΦΨs = Θs (7.2)

Equation 7.2 is an underdetermined system of equations and in general there

exists infinite number of solutions but under some remarkably general conditions on

the sensing matrix Φ, it turns out that one can recover s exactly from far fewer

samples (p � m) of the signal than predicted by the “Nyquist sampling theorem.”

Concretely, the sparse solution to the underdetermined system of equations y = Θs

can be found by solving the following optimization problem:

P0 : min
s∈Rm

‖s‖0 subject to y = Θs. (7.3)

In general this is a non-convex optimization and an NP hard combinatorial problem.
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There are two main approaches to solve such a non-convex optimization problem:

1) heuristic greedy algorithms such as Orthogonal Matching Pursuit (OMP) [87],

2) convex relaxation methods such as Basis Pursuit (BP) [78]. In nutshell, greedy

algorithms such as OMP attempt to directly solve the P0 problem by finding the

columns of Θ matrix (known as the atoms of the dictionary in sparse overcomplete

representation) that have the highest correlation with the measurement. The second

category of approaches (BP algorithm [78]):

P1 : min
s∈Rm

‖s‖1 subject to y = Θs. (7.4)

Three main categories of theoretical guarantees establish that under appropriate

assumptions, the convex P1 problem is equivalent to the non-convex P0 problem:

restricted isometry property [113, 114]; exact recovery condition [115]; and mutual

coherence [116]. Theoretical guarantees are provided for stable and exact recovery in

the presence of noise [116,117]

The standard techniques in CS hold for signals that are sparse in the standard

basis (Ψ = I) or in some proper orthonormal basis. Rauhut et al. [118] showed that

similar techniques could be applied to recover signals that are sparse with respect to

a (possibly) overcomplete dictionary. More recently, Candes et al. [119] provided the-

oretical guarantees adopted to overcomplete and redundant (coherent) dictionaries.

In the following subsections two recovery conditions for stable and exact recovery of

sparse signals are briefly introduced.
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7.2.1 Restricted Isometry Property (RIP)

The restricted isometry property (RIP) serves as a measure of orthonormality

of matrices when operating on sparse vectors. For all vectors with sparsity level S

(represented by xS), δS(Θ) is the smallest constant that the following inequalities

hold:

(1− δS)‖xS‖ ≤ ‖ΘxS‖ ≤ (1 + δS)‖xS‖ (7.5)

Several bounds on RIP constant have been established for stable and exact recovery

of solutions to P0 problem by solving the convex optimization problem, P1 [113].

Computing the restricted isometry constant of a matrix is an NP-hard problem. It has

been shown that random matrices with independently identically distributed (i.i.d.)

Gaussian distributions satisfy the RIP [120] with high probability.

7.2.2 Mutual coherence

Mutual coherence of a matrix Θ is defined as the maximum absolute value of

coherence between normalized columns:

µ(Θ) = max
i,j,i6=j

θTi θj
‖θi‖‖θj‖

(7.6)

In contrast to RIP constant, mutual coherence of a matrix can be easily computed.

The S-sparse solution to the P0 problem can be obtained by solving the convex

problem P1, if the coherence of matrix A satisfies the following [116]:

µ(Θ)(2S − 1) < 1 (7.7)

85



CHAPTER 7. LDS-SI: STATE ESTIMATION AND INPUT RECOVERY

In words, the angle between the normalized columns of the matrix A should be above

some threshold. Both of these criteria discussed above are sufficient conditions for

exact recovery of the sparse solution.

7.3 State Estimation for Deterministic LTI

Systems

Linear time-invariant (LTI) systems are widely used to model various time-series

data, including dynamic textures [74], surgical video data [75], and human movement

[77]. Consider the general model of linear dynamical systems:

xk+1 = Axk + Ψuk, xk ∈ Rn, uk ∈ Rm

yk = Cxk, yk ∈ Rp.

(7.8)

Here, A ∈ Rn×n is called the dynamic matrix, C ∈ Rp×n is the observation matrix,

and uk is the input signal.

For the linear system defined in (7.8), let

YN = [yT0 , y
T
1 , y

T
2 , . . . , y

T
N−1]T ∈ RNp (7.9)

denote all measurements up to time N . Likewise, let

UN = [uT0 , u
T
1 , u

T
2 , . . . , u

T
N−2]T ∈ R(N−1)m (7.10)

denote the input sequence. One can easily show that

YN = ONx0 + ΓNUN (7.11)

86



CHAPTER 7. LDS-SI: STATE ESTIMATION AND INPUT RECOVERY

where ON is the observability matrix:

ON =



C

CA

...

CAN−1


(7.12)

and

ΓN =



0 0 · · · 0

CΨ 0 · · · 0

CAΨ CΨ · · · 0

...
...

. . .

CAN−2Ψ CAN−3Ψ · · · CΨ


. (7.13)

State estimation is one the fundamental problems in linear dynamical systems.

The state estimation problem typically boils down to recovering the sequence of states

from inputs and outputs over time, i.e. {uk, yk}N−1
k=0 . Indeed a system is typically

defined to be observable if one can recover x0 given the measurements and input.

In can be easily verified from (7.11) that in the cases where the sequence of inputs

and outputs are known, the initial condition x0 can be recovered if the rank of the

observability matrix ON is n.

What if the inputs are not known, as assumed in this chapter? Provided that

there are fewer outputs than inputs, i.e. p < m, recovering the inputs is an ill-posed

problem, in which case it is not clear if and how to reduce this to a standard state
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estimation problem, which requires knowing the inputs to solve (7.11).

7.4 Linear Time-invariant Dynamical Sys-

tems with Sparse Inputs

Compressive sensing theory applies to the identification of sparse signals with a

small number of measurements, while observer theory focuses on recovering system

state (or initial conditions). How can these two ideas be combined to estimate the ini-

tial conditions and the input signals? Techniques developed in the field of compressed

sensing and sparse recovery have been mostly applied to static linear problem. The

framework we propose extends sparse representation theory to a dynamical context.

In this section, we introduce a new class of linear dynamical systems that the

input uk at each time step is sparse with respect to an overcomplete dictionary of

inputs Ψ, namely, ‖uk‖0 ≤ S (S � m). Formally linear time-invariant dynamical

systems are systems of the form:

xk+1 = Axk + Ψuk, xk ∈ Rn, uk ∈ Rm, ‖uk‖0 ≤ S

yk = Cxk, yk ∈ Rp.

(7.14)

Support and value are not constrained over time in our model. We let n and m be

possibly large. Sparsity of the input at each time step means that at any given time

only a few columns of the basis Ψ get excited, but in as few as m/S steps, all of the
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columns could be excited, depending on how the support varies over time.

The overall behavior of LDS-SI systems is nonlinear. In fact, we can think of the

proposed LTI systems with S-sparse inputs of dimension m as an LTI system with

switched inputs of dimension S, hence a switched LTI system, where the number of

discrete states is
(
m
S

)
.

In this section, we first propose a framework to jointly recover the initial condition

and sparse inputs to LTI systems. We further state a theorem and derive sufficient

conditions for the correctness of the perfect joint recovery of the non-sparse initial

condition and sparse inputs to LTI systems. Next we assume that the initial condition

is known (or without loss of generality is set to zero) and discuss the step-by-step

recovery of sparse inputs.

7.4.1 Joint recovery of the initial condition and

sparse inputs

In the classical linear-systems-theory setting, one assumes that the parameters

of the model (ΓN and ON) and sequences of inputs and outputs (UN and YN) are

known, and then estimating the initial conditions boils down to inverting the matrix,

ON , which can be done if and only if the observability matrix ON has rank n.

However, here we assume that the sequence of inputs, UN , is also unknown.

Assuming that p < m (fewer measurements than inputs) then (7.11) is an under-
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determined problem and in general an infinite number of solutions exist: there are

Nm + n unknowns and only Np measurements (Nm + n > Np). However, in this

chapter we consider a special set of inputs to the linear dynamical system, namely

input signals, uk, that are sparse at each time step (k = 0, 1, 2, . . . , N − 1). In other

words we study the inputs that are either sparse in the standard basis or have a sparse

representation with respect to an overcomplete dictionary, Ψ [116].

As discussed in Section 7.2, in general, finding a sparse solution involves l0 min-

imization (see (7.3)), which is a non-convex and NP-hard optimization problem. To

overcome this, we appeal by analogy to the l1 relaxation approach to recover sparse

signals, and propose the following convex optimization problem to jointly recover the

sparse inputs and non-sparse initial condition:

min
UN ,x0

‖UN‖1 subject to YN = ONx0 + ΓNUN , (7.15)

where

‖UN‖1 =
N−1∑
k=0

‖uk‖1 (7.16)

and x0 and UN are both unknown. This formulation is new in that it proposes a

means by which to recover the state and unknown, but sparse, inputs.

Prior knowledge about the structured sparsity patterns can lead to more effective

structured sparsity-inducing norms in the optimization formulation.

The comparison of the proposed optimization problem in (7.15)–(7.16) and the

standard observability, and the standard sparse recovery problems sheds light on the

conditions required for perfect joint recovery. In the standard observability problem
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(assuming the sequence of inputs and outputs are known), the rank of the observ-

ability matrix must be equal to n. In the context of the standard sparse recovery

(assuming the initial condition and the sequence of outputs are known), stable and

exact recovery of unknown sparse inputs is guaranteed if the matrix Γ satisfies condi-

tions such as RIP and mutual coherence (see Section 7.2.1 and 7.2.2), although these

conditions are sufficient, and not necessary.

Although in general the sparsity level of inputs at each time step is allowed to be

time-varying, let us assume the sparsity level of inputs remains constant over time,

namely ‖ui‖0 = Si = S. A simple counting argument suggests that a solution to

(7.15)–(7.16) will exist only if pN ≥ n+NS, where S is the sparsity level of inputs at

each time step, p is the number of measurements at each step, and n is the dimension

of dynamical system. Therefore, we expect the smallest number of steps to be on the

order of N ≥ n/p + NS/p. This is very intuitive since, loosely speaking, n/p is the

minimum number of steps to recover x0 and NS/p is the minimum number of steps

to recover UN .

More formally, we derive sufficient conditions for joint state estimation and sparse

recovery as follows.

Proposition 1. Let Π be the projection to the orthogonal complement of the column

space of the observability matrix. If the observability matrix ON is full rank and the

projected matrix ΠΓN is incoherent, x0 and UN can be uniquely recovered from YN .
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Proof. The projection, Π, has the following form:

Π = I −O(OTO)−1OT (7.17)

where ON is replaced by O for simplicity of the notation, and I, is the identity

matrix of appropriate size. We first project both sides of (7.11) onto the orthogonal

complement of the column space of the observability matrix (ON). Premultiplying

the both sides of the equation (7.11) by the projection mapping, Π, results in the

following equation:

min
UN

‖UN‖1 subject to YΠ = ΓΠUN , (7.18)

where YΠ = ΠYN , and ΓΠ = ΠΓ. This formulation can be viewed as a batch recovery

of a sequence of sparse input signals. It attempts to recover the unknown inputs

while globally satisfying all measurements constraints in the past N steps. Notice

that, in this case, the recovery of the input is a standard l1 minimization problem,

where YΠ are the measurements, ΓΠ is the dictionary, and UΠ is the sparse vector

to be recovered. As a consequence, sufficient conditions for the correctness of the

recovery of UΠ follow directly from the RIP or incoherence conditions applied to ΓΠ

(see section 7.2.1 and 7.2.2).

Once UΠ is recovered, and assuming the system is observable, x0 readily recovered

using standard results from linear systems theory.
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7.4.2 Zero initial condition

Assuming the initial condition is known, or without loss of generality is set to zero,

the convex optimization problem to recover the sparse inputs takes the following form:

min
UN

‖UN‖1 subject to YN = ΓNUN (7.19)

Similarly to the joint recovery case, sufficient conditions for the correctness of the

recovery of UN follow directly from the RIP or incoherence conditions applied to ΓN .

An alternative to batch recovery is to recover each input sequentially as each new

output becomes available. Although step-by-step recovery is not equivalent to batch

recovery, it is potentially more efficient in terms of computational cost. Considering

the general scenario in which the input signal at each time step, ui, is sparse with

respect to (possibly) an overcomplete dictionary (Ψ), step-by-step sparse recovery of

the unknown input signal is formulated as follows:

ûk = arg min
uk
‖uk‖1 subject to ỹk+1 = CΨuk (7.20)

where ỹ1 = y1 and

ỹk+1 = yk+1 −
k−1∑
j=0

CAk−jΨûj. (7.21)

for k = {1, 2, . . . , N − 1}.

Recovery of sparse inputs in (7.20) differs from the standard compressive sensing

problem as the dictionary, Ψ, is not necessarily an orthonormal basis. As discussed

in the Section 7.2, theoretical guarantees for stable recovery of signals that are sparse
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with respect to an overcomplete dictionary have been provided [118,119]. Rauhut et

al. [118] showed under what conditions of the sensing matrix, C, and the overcomplete

dictionary, Ψ, the global restricted isometry constant of the composed matrix, CΨ,

satisfies the perfect recovery condition.

7.4.3 Remarks on step-by-step recovery

As discussed in Section 7.4.2, when the initial condition is assumed to be known,

a step-by-step solution to (7.20)–(7.21) for recovering the sparse inputs potentially

offers a computational speed-up over batch recovery method. This improvement in

the computational cost is achieved by sequentially solving an optimization problem

with far fewer variables and constraints compared to the batch recovery. However, the

overall performance of the step-by-step recovery hinges on stable and exact recovery

of the input signals at each time step. Failure in recovering the input signal in any

one step results in the propagation of the error for the rest of the steps. The challenge

of capitalizing on the efficiency of step-by-step recovery, while not being hampered

by a failure along the way, is an important problem.

7.5 Simulation Results

Values for the number of steps, N = 50, and the dimension of the inputs at

each time step, m = 50, were kept fixed in all experiments. Supports and values of

94



CHAPTER 7. LDS-SI: STATE ESTIMATION AND INPUT RECOVERY

 

 

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

50
 

 

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity level, S Sparsity level, S

A B
M

ea
su

re
m

en
t d

im
en

si
on

, p

Input dimension, m=50, 
State dimension, n=50

Input dimension, m=50, 
State dimension, n=30

5

10

15

20

25

30

(p>n, not explored)

Figure 7.1: Estimate of probability across 10 simulated replicates of perfect joint
recovery as posed in Section 7.4. Probability (scale on right) is given as a function
of the sparsity level of the input at each time step, and the measurement dimension.
(A) n = m = 50. Dimension of the dynamical model equals to the number of inputs
at each time step. (B) 30 = n < m = 50. Ψ is an overcomplete dictionary.

the input were allowed to vary from step to step. The dimension of the dynamical

system was varied from 10 to 50 with increments of 10, i.e. n = 10, 20, 30, 40, 50. For

each choice of n, the dimension of the measurements was varied from 5 to n with

increments of 5, i.e. p = 5, 10, . . . , n. For each combination of n and p, sparsity level

of the inputs at each time step was varied from 1 to 20, i.e. S = 1, 2, 3, . . . , 20. This

range of sparsity allows for up to 40% of the entries of uk to be nonzero at each time

step (Smax/m = 20/50 = 0.4).

We simulated (7.14) to generate times series for a wide range of parameters of the

LTI system with sparse inputs. Entries of the transition matrix, A ∈ Rn×n, were i.i.d.

Gaussian random variables with mean zero and standard deviation 1/
√
n. It has been

95



CHAPTER 7. LDS-SI: STATE ESTIMATION AND INPUT RECOVERY

shown that the distribution of eigenvalues of these random matrices obey the circular

law as n→∞ [121]. For A matrices generated in our experiments, sampled matrices

with eigenvalues of maximum modules greater than 0.9 are discarded to enforce sta-

bility of the sampled transition matrices. The dictionary matrix Ψ was generated in

the same way as A, but not enforced to be stable. In all experiments, entries of the

measurement matrix, C ∈ Rp×n, were independently identically distributed (i.i.d.)

standard normal random variables. The value of each entry of the non-sparse initial

condition, x0, is uniformly sampled on (−5, 5). For the input signal with sparsity level

S at time step k, supp(uk) is a set of S integer numbers sampled uniformly on [1,m]

(‖supp(uk)‖ = S). The value of non-zero entries of uk, are also uniformly sampled

on (−5, 5).

Each replicate of the experiment consisted of 600 sets of simulations. Ten repli-

cates of the experiment were carried out. In all simulations we used the CVX software

package to solve the optimization problems [122,123].

7.5.1 Joint recovery of the initial condition and

sparse unknown input

The probability of the perfect joint recovery as a function of the sparsity level of

the inputs at each time step, S, and the dimension of measurements at each time step,

p, is shown in Figure 7.1. The probability of perfect joint recovery is estimated using
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10 simulated replicates. For a given number of measurements, p, and for the range

parameters explored in this study, the ratio of the dimension of the dynamics to the

number of inputs, n/m, does not significantly change the level of sparsity that admits

perfect recovery. This can be seen by comparing the results in Figure 7.1(A) and (B)

for p ≤ 30 (where both systems were simulated). Note that this ratio, n/m, is the

ratio of the number of rows to the number of columns of the dictionary matrix, Ψ.

Of course, as n gets very small compared to the number of inputs, the overcomplete

dictionary becomes highly coherent (as an extreme example when n = 1, µ(Ψ) = 1)

and it becomes impossible to exactly recover the sparse input.

Note that when p = n joint recovery becomes trivial in the sense that the initial

condition can be recovered independently from the inputs, directly from the first

measurement, y0 = Cx0, provided the observation matrix, C, has rank n.

7.5.2 Mutual coherence

The mutual coherence of the matrices, Ψ, CΨ, and Γ as a function of the dimension

of the measurements at each time step is shown in Figure 7.2. Error bars show one

standard deviation variation across 10 replicates of simulated data. For a fixed choice

of n and m, the coherence of the randomly sampled dictionary matrix, µ(Ψ), does

not statistically change as a function of p (shown in green). For a fixed choice of

m (number of inputs), as n decreases, the dictionary, Ψ, becomes more coherent.

As a result, for a given dimension of the measurements, the coherence of CΨ also
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increases as n decreases. From the structure of the Γ matrix (see (7.13)), it can be

easily verified that its mutual coherence, µ(Γ) (shown in red), is always bounded from

below by µ(CΨ) (shown in blue). Note that for almost all simulations, the coherence

of Γ is larger than about 0.6. Based on the sufficient recovery condition in (7.7),

this implies that the maximum sparsity level we can tolerate to guarantee recovery,

independent of the number of measurements, is about 1.3. Experimentally and for

the joint recovery of the initial condition and sparse inputs, this sufficient condition

turns out to be quite conservative as shown in Figure 7.1.

7.5.3 Zero initial condition

As discussed in Section 7.4.2, when the initial condition is known (or equivalently is

set to zero), the convex optimization problem takes the form in (7.19). Our numerical

experiments (not shown in detail) suggest that this assumption allows the convex

optimization to recover the unknown inputs with a slightly higher level (typically

+1) of sparsity of the unknown inputs at each time step.

7.5.4 Discussion on optimization formulation

One can jointly recover the intitial candition and input by first projecting both

sides of the equation onto the orthogonal complement of the column space of the ob-

servability matrix (ON) as described in Section 7.4.1. This approach appears promis-

98



CHAPTER 7. LDS-SI: STATE ESTIMATION AND INPUT RECOVERY

ing because one can first solve (7.18) to recover the unknown inputs, UN , and then

solve (7.11) to recover the initial condition. Simulation results reveals that when

(7.15)–(7.16) fails to jointly recover the initial condition and unknown sparse input,

(7.18) also fails to recover the unknown input perfectly. This result can be explained

by comparing the coherence of the Γ (before projection) and ΓΠ (after projection). As

shown in Figure 7.2, the coherence of ΓΠ (black) is always greater than the coherence

of Γ (see Figure 7.3).

7.6 Conclusions and Future Work

In this chapter, we proposed a convex optimization formulation to jointly recover

the initial condition and unknown but sparse inputs of a linear dynamical system.

While this formulation allows the sparsity of the initial condition, and state-transition

matrices that preserve sparsity, it does not require these potentially limiting assump-

tions. Simulation results show that recovery of sparse inputs are achievable even for

signals that are sparse with respect to an overcomplete dictionary.

In this study, we did not assume any structured sparsity pattern in input sig-

nals. One possible example is the case in which non-zero entries of control input are

clustered. In such scenarios, the performance of the optimization solver may be im-

proved by the use of norms that induce sparsity at the group level (e.g. l1/l2 norm).

Structured sparsity-inducing norms other than l1 can be formulated for the specific
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problem at hand [124]. Moreover, sparse representations are shown to be useful for

classification of unlabeled data [80,81].

In next chapter, we aim to demonstrate the power of the LDS-SI in the analysis

of complex motions and extend the results to the segmentation and classification of

surgical gestures.
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by the coherence of CΨ. (A) n=50. (B) n=30.
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Figure 7.3: Visualization of the entries of Γ and ΓΠ of a representative simulation set
for m = 50, N = 7, n = 50, p = 30. Note that in this example, after projection onto
the orthogonal complement of the column space of ON , the colors in the first few
blocks (50 columns per block) are more “muted” than before projection, suggesting
that coherence is compromised as verified numerically (see Figure 7.2).
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Chapter 8

LDS-SI: Application in Surgical

Gesture Segmentation and

Classification

8.1 Introduction

Technological advances in Robotic Minimally Invasive Surgery (RMIS) have en-

abled the capture of rich time-series data including the kinematics of slave robot

during a surgical task. Assessment of surgical technical performance and skill, and

surgical training in robotic surgery can greatly benefit from automatic segmentation

and recognition of the surgical gestures. In this chapter, we demonstrate that even a

simple linear dynamical model with sparse inputs can be effectively used to analyze

103



CHAPTER 8. SURGICAL GESTURE SEGMENTATION AND
CLASSIFICATION

complex surgical gestures recorded by da Vinci robotic surgical system. Given the

kinematic time-series data from the da Vinci robotic surgical system, and assuming

the simplest linear dynamical system with sparse inputs, an overcomplete dictionary

of inputs is learned and sparse inputs are computed using K-SVD. An SVM classifier

is learned from simple features extracted from sparse inputs that carry local statistics

of the surgical gesture. Experiments on a database of “suturing” task motions ac-

quired by da Vinci robotic surgery system reveals that the proposed method performs

better than the state-of-the-art methods that only use kinematics data.

8.1.1 Prior work

Previous work on surgical gesture classification in RMIS are mainly based on kine-

matic data recorded by the robot such as position of the robot tools, angles between

robot joints, and translational and rotational velocities of both joints and tooltips.

Many prior studies have quantified and analyzed the global measurements such as

time to completion of a task [125, 126], the distance travelled [126], and force and

torque signatures [126–128] for classification of surgical tasks. These approaches are

generally easy to implement but they completely ignore the fact that a surgical task

such as suturing can be decomposed to a number of surgical gestures. In recent years

several studies have attempted to provide a more detailed description of a surgical task

by decomposing it into a set of pre-defined atomic gestures called surgemes [129–134].

Examples of different surgemes in suturing include “reach needle”, “insert needle”,
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“pull suture” etc. (see Figure 8.1).

reach needle insert needle

pull suture transfer needle

Figure 8.1: Examples of four surgemes in the suturing task.

Automatic segmentation and recognition of surgemes can facilitate automatic

skill classification of trainees based on how well each of the surgical gestures have

been performed in a particular surgical task. The most widely used dynamical-

system based model is probabilistic Hidden Markov Model (HMM) and its varia-

tions [129–131, 133–137]. One limitation of HMM is that they model temporal dy-

namics with a fixed number of discrete states. However many activities involve contin-

uous motion which may be better modeled using Linear Dynamical Systems (LDSs).

Recently a surgical gesture classification method using LDSs has been proposed [75].
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The method assumes that the surgical task trial is already segmented to gestures and

it aims to classify the segmented data. The kinematics data or image intensities of a

video frames are modeled as the output of linear dynamical systems with Gaussian

noise. For the system identification they follow a sub-optimal PCA-based identifica-

tion method used in modeling dynamic textures [74]. After fitting LDS models to

manually segmented data they choose a dissimilarity metric for comparing the all the

pairwise distances between LDSs. Based on the chosen metric a classifier k-Nearest

Neighbors (k-NN) or SVMs with radial basis function (RBF) kernels) is trained for

classifying novel kinematics and/or video sequences. While this approach has a sig-

nificant performance in classifying the gestures, it assumes the segmentation of the

data in the test set is known.

8.2 LDS-SI for Joint Segmentation and

Classification of Surgical Gestures

In section 8.2.1 we first describe how we model the sequence of kinematics data

as the output of a very simple linear dynamical system with sparse inputs. In sec-

tion 8.2.2 we describe the joint dictionary learning and sparse coding using K-SVD. In

section 8.2.3 a Support Vector Machine (SVM) classifier is trained using a histogram

representation built from the sparse inputs.
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8.2.1 LDS-SI model

In this section, we demonstrate that even an extremely simple linear dynamical

system with sparse inputs can be effectively used for the analysis of the complex

surgical gestures recorded by da Vinci robotic surgical system and performs better

than the state-of-the-art methods for joint segmentation and classification of surgical

gestures.

Let {yk}Nk=1 be a sequence of 78-dimensional kinematics data (see Section 8.3 for

dataset description). We model these observations as the output of the following

extremely simple linear dynamical system with sparse inputs:

xk+1 = axk + Ψuk, xk ∈ Rn, uk ∈ Rm, ‖uk‖0 ≤ S

yk = Cxk, yk ∈ Rp.

(8.1)

where a is a scalar and describes the dynamics of the hidden state x ∈ Rn, C ∈ Rp×n

(n < p) is the observation matrix, Ψ ∈ Rn×m is the overcomplete dictionary of inputs,

and uk is the sparse input signal at time k. We hypothesize that the dictionary Ψ

will represent the dictionary of input signals corresponding to all possible surgemes.

In other words we hypothesize that at any given time k, the pattern by which the

atoms of the dictionary are activated captures useful information for identifying the

specific action being performed at time k. This pattern is determined by the nonzero

entries of the input signal at time instant k.

Without formally addressing the problem of joint system identification and sparse

dictionary learning we employ the sub-optimal PCA-based identification method pro-

107



CHAPTER 8. SURGICAL GESTURE SEGMENTATION AND
CLASSIFICATION

posed in [74] to estimate the observation matrix, C, and the hidden state, xk. This

step can be viewed as a dimensionality reduction of the raw data as the temporal

evolution of the hidden state is completely ignored. Let

Y = [y1, y2, · · · , yN ] ∈ Rp×N (8.2)

denote the concatenation of all observations {yk}Nk=1. Assuming Y = UΣV T is the

compact singular value decomposition (of order n < p) of the Y matrix, the observa-

tion matrix and the hidden states are estimated as follows:

Ĉ = U and X̂N
1 = ΣV T , (8.3)

where XN
1 = [x1, x2, · · · , xN ] ∈ Rn×N .

To evaluate the effect of dynamics in surgical gesture classification and to enforce

the stability of the model, we let the scalar parameter, a, take a value on [0, 1].

8.2.2 Dictionary learning and sparse coding

After estimating the observation matrix, C, hidden states, xk, and choosing a

constant value for a (from [0, 1] interval) in Equation (8.1), we need to jointly learn

an overcomplete dictionary, Ψ, and find the sparse inputs, uk. Let dk = xk+1 − axk

and

D = XN
2 − aXN−1

1 = [d1, d2, . . . , dN−1] ∈ Rn×(N−1) (8.4)

denote the concatenation of all {dk}N−1
k=1 . Likewise, let

U = [u1, u2, . . . , uN−1] ∈ Rm×(N−1) (8.5)
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denote the concatenation of all inputs {uk}N−1
k=1 . The problem of joint dictionary

learning and sparse coding can be formulated as finding the Ψ and U matrices in the

following optimization problem:

min
Ψ,U
‖D −ΨU‖F subject to ‖uk‖0 ≤ S for all k = 1, 2, . . . , N − 1 (8.6)

where S is the maximum sparsity level of input at time k.

Sparse dictionary learning is a well-studied problem in the signal processing com-

munity [79, 138–142]. Two popular algorithms for sparse dictionary learning are K-

SVD [140] and MOD (method of optimal direction) [139]. The optimization problem

in (8.6) is nonconvex due to product ΨU and NP-hard but it is convex in either Ψ

or U when the other is fixed. Both K-SVD and MOD algorithms take an alternating

minimization approach by iteratively fixing one and optimizing the objective over

the other parameter. When the dictionary is fixed, the problem in (8.6) reduces to

finding the sparse coding of the columns of D matrix with respect to the dictionary.

The solution can be approximated by l1 minimization methods such as Basis Pursuit

(BS) or Orthogonal Matching Pursuit (OMP) [78, 87]. K-SVD and MOD methods

have different strategies for updating the dictionary. MOD fixes all the sparse codes

and updates the entire dictionary by directly minimizing the cost in (8.6). K-SVD

updates the dictionary differently by sequentially updating the columns of dictionary

as well as their corresponding nonzero coefficients in the sparse code. In this work we

use K-SVD algorithm to jointly learn the dictionary (Ψ) and find the sparse inputs

(U).
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Note that when C = I (identity matrix of size p× p) and a = 0 in Equation (8.1),

the optimization in (8.6) is the same as sparse dictionary learning of the raw data

itself.

8.2.3 Training

Given ntrain training trials {Y i}ntrain
i=1 ∈ Rp×Ni (where Ni is the number of data

points in trial i), and their corresponding labelings {L}ntrain
i=1 , let

Y = [Y 0, Y 1, . . . , Y ntrain ] ∈ Rp×Nt (8.7)

denote the concatenation of all training trials, where Nt =
∑ntrain

i=1 Ni. We first esti-

mate a common observation matrix C and estimate the hidden states by computing

the compact SVD of Y as described in section 8.2.1. After choosing a constant value

for the scalar parameter, a, we learn one common dictionary for the entire training

set and compute the sparse inputs by considering the following optimization cost

function and using K-SVD algorithm:

min
Ψ,U
‖D −ΨU‖F subject to ‖uk‖0 ≤ S for all k (8.8)

where

D = [D1, D2, . . . , Dntrain ] ∈ Rn×(Nt−ntrain) (8.9)

(see section 8.2.2 for the definition of the D matrix) and

U = [U1, U2, . . . , Untrain ] ∈ Rm×(Nt−ntrain). (8.10)
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Once the dictionary is learned and sparse inputs are computed, a classifier based

on the sparse inputs can be trained. Typically a soft-voting of sparse-code magnitudes

is used [75] for classification. Intuitively, this can be seen as the way in which each

sparse input, uk, votes for the dictionary atoms. Formally, a vector of assignment

“votes”, vk of size m is computed as follows:

vk(i) = |uk(i)|/‖uk‖1for all i = 1, 2, . . . ,m. (8.11)

As mentioned in section 8.2.1, we hypothesize that the pattern by which the

dictionary atoms are activated at each time step, plays an informative role in the

analysis of complex actions. At each time step, this pattern is determined by the

nonzero entries of the input signal.

As an alternative to soft voting that may better extract features given the sparse

input uk, we compute a vector of assignment “votes”, vk = [vk(1), vk(2), . . . , vk(2m)]T ,

of size 2m by hard-voting of sparse codes’ signs as follows:

vk(2i− 1)

vk(2i)

 =



(
1
0

)
if uk(i) > 0(

0
1

)
if uk(i) < 0 for all i = 1, 2, . . . ,m(

0
0

)
if uk(i) = 0

(8.12)

This serves as the binary vote for the sign by which each dictionary atom has been

activated.

Regardless of the voting strategy, and to better encode the temporal information

of the sparse inputs, we apply a temporal windowing. At each time step k, we build
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a histogram by sum-pooling the assignment “votes” in a window of size w:

h(k) =
∑
i∈W

vi for all k in the training set (8.13)

where W (|W | = w) is a set of appropriate indices in a window around time step k.

Once the histograms for the entire data in the training set are built, a Support Vector

Machine (SVM) classifier with RBF kernel is trained.

8.3 Experiments

8.3.1 Dataset description

We use the California dataset described in [131, 143]. The California dataset in-

cludes eight subjects with different robotic surgical experiences: novice, intermediate

and expert. We evaluate the performance of the proposed method on joint segmen-

tation and classification of surgical gestures in suturing. Each surgeon performs 4 to

5 trials. Each trial lasts about 2 minutes and the kinematic data of both master and

slave manipulators of the da Vinci robotic surgical system is recorded at a constant

rate of 30 Hz. Kinematic data consists of 78 motion variables including positions and

velocities of both master and slave manipulators. All trials in the California dataset

corresponding to suturing are manually segmented to 10 surgical gestures. Figure 8.2

shows a manually labeled trial and the surgical gestures are listed in the caption.
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8.3.2 Experiment setup

We consider two different test setups for surgical gesture classification. Setup 1 is

the leave-one-supertrial-out (LOSO) in which we leave one trial of each subject for

testing, and use the remaining trials for training. Setup 2 is the leave-one-user-out

(LOUO) where we leave all trials corresponding to one subject for testing and use all

the trials from the remaining users for training.
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Figure 8.2: Sample surgeme time series. List of surgemes: 0. Idle motion, 1. Reach
needle, 2. Position needle, 3. Insert/push needle through tissue, 4. Transfer needle,
5. Move to center with needle (right hand), 6. Pull suture with left hand, 7. Pull
suture with right hand, 8. Orienting needle, 9. Right hand assisting left in tightening
suture, 10. Loosen more suture, 11. Drop suture (end of trial).
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8.4 Results

We first evaluate the performance of our proposed voting assignment in (8.12)

as an alternative to the soft-voting assignment of the sparse codes’ magnitudes in

(8.11). We start with the following configuration: a = 0, n = 25, w = 1, S = 10. We

evaluate the performance on LOSO setup for different sizes of the dictionary. The

results are tabulated in Table 8.1. The results reveal that the hard-voting assignment

of sparse codes’ signs improves the performance of the classifier. For the rest of the

experiments we use the hard-voting assignment of sparse codes’ signs in (8.12).

For a thorough evaluation of our proposed method one should run experiments

for all possible combinations of the parameters: dynamical model parameter a, the

window size w, dictionary size m, and the sparsity level of the inputs S. Instead we

start with a set of initial values for each of the parameters and we evaluate the effect

of each parameter by keeping all others fixed. We first evaluate the performance of

our proposed method on LOSO setup (see section 8.3 for setup description) and after

finding the most promising set of parameters, we evaluate the performance on LOUO

setup.

• Effect of the dynamical model: We start by evaluating the effect of the scalar

parameter, a, that governs the very simple temporal evolution of the model.

We start with n = 25, w = 21, m = 40, S = 4. Interestingly, the classification

rate peaks at around a = 0.7 (Figure. 8.3(A)), suggesting that even the simplest
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Table 8.1: Suturing task, LOSO setup (a = 0, n = 25, w = 1, S = 10). Classification
rate for different voting assignments.

Suturing task m=50 m=100 m=200

Soft-voting of magnitudes 45.52% 43.54% 35.91%

Hard-voting of signs 68.46% 66.43% 64.32%

dynamical model can increase the classification rate. We set a = 0.7 for the

rest of the experiments.

Note that a = 0 completely ignores the dynamical model and (8.1) reduces

to sparse dictionary learning of the raw data or its projection to a lower di-

mension. Sparse dictionary learning of the raw 78-dimensional kinematics

data results in 58.3% classification rate for the following set of parameters:

a = 0, w = 21,m = 40, S = 4 and C = I (identity matrix of size 78×78).

• Effect of window size: Results shown in Figure. 8.3(B) reveals that while window

size affects the classification rate, the performance is relatively stable around

w = 21.

• Effect of dictionary size and sparsity level of inputs: Results shown in Fig-

ure. 8.3(C) reveals that number of dictionary atoms also improves the perfor-

mance and the classification rate is stable for m ≥ 100. Lastly for m = 200,

we evaluated the effect of the sparsity level S. As shown in Figure 8.3(D) the

classification rate peaks at S = 8.
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Figure 8.3: Effect of the dynamical model parameter a (A), window size w (B),
dictionary sizes m (C), sparsity level of inputs S (D), on the classification rate for
the suturing task in LOSO setup.

The performance for both LOSO and LOUO setups are tabulated in Table 8.2.

Our results (highlighted in boldface) are better than the state-of-the-art results in

LOSO setup as well as the more challenging setup of LOUO. All the methods listed

in Table 8.2 are only using the kinematics data for learning the model and training

the classifier. Moreover the segmentation of the test set is assumed to be unknown

in all the methods listed in the table.
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Table 8.2: Average gesture classification rate without assuming known segmentation
(only kinematics data).

Suturing task S-HMM [136] CRF MsM-CRF [137] FA-HMM [133] S-LDS [133] LDS-SI

LOSO 81.1% 81.62% 80.99% 78.27% 80.79% 82.92%

LOUO 67.8% 68.65% 69.03% 57.2% 67.1% 71.58%

Results shown in Table 8.2 correspond to the following set of parameters: a = 0.7,

w = 21, m = 200, S = 8. Confusion matrix in Figure 8.4 shows the performance of

the classifier for all gestures.

8.5 Discussion

We demonstrated the application of LDS-SI framework in the analysis of a com-

plex high-dimensional time-series data, namely kinematics data recorded by da Vinci

robotic surgical system. The proposed method performed better than the state-of-

the-art methods in surgical gesture segmentation and classification.

Without formally addressing the problem of system identification, we considered

a very simple linear dynamical system with sparse inputs. We learned a common

overcomplete dictionary of inputs. We have shown that the pattern by which the

dictionary atoms are activated capture the characteristics of different surgical gestures

and can be effectively used for segmentation and classification of the data.
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Figure 8.4: Confusion matrix corresponding to LOSO setup for suturing task.

8.6 Limitations and Directions for Future

Research

• Joint System Identification and Dictionary Learning: In the presented work we

did not formally address the system identification problem and instead we con-

sidered a very simple linear dynamical model to demonstrate the power of our
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proposed framework in the analysis of surgical data. In general, this might be

a major limitation for applying the method to other data sets. Future direction

of research should address the problem of joint system identification and dic-

tionary learning. More specifically, given multiple output sequences {Y i}ntrain
i=1 ,

the goal is to identify the state-transition matrix A, an overcomplete dictio-

nary of inputs Ψ, the observation matrix C, without knowing the initial states

{xi0}
ntrain
i=1 or the sequence of inputs {U i}ntrain

i=1 . This is a blind identification prob-

lem. Classical system identification algorithms such as N4SID [144] assume that

the sequence of inputs to the system is also observed or stationary zero-mean

Gaussian process. One possible approach for addressing the blind identification

problem is an alternating minimization framework by combining the classical

system identification techniques and dictionary learning algorithms.

• Structured dictionary learning and structured sparse inputs: In this work we did

not assume any structured sparsity patterns such as group sparsity pattern for

the inputs. Recent works have demonstrated that dictionary learning and sparse

coding algorithms can be efficiently modified and provide practical benefits when

a prior knowledge about a particular structure exists [124,141,145–147].

For instance, Zelnik-Manor et al. [141] proposed an algorithm for designing

dictionaries that admits block-sparse representations. The algorithm (BK-

SVD+SAC), which is a natural extension of K-SVD algorithm, provides a more

accurate representation for the signals that can be well approximated as a union
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of subspaces.

For the purpose of LDS-SI, one can think of a dictionary of inputs Ψ that can

be decomposed into L smaller dictionaries Ψ = [Ψ1,Ψ2, . . . ,ΨL], where each

dictionary Ψi or a specific combination of them may represent a dictionary of

inputs for a specific action or surgical gesture. When such a structure is learned,

group-sparse coding of inputs may provide a simpler solution for directly de-

coding complex actions.
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Conclusion

In this dissertation we utilized two different modeling approaches to study com-

plex biological and mechanical movement from two different perspectives. In Part I

we primarily focused on a template physics-based modeling approach to shed light

on a long-standing question in animal locomotion: why do animals often produce

substantial forces in directions that do not directly contribute to movement? We

examined the weakly electric knifefish, a well-suited model system to investigate the

relationship between mutually opposing forces and locomotor control. We used slow-

motion videography to study the ribbon-fin motion and developed a physics-based

template model at the task-level for tracking behavior. Using the developed physics-

based model integrated with experiments with a biomimetic robot, we showed that

mutually opposing forces generated by the ribbon-fin improves the fore-aft maneu-

verability (by decreasing the control effort), and concurrently enhances the passive

121



CHAPTER 9. CONCLUSION

stability (stabilization without active feedback control) by providing a damping-like

force to reject perturbation, thus simplifies control. The results may also inspire the

exploration of a new set of strategies for the design and control of robots.

In Part II, we proposed a more general data-driven, system-theoretic framework

for decoding complex behaviors. Specifically, we introduced a new class of linear time-

invariant dynamical systems with sparse inputs (LDS-SI). In the proposed framework,

at each time instant, the input to the system is a sparse linear combination of just

a few atoms of an overcomplete dictionary of inputs. In the context of complex

behaviors, the dictionary may represent the dictionary of all possible simple behaviors.

We studied a fundamental problem of state estimation with unknown inputs. We

proposed a convex optimization formulation for the joint recovery of initial condition

and inputs. We derived sufficient conditions for perfect joint recovery. Finally we

demonstrated the power of the proposed framework in the analysis of complex gestures

in robotic surgery.

Modeling complex biological and mechanical movements plays a critical role in

mutual interaction between biology and robotics fields. On the one side, richness and

diversity in animal locomotion are a great source of inspiration in engineering design

of future robots. On the other side, neuromechanical hypotheses can be tested on

bio-inspired and bio-mimetic robots. At a higher level, developing more unified frame-

works for modeling, decoding, and analysis of complex behaviors in both biological

and mechanical movements (with applications such as automatic activity recognition)
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are essential for ongoing advances in cyber-physical systems.
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