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A surprising feature of animal locomotion is that organisms typ-
ically produce substantial forces in directions other than what is
necessary to move the animal through its environment, such as
perpendicular to, or counter to, the direction of travel. The effect
of these forces has been difficult to observe because they are
often mutually opposing and therefore cancel out. Indeed, it is
likely that these forces do not contribute directly to movement but
may serve an equally important role: to simplify and enhance
the control of locomotion. To test this hypothesis, we examined
a well-suited model system, the glass knifefish Eigenmannia vir-
escens, which produces mutually opposing forces during a hover-
ing behavior that is analogous to a hummingbird feeding from
a moving flower. Our results and analyses, which include kine-
matic data from the fish, a mathematical model of its swimming
dynamics, and experiments with a biomimetic robot, demonstrate
that the production and differential control of mutually opposing
forces is a strategy that generates passive stabilization while simul-
taneously enhancing maneuverability. Mutually opposing forces
during locomotion are widespread across animal taxa, and these
results indicate that such forces can eliminate the tradeoff between
stability and maneuverability, thereby simplifying neural control.
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Animals routinely produce muscle commands that result in
“antagonistic” (mutually opposing) forces during locomo-

tion that either cancel out at each instant of time or average to
zero over each gait cycle (1–5). This may seem surprising because
these antagonistic forces do not contribute to the cycle-averaged
movement of the center of mass of the animal. Such antagonistic
forces are not only present during forward locomotion but in
hovering for animals such as hummingbirds, hawkmoths, and
electric fish; these animals produce large antagonistic forces and
exhibit extraordinary maneuverability during station keeping (6–
9). In this study, we demonstrate that active generation and dif-
ferential control of such antagonistic forces can eliminate the
tradeoff between stability and maneuverability during locomotion.
Stability is generally defined as the resistance to, and recovery

from, disturbances to an intended trajectory (10). Although
maneuverability can be defined in several ways (11, 12), it is
perhaps most generally recognized as the relative amplitude of
the control signal required to change movement direction (13).
That is, if a small change in the control amplitude effects a rapid
change in direction, the system would be considered highly ma-
neuverable. The potential for a tradeoff between the resistance
to changes in direction and the ability to change direction ap-
pears self-evident (5, 10, 13, 14), and this tradeoff is indeed
considered a fundamental challenge for the engineering design
of airborne, submarine, and terrestrial vehicles (14–17). Many
swimming, flying, and running animals, however, appear to use

locomotor strategies that are extremely stable and yet facilitate
the control of extraordinary maneuvers (4, 10, 18, 19).
To investigate the relationship between antagonistic forces and

locomotor control, we studied the glass knifefish, Eigenmannia
virescens, that hovers and rapidly changes direction while pro-
ducing opposing forces using a single elongated fin (Fig. 1A).
Glass knifefish, like other knifefish, generate thrust force pri-
marily through undulatory motions of an elongated anal fin (20–
22). The ribbon fin consists of 217 ± 27 downward-pointing rays
(table 4 in ref. 23; all statistics are quoted as mean ± SD unless
otherwise noted), with each ray independently controlled by a set
of muscles. These rays are oscillated in a plane transverse to the
body axis and can be coordinated to produce a wave that travels
longitudinally along the fin. In this study, we integrate biological
experiments (Fig. 2), computational modeling, and experiments
with a biomimetic robot (Fig. 1B and Fig. S1) to understand
how the fish achieves both stability and maneuverability during
rapid adjustments of its fore–aft position. Eigenmannia and other
similar species of knifefish often partition their ribbon fin into
two inward-counterpropagating waves (22) (Movie S1). The fin
kinematics can be idealized as a pair of inward-traveling waves
with parameters including oscillation frequency (f), wavelength
(λ), and angular amplitude (θ) (Fig. 1C). We term the point
where these two waves meet the “nodal point.” Although much is
understood about the kinematics and mechanics of unidirectional
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traveling waves in a fluid (20, 24–28), far less is known (22, 29)
about counterpropagating waves, particularly in relation
to control.

Results
Using high-speed videography at 100 frames per second, the
kinematics of the ribbon fin of five fish were digitized during
station keeping (Fig. 2 and Fig. S2). Individual fish were placed
in the test section of the flow tunnel. When we varied the steady-
state flow speed, the fish typically remained stationary relative to
a refuge mounted in the flow tunnel. A single trial consisted of
a fish remaining stationary in the refuge by swimming forward
(into the flow) at the flow speed. For each trial and flow speed,
we analyzed 1-s intervals (100 video frames) while the fish
maintained position. Trials were conducted at nine flow speeds
(flow moving from head to tail in all cases) between 0 and 12
cm/s in increments of 1.5 cm/s. The order of these nine trials was
pseudorandomized, and three sets (replicates) of trials were
collected for each individual, totaling 27 experiments per fish.
The masses of the individuals averaged 2.80 ± 0.72 g. The fin and
body lengths were 7.36 ± 0.57 cm and 11.59 ± 0.71 cm, re-
spectively. As shown in Fig. 3A, the ribbon fin typically organized
itself into two inward-counterpropagating waves. In four trials at
the highest speed tested (12 cm/s), the ribbon fin had transi-
tioned into a single wave traveling from head to tail.
We found that the nodal point moved toward the tail as a

function of increased head-on flow speed (Fig. 3B). The nodal
point shift, ΔL=Lflow −Lhov, was measured for each trial; here,
Lhov corresponds to the nodal point position during hovering
(U = 0) and Lflow corresponds to the test condition (U > 0).
Other kinematic parameters varied less substantially with flow
speed (Fig. S3). The nodal point shift of one replicate from one
fish was an outlier quantitatively, and therefore was removed
from statistical analyses (SI Data and Discussion and Fig. S4). All

other replicates from all fish were quantitatively similar within
and across individuals.
The effect of nodal point position on the net thrust force

generated by two inward-counterpropagating waves was inves-
tigated using a biomimetic robot (Fig. 1B and Fig. S1) and a
computational model (Materials and Methods). In the first set of
experiments with the biomimetic robot, the nodal point position
was varied while other properties of the traveling waves were
held constant. Thrust forces generated by the two traveling waves
were also predicted numerically. The measured forces as a func-
tion of nodal point shift closely match simulated forces from our
model (Fig. 4A). The thrust force varied linearly as a function of
nodal point shift. We define the nodal point shift gain, κ, as the
ratio of the measured net force to the nodal point shift:

κ=
FThrust

ΔL
: [1]

This parameter indicates the change in force given a unit change
in nodal point position, and it is used as a metric for fore–aft
maneuverability of counterpropagating waves. Note that the nodal
shift gain, κ, increases as a function of frequency (f) and angular
amplitude of counterpropagating waves (θ) (Fig. S5). κ increases
approximately quadratically with the frequency (Fig. 4B).
We also discovered that passive damping emerges with coun-

terpropagating waves. Specifically, a damping force opposing the
direction of velocity perturbations increases linearly as a function
of the speed of the animal relative to the flow. To measure this
drag-like term in the robotic setup, the nodal point was held at
the center of the robotic fin ðΔL= 0Þ, making the length of the
fin dedicated to the tail wave (Ltail) identical to the length of fin
dedicated to the head wave (Lhead). The measured forces pro-
duced by the biomimetic robot vary linearly as a function of steady-
state ambient flow and closely match simulated forces from our
model (Fig. 4C). Here, we define the damping constant, β, as the
ratio of the measured damping force, F, to the flow speed, U:

β= −
FDamping

U
: [2]

Larger values of the damping constant correspond to greater
stability, in the sense that the time constant associated with
recovery from perturbations is the ratio of inertia to damping (4,
18, 30). Note that the damping constant increases with frequency
(f) and angular amplitude (θ) of counterpropagating waves (Fig.
S6). In particular, the damping constant increases linearly with
frequency (Fig. 4D).
This damping force arises from body fore–aft velocity (longitu-

dinal perturbations) when there are two inward-counterpropagating
waves along the ribbon fin. Whole body fore–aft velocity causes
asymmetries in net velocities of the counterpropagating waves
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Fig. 1. Three testbeds considered in this paper include the glass knifefish,
a biomimetic robot, and a model of the swimming dynamics. (A) The glass
knifefish E. virescens. Experiments with a biomimetic robot match force
measurements predicted by a computational model of ribbon fin propulsion.
(B) A biomimetic robot that has a ventral ribbon fin to emulate the fin of
knifefish. The biomimetic robotic fin consists of 32 independently controlled
rays, allowing for a wide range of fin kinematics, such as counterpropagating
waves. (C) Fin is modeled as a pair of inward-traveling waves. Directions of head
and tail waves and kinematics of the ribbon fin are shown in this schematic:
angular deflection (θ), wavelength (λ), lengths of the two waves (Lhead and Ltail),
length of whole fin (Lfin), temporal frequency (f), and nodal point (red circle).

A B

Fig. 2. Experimental apparatus. (A) The steady-state flow (0–12 cm/s) di-
rection is shown. The fish keeps itself stationary relative to the PVC tube, and
the kinematics of the ribbon fin are recorded from below through an angled
mirror. (B) One annotated frame recorded from the experiment is shown.
Both ends of the fin and nodal point are shown in red. All peaks and troughs
of head and tail waves are shown with green and orange dots, respectively.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1309300110 Sefati et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309300110/-/DCSupplemental/pnas.201309300SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1309300110


(V) relative to the fluid (U). Depending on the direction of
perturbation, the relative velocity for one half-wave becomes V −U,
whereas it becomes V + U for the other. The resulting forces are

proportional to the square of the relative velocities (SI Materials
and Methods). The net effect of these forces, which are individually
quadratic in the relative velocity, is a net damping force that is
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Fig. 3. E. virescens partitions its fin into two inward-counterpropagating waves that produce antagonistic thrust forces. (A) Both ends of the fin and the
nodal point (red cross), all peaks and troughs of the head wave (green circles), and all peaks and troughs of the tail wave (orange circles) were tracked during
station keeping at different swimming speeds. The nodal position at t = 0 was taken as the reference for rostrocaudal position. Nodal point shift, ΔL, from
0 cm/s flow speed (no ambient flow) to 4.5 cm/s flow speed of a representative dataset is shown in A. (B) Nodal point shifts caudally as a function of flow
speed approximately linearly. At each tested flow speed, the average over all replicates of data is shown with a filled circle. Shaded regions indicate the full
range of nodal point shifts for all trials and all fish.
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Fig. 4. Biomimetic robot experiments and simulations. (A) Measured forces varied linearly as a function of nodal shift ðΔLÞ. The slope is termed the nodal
shift gain. (B) Counterpropagating waves were driven at four frequencies [parameters are shown in Table S1 (set 1)]). The nodal shift gain varied nonlinearly
as a function of frequency. (C) Forces acting on the robotic fin varied approximately linearly as a function of steady-state flow speed when the nodal point
was held in the middle of the fin ðΔL= 0Þ ; the negative of the slope was termed the damping constant. (D) Damping constant varied linearly as a function of
frequency [parameters are shown in Table S2 (set 1)]. (E and F) Comparison of thrust generation by varying only one kinematic parameter predicted by the
computational model. (E) Net thrust force is a linear function of nodal position. The nodal point is in the middle of the fin when ΔL= 0. (F) Net thrust force by
a single traveling wave along the fin is nonlinear with zero slope at f = 0, namely, Force ∝ f jf j. Negative frequency means the wave direction is reversed. Note
that near zero net thrust, large changes in frequency are required to generate small changes in force because the graph has a slope of 0 at f = 0. The fin does
not move when f = 0.
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linear in body fore–aft velocity. This damping force tends to
reject velocity perturbations because it opposes the direction
of motion. Indeed, force measurements in a robotic experiment
(explained above) reveal that such damping forces exist and vary
linearly as a function of translational body velocities. Decelera-
tion due to this passive linear damping force is proportional to
the (perturbed) body velocity:

€x∝ − β _x: [3]

As a result, counterpropagating waves passively act to reject per-
turbations, resulting in an exponential decay of the body velocity.
As described above, the net thrust generated by two inward

counterpropagating waves varies linearly as a function of nodal
point shift, and the ability to change directions rapidly is cap-
tured by the nodal shift gain, κ (Fig. 4E). By contrast, consider
the problem of maneuvering using a single traveling wave that
can reverse direction, as parameterized by the frequency, f. Here,
negative frequency corresponds to a reversal of the traveling
wave, thus resulting in negative thrust. As previously shown using
the same biomimetic robot (31), our model indicates that force
is nonlinear as a function of frequency and is insensitive to
changes in frequency near f = 0 (Fig. 4F). Thus, using only a
single traveling wave, the nonlinear relation between force and
the traveling wave speed (parameterized by f) creates an effect
known in control systems theory as a “dead zone” (32). In other
words, modulating the force around zero requires large changes
in f for small changes in desired force, and hovering control
requires rapid full fin reversal. Thus, modulating the thrust force
by moving the nodal point might provide Eigenmannia with
greater maneuverability during rapid changes in the direction of
swimming compared with changing the direction of a single
traveling wave, as depicted in Fig. 4 E and F.
To test the ease of controlling rapid changes in direction in the

biomimetic robot, we developed a simple lumped-parameter task-
level dynamic model, or “plant,” for station keeping (Eq. S13):

m€x+ β _x=F; [4]

wherem is the robot’s mass, β is the damping constant, and F = u
(t) is the net thrust force generated by the ribbon fin. The

longitudinal position, velocity, and acceleration are denoted
by x, _x, and €x, respectively. We designed a linear quadratic
tracking controller (33) to track a reference trajectory along
the longitudinal axis. This is similar to the natural tracking be-
havior of electric knifefish (7–9). Control inputs to the robot
were chosen to be either nodal point shift ðΔLÞ for the counter-
propagating wave strategy of thrust modulation or frequency (f)
for the unidirectional traveling wave strategy. For each desired
amplitude (0.5 to 7.0 cm) and control strategy (single traveling
wave vs. counterpropagating waves), three replicate biomimetic
robotic tracking experiments were conducted. Our hypothesis is
that counterpropagating waves afford more maneuverability for
small movements than a single traveling wave. If correct, the
ratio of the control effort for using a single traveling wave com-
pared with the control effort for using counterpropagating waves
would sharply increase as the desired amplitude of the reference
trajectory goes to zero.
Indeed, using both control policies (Fig. 5 A-I and B-I), the

robot tracked the desired trajectory well (Fig. 5 A-II and B-II and
Movie S2), but the ratio of the rms of the control signals,
frms : ΔLrms, increased dramatically as the amplitude of move-
ment decreased (Fig. 5C). That is, the nodal point controller,
compared with the unidirectional wave controller, renders the
system increasingly more maneuverable as movement amplitude
decreases, confirming our hypothesis (Fig. 5C). Using the validated
computational model, the nodal point shift gain and damping con-
stant corresponding to measured kinematics of Eigenmannia were
also computed (SI Data and Discussion). Predicted control effort
ratios for Eigenmannia, shown in Fig. 5C, reveal the same trend
observed in biomimetic robot experiments. The offset between the
fish and robot curves is explained by differences in kinematics and
mechanical scale, most notably temporal frequency (Materials
and Methods). Adopting a higher temporal frequency (with all
other parameters constant) for each of the two inward-counter-
propagating waves amplifies the nodal-shift gain (κ) (Fig. 4B). This
would further amplify the advantage of counterpropagating waves in
terms of maneuverability for low-amplitude tracking tasks.

Discussion
A key insight of the Wright brothers was that an aircraft must
be both sufficiently stable to maintain its flight path and
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Fig. 5. Comparison of tracking performance using two different control strategies. (A-I and B-I) Control signals (blue, red, orange, and green) for coun-
terpropagating waves ðΔLÞ and a single traveling wave (f) are shown for four different reference trajectory amplitudes (A = 1 cm, 2 cm, 5 cm, and 7 cm,
respectively). (A-II and B-II) Biomimetic robot positions (same color scheme) closely track the reference trajectories (black). (C) Ratio of the rms of the
commanded control signals ðfrms : ΔLrmsÞ depends on the reference trajectory amplitude. The model predicts that this rms ratio tends to infinity as the
reference amplitude, A, goes to zero, strongly favoring counterpropagating waves when the goal is stable hovering ðA≈ 0Þ. Predicted and measured ratios for
the robot closely match each other. Predicted ratios for Eigenmannia are based on traveling wave kinematics obtained during hovering (U = 0 cm/s). Un-
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simultaneously maneuverable enough to permit its control (ref.
32, chap. 1). How animals manage this seemingly inescapable
tradeoff (34, 35) is an open question, especially because many
swimming and flying animals appear to use locomotor strategies
that are stable and yet facilitate the control of extraordinary
maneuvers (4, 10). One possibility is that highly maneuverable
animals are passively unstable, and stability is achieved solely via
active feedback control using the nervous system (36).
By adopting a locomotor strategy that relies on the generation

of antagonistic forces rather than a seemingly simpler strategy
of moving the fin in either one direction or the other, the glass
knifefish achieves a dramatic improvement in maneuverability,
especially for small movements. This improvement in maneu-
verability is concurrent with, as shown above, a significant increase
in damping that enhances passive stability, although perhaps
not without some energetic cost (SI Data andDiscussion). The fish
could, in principle, actively stabilize itself using feedback con-
trol of either the nodal point (counterpropagating waves) or the
frequency (single traveling wave). However, counterpropagating
waves offer two advantages: They passively reject perturbations
(increased passive stability) and also require substantially lower
control effort (increased maneuverability). Therefore, antago-
nistic forces eliminate the tradeoff between passive stability and
maneuverability.
This strategy, which was discovered in measurements of the

weakly electric fish Eigenmannia and tested using a biomimetic
robot and a computational model, may confer the same benefit
in other animals that use antagonistic forces for locomotor
control. Small terrestrial animals with a sprawled biomechanical
posture appear to generate large lateral forces during forward
running that have been postulated to enhance stability and ma-
neuverability (5), although it remains unclear how such forces
scale with body size. A mathematical model of high-frequency
flapping flight suggests that the antagonistic forces generated by
the opposing movements of wings may similarly increase both
maneuverability and stability (4). It is interesting to note that high-
frequency flapping fliers necessarily generate mutually opposing
forces; that is, they cannot readily turn these forces off during
hovering. Eigenmannia, by contrast, are ideal for studying the role
of mutually opposing forces because in these fish, such forces re-
sult from a neural strategy rather than a biomechanical constraint.
Mounting evidence suggests that the passive design of animal

morphology facilitates control, thereby reducing the number of
parameters that must be managed by the nervous system (37, 38).
Here, we describe a dynamical system that facilitates control by
incorporating a similar design principle. Counterpropagating waves,
which paradoxically appear to be a more complex behavioral
strategy than the generation of simpler unidirectional waves,
nevertheless simplify locomotor control. First, this strategy en-
hances stability and maneuverability as we have shown. Second,
modulation of the speed and direction of a single traveling wave
requires simultaneous (and instantaneous) coordination across
a distributed network of spinal circuits, whereas modulation of the
nodal point of two ongoing counterpropagating waves permits
control via the coordination of a small number of these segmental
circuits. How this motor coordination is achieved in the animal
remains an open and interesting question (39). Nevertheless,
these data suggest that the dynamic design of animal morphology
and its attendant neural systems are tuned (5, 8, 40, 41) for sim-
plified task-level control.

Materials and Methods
Experimental Apparatus. A schematic of the experimental setup is shown in
Fig. 2A. An electric pump circulates water in the flow tunnel. A refuge
machined from a 15-cm segment of 2-inch diameter PVC pipe was mounted
parallel with the flow in the middle of the test section. The bottom half of
the pipe was removed to allow the fish to be video-recorded through a
window on the bottom of the test section. The refuge was positioned far

enough away from the bottom of the tank to avoid boundary layer effects.
A high-speed camera captured video from below (more details are provided
in SI Materials and Methods).

Biological Experiments. Adult E. virescens, obtained through commercial ven-
dors, were housed in community tanks. Experiments were performed in the
custom flow facility described above. In both the flow facility and housing
tanks, water temperature was maintained at ∼25–27 °C, and conductivity
was ∼150–250 μS/cm. All experimental procedures were reviewed and ap-
proved by the Johns Hopkins University Animal Care and Use Committee and
follow guidelines established by the National Research Council, the Society
for Neuroscience, and previously established methodologies (42).

Individual fish (n = 5) were placed in the test section of the flow tunnel.
Without training, the fish tend to swim into and stay inside the PVC tube (7,
8). When we varied the steady-state flow speed, the fish typically remained
stationary relative to the refuge. A single trial consisted of a fish remaining
stationary in the tube by swimming forward (into the flow) at the flow
speed. Trials were conducted at flow speeds from 0 to 12 cm/s in 1.5-cm/s
increments. The order of these nine trials was pseudorandomized, and three
replicates (sets) of trials were collected for each individual, totaling 27
experiments per fish. Note that we only examined forward swimming for
experimental convenience, because the fish often tend to reorient them-
selves into the flow. However, the fish readily swim both forward and
backward when tracking a refuge (8, 9), and when they do swim backward,
the nodal point shifts rostral to its zero position as expected (Movie S3).

For each trial, data were collected for several seconds. Using open source
code (43) written for MATLAB (MathWorks, Inc.), the overall fore–aft posi-
tion of the fish was tracked from the video. One second of data (100 frames)
of steady-state swimming was selected by inspection of the position plotted
as a function of time. This 1 s of data was used to quantify the kinematic
parameters of both the rostral and caudal traveling waves. The nodal point,
positions of both ends of the fin, and peaks and troughs of the fin were
manually digitized for each trial (Fig. 2B). The fin height profile, hðxÞ, was
digitized for each individual fish (Fig. S2) for use in the computational fluid
model below; fish were lightly anesthetized in buffered MS222 (0.2 g/L
Tricaine-S; Western Chemical, Inc.) for photography.

These data were postprocessed using a customMATLAB script to compute
the rostrocaudal nodal shift, wavelength, frequency, and amplitude of an-
gular deflection of the two waves. For each trial, amplitude of angular de-
flection was fitted for each wave assuming it remains constant for all rays
along each half of the fin.

Computational Model. We approximated the fin kinematics using two sinu-
soidal traveling waves, as is standard for unidirectional waves (21, 28). The
angle, θ, between each fin ray and the sagittal plane oscillates, and the
relative phase changes along the rostrocaudal axis, producing a traveling
wave, modeled as a sinusoid:

θhðx,tÞ= θh,max   sin
�
2π

�
x
λh

+ fht
��

,

θtðx,tÞ= θt,max   sin
�
2π

�
x
λt
− ftt

��
:

[5]

Subscripts h and t stand for head and tail waves, respectively; x denotes
the coordinate along the rostrocaudal axis; λh and λt are the head and
tail wavelengths, respectively; and fh and ft are the head and tail fre-
quencies, respectively, of fin oscillation. The kinematic parameters are
depicted in Fig. 1C.

The computational model used in this paper is based on a fluid dragmodel
(26, 27).* The model applies to flow regimes with a high Reynolds number
and neglects the fluid interaction. Under the conditions of the experiment,
the Reynolds number

�
Re= UL

ν

�
can be estimated in the range of 103 to 104

(νwater = 10−6m2=s, Lfin ≈ 0:1m, for U≈ 1-10  cm=s). Drag force applied to the
propulsive infinitesimal element is given by:

dF
!

=
1
2
CDρdA

h
u! ·ns

!i2
ns
!, [6]

where CD is the coefficient of the drag depending on the shape (CD ≈ 2:5 in
this study, evaluated from robotic experiments), ρ is the density of the fluid,

*Epstein M, Colgate JE, MacIver MA (2005) A biologically inspired robotic ribbon fin.
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Workshop on Morphology, Control, and Passive Dynamics.
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dA is the area of the infinitesimal element, and ~ns is the unit normal to the
surface at the centroid of the infinitesimal element. Details of how this
model is used to estimate the nodal point gain (Eq. 1) and damping constant
(Eq. 2) for Eigenmannia, and how it leads to the plant model shown in Eq. 4,
are provided in SI Materials and Methods.

Biologically Inspired Robotic Fin Experiments. We used a biomimetic knifefish
robot (29, 31) to measure forces generated by counterpropagating waves as
well as to assess freely swimming control strategies in one dimension. Me-
chanical design constraints limited us to a larger length scale and longer
time scale than Eigenmannia. The fin consisted of 32 individually actuated
rays and measures 32.60 cm in length and 3.37 cm in depth. Fig. S1A shows a
schematic of the force experiments, where the robot is suspended from an
air-bearing platform from above. The platform was rigidly attached to
mechanical ground through a 9-N single-axis force sensor (Futek Advanced
Senor Technology) along the fore–aft axis. The robot was fixed in all other
translational and rotational axes. The working section of the flow tunnel
was 80 cm long, 22 cm wide, and 28 cm deep.

In the first set of force measurements, we varied the nodal point of coun-
terpropagating waves along the fin from −8.15 cm to 8.15 cm in increments of
1.63 cm (0 cm indicates the middle of the fin) while the robot was suspended
in still water. Force measurements were gathered at 1,000 Hz and averaged

over 5 s after initial transients had dissipated. In the second set of force meas-
urements, we varied the flow speed of the water tunnel from 0 to 10 cm/s in
increments of 0.5 cm/s while keeping the nodal point of the counter-
propagatingwavesfixed at 0 cm (in the middle of the fin). To test sensitivity
to other kinematic parameters, we repeated both sets of force experi-
ments with varied frequencies and angular amplitudes as shown in Tables
S1 and S2.

For fore–aft trajectory tracking experiments, we removed the force sensor
to allow the robot to swim freely forward and backward, as shown in Fig.
S1B. A linear encoder provided feedback on the position of the robot along
the fore–aft axis of the water tunnel. At a cycle rate of 10 Hz, a micro-
controller gathered this position feedback, derived robot velocity, calculated
the control signal based on the control law described previously (linear
quadratic controller), and sent the control signal over a serial line to the
microcontroller dedicated to control of the robot rays. Position, time, and
the control signal were logged for later analysis.
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