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Theta oscillationis considered a temporal scaffold for hippocampal
computations that organizes the activity of spatially tuned cells known as

place cells. Late phases of theta support prospective spatial representation
via phase ‘precession’. In contrast, some studies have hypothesized that
early phases of theta may subserve both retrospective spatial representation
via phase ‘procession’ and the encoding of new associations. Here,
combining virtual reality, electrophysiology and computational modeling,
we provide experimental evidence for such a functionally multiplexed phase
code and describe how distinct spatial inputs control its manifestation.
Specifically, whenrats continuously learned new associations between
external landmark (allothetic) cues and self-motion (idiothetic) cues,

phase ‘precession’ remained intact, allowing continuous prediction of
future positions. Conversely, phase ‘procession’ was diminished, matching
the putative role in encoding at the early theta phase. This multiplexed
phase code may serve as a general circuit logic for alternating different
computations at asub-second scale.

The hippocampusis thought to create aninternal, spatial representa-
tionof the environment, which supportsboth flexible spatial learning
and episodic memory"?. This cognitive map is instantiated in part by
hippocampal place cells, which form spatial firing fields at specific
locations of an environment®°. A key feature of place cell firing is its
entrainment to the thetarhythm, an approximately 8-Hz oscillationin
the local field potential (LFP) that appears during certain behavioral
epochs, including locomotion and investigatory behaviors’”. Place
cellsfire at progressively earlier phases of the theta rhythm as ananimal
travels through their firing fields, a type of phase coding known as theta
phase precession'®" (Fig. 1a). At the single-cell level, spike timing of
place cells relative to the theta rhythm encodes the proportion of the
place field traversed'” . At the population level, phase precession is

associated with the formation of aforward theta sequence, where the
real-world sequence of place cells is reinstantiated at a compressed
temporal scale withina theta cycle™"*?. Such sequential firing of place
cells gives rise to the representation of the animal’s future trajectory
and isimplicated in spatial decision-making® . Phase precession is
observed across species, including rodents'®", bats?® and humans?,
suggestive of its universal role in hippocampal computation®?’,
Some studies, however, have called into question whether phase
precession could fully account for the theta-modulated activity of place
cells. Early studies of phase precession reported that the overall preces-
sionstructure is not always linear and monotonic but often consists of
two lobes at different theta phases, with precession occurring mostly at
the late phases of theta™*°. Prominent models of hippocampal function
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Fig.1|Place cells are locked to allothetic spatial cues inside the Dome.

a, Schematic of phase precession. Top: thick vertical ticks represent bursts of
spikes along the LFP theta (gray sinusoidal curve). Bottom: dots indicate points
inthe normalized position-theta phase space where spikes were recorded. The
yaxis displays the theta phase repeated for two cycles to better visualize the phase
coding structure across the circular phase variable. The red line shows the best-
fitcircular-linear regression slope to these data. b, Semi-transparent illustration
of the Dome apparatus. ¢, lllustration of the experimental gain. d, Gain dynamics
and epoch structure of a typical experimental session. e, Representative

place cell behavior during an experimental session. Top: profile of experimental
gain (Gg,, = 1.77). Middle: dots indicate the positions of the rat on the track
(yaxis) where spikes from the unit were recorded in the lab frame. Bottom: same

Field size (°)

spikesin the landmark frame. Colors represent spikes from epochs 1-3, and
alternate white/gray bars indicate laps in the respective frames. f, Place fields
ofthesameunitasine.Inepoch1,lab frame and landmark frame areidentical
because G =1.For epoch 3, the place field is plotted in the landmark frame and a
calculated lab frame (rescaled) by scaling the place field in the landmark frame by
afactor of 1/ Gg,,. All three fields were aligned by their midpoints. g, Cumulative
density plots (CDFs) of place field sizes. Fields from G <1and G > 1showed
similar distribution as the G =1 condition in the landmark frame (8 = 0.0249,
s.e.=0.0704, t(243) = 0.354, P=0.724 and = 0.100, s.e. = 0.0623, t(243) = 1.61,
P=0.109, respectively; t-statistics/two-sided P values from the LMEM using

the log of field size followed by FDR correction). Rescaled cumulative plots are
shown for reference.

have hypothesized that the early phases of theta instead contribute to
the encoding of novel information®*’. This phase range is associated
with increased synaptic plasticity®*>**, which can facilitate encoding at
individual dendrites without a spiking output®*~**, When an environ-
mentis already familiar to the animal, Wang et al.”” observed prominent
phase ‘procession’ in the early phases of theta, which may allow for
retrospective evaluation of ongoing experiences (see also ref. 38).
Together, these findings raise the possibility that the early phases of
thetamay subserve the encoding of new associations or the represen-
tation of retrospective spatial location depending on the demand.

In the present study, we directly tested the existence of func-
tional multiplexing within the theta oscillation by systematically con-
trolling the demand to encode new associations between different
spatial inputs. External landmarks (allothetic cues) and self-motion
(idiothetic) cues serve as the two sources of spatial information that
control the activity of place cells**~**. Place cell firing is strongly locked
to visual landmarks such that place fields can rotate and/or scale in
response to corresponding changes to those cues™****”, On the other
hand, idiothetic cues are used via path integration computations to
continually update the animal’s location on its cognitive map, both
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in the absence and presence of prominent allothetic cues®***°. In this
study, we created a persistent conflict between these two classes of
spatial cues using a planetarium-style, virtual reality system*° (the
‘Dome’) such that animals had to continuously encode a new relation-
ship between the allothetic and idiothetic cues*”’. We found that phase
‘precession’ remained constant under the cue mismatch. By contrast,
phase ‘procession’ and the spiking activity in the early phases of theta
diminished with conflicting allothetic and idiothetic inputs, consistent
with switching fromrepresenting retrospective trajectories to encod-
ing new associations while suppressing axonal spiking output. Using
a continuous attractor network (CAN) model, we demonstrate how
conflicting spatial inputs selectively impair phase procession while
sparing phase precession. Together, our findings provide experimental
support for the multiplexed nature of theta phase coding.

Results

Virtual reality dissociates allothetic and idiothetic spatial cues
To investigate the dissociation of the two modes of phase coding, we
recorded the activity of CAlplace cells (4.74 + 3.54 (mean + s.d.) units
meeting place cell criteria per session; Supplementary Tables 1and 2)
asrats (n=>5)ranaroundacircular track inside the Dome virtual reality
system*”*° (Fig. 1b). Rats were tethered to aboom arm attached to a
central commutator pillar and ran counterclockwise on the periphery
of the table to obtain irregularly spaced liquid rewards. An array of
visual landmarks was projected onto the interior of the Dome shell
and served as allothetic spatial cues (Methods). To create a persistent
conflictbetween the allothetic and idiothetic spatial cues, the array of
landmarks revolved around the center of the environment as a func-
tion of the rat’'s movement. The motion of the visual landmarks was
controlled by an experimental gain, G, which specified the ratio of the
animal’s speed in the landmark frame to its speed in the lab frame. In
G >1sessions, landmarks moved in the direction opposite to the rat’s
movement, presumably causing therat to perceive its motion as faster
thanit actually was; in G <1sessions, landmarks moved in the same
direction asthe rat, presumably causing the rat to perceive its motion as
slower thanitactually was (Fig. 1c). Each experimental session started
with a G=1condition, where the landmarks were stationary (epoch 1;
Fig.1d). The experimental gain value was then linearly ramped up or
down (epoch 2) until it reached a target value, Gg,,.. In epoch 3, Gwas
held at G,,,,. The Dome apparatus thus gradually introduced a conflict
between allothetic spatial cues based onlandmarks and idiothetic cues
based on self-motion. Most of the analyses focused on epochs1and 3,
during which G remained constant at the initial value (G =1) and the
target value (G = Gg,,,)), respectively.

In 40 of 51 sessions, place fields were stable in the rotating land-
mark frame (that is, the place fields rotated as a coherent ensemble
under the control of the landmarks; see ref. 47 for quantification).
Figure le shows anexample unit fromasessionwith G;,,,=1.77.Inepoch]1,
when the landmarks were stationary, the cell fired at the same location
inthelab frame (Fig. 1e, middle). Once the landmarks started moving
relative to the lab frame (epochs 2 and 3), the firing of the cell was no
longer locked to thelab frame. Instead, the place field remained stable
intherotatinglandmark frame, demonstrating that the place field was
strongly controlled by the landmarks, with only asmallamount of drift
inthe firinglocation over many laps (Fig. 1e, bottom). Compared with
the G =1condition, the rat traversed less distance in the lab frame to
completeafulllapinthelandmark frame, and, therefore, the physical
distance traveled in each pass through the place field (computed by
rescaling the distance in landmark frame by the experimental gain)
shrunkbyafactorof1/G(1/1.77 = 0.565; Fig. 1f). When all place fields
from all sessions were compiled, the distribution of place field sizes
was approximately maintainedinthelandmark frameinG=1,G>1and
G <1conditions (Fig. 1g) while shrinking or stretching in the lab frame
inG>1and G <1sessions, respectively. Given that the place fields were
controlled by the allothetic landmark frame, with no consistent spatial

tuning in the lab frame, we examined how phase coding was affected
under the persistent conflict between allothetic and idiothetic cues
caused by the experimental gain manipulation.

Theta phase precession is maintained in the landmark frame

Toinvestigate how phase precession was affected by the gain manipula-
tion, we plotted the theta phase of each spike against the normalized
position within a place field in the landmark frame. Using a lap-based
definition of place fields (Methods), we observed that the phase pre-
cession shape exhibited cell-to-cell variability (Fig. 2a), including rare
instances (n =10) of double precessions as was reported previously™**
(Extended DataFig.1). Nonetheless, place cells exhibited phase preces-
sions that were locked to the landmark frame, firing at increasingly
earlier phases of LFP theta throughout the field (Fig. 2a). Phase preces-
sion plots combining all spiking activities from all place cells further
confirmed that phase precession was preserved when Gwas close to1
(mid gain: G =0.7-1.3) as well as when G substantially deviated from 1
(ref. 50) (low gain: G= 0.1-0.7, high gain: G=1.3-1.9; Fig. 2b). In fact, the
slope of the precession, as measured using circular-linear regression*,
wasinvariantacross gainsin the landmark frame (Fig. 2c). Similarly, the
correlation coefficient and phase offset remained constant (Fig. 2d,e).
Thus, the precession structure scaled with the distance traveled inthe
lab frame from the start to the end of the place field'****°, The scaling of
precession demonstrates the stronger influence of the allothetic cues
relative to the idiothetic cues on the temporal firing pattern of place
cells when the hippocampal map is locked to the external landmarks.

Theta-modulated burst frequencies change in response
togain
Under G >1and G <1conditions, rats had torun shorter or longer physi-
cal distances in the lab frame, respectively, to traverse the length of a
place field in the landmark frame. We thus investigated how the tem-
poralfiring properties of place cells were modulated to maintain phase
precession in the landmark frame. Theta phase precessing units fire
bursts of spikes at a frequency slightly higher than the LFP theta fre-
quency, and the differencein frequencies correlates with the speed of
precession’ (thatis, the change in theta phase of spike bursts between
successive theta cycles).Inour dataset, LFP theta frequency exhibited
session-to-session variability without any apparent relation to gain
(Fig. 3a). To quantify the burst frequencies relative to the LFP theta
frequencies, we computed the spike phase spectrum'®*” (Fig. 3b and
Methods). Theresulting spectrum would show a peak at avalue greater
than 1when the bursting activity contains a prominent precession.
The raw precession rate is obtained from the spectrum as the peak
frequency - 1, where greater values correspond to faster phase preces-
sion. The precession speed is known to be faster in smaller fields com-
pared with larger fields' and to increase with the speed of the animal™®.
Thus, toisolate the effect of gain on the precession speed, we defined
anormalized precession rate (NPR) = (raw precession rate) x (field
size in the landmark frame) x (mean theta frequency) / (mean animal
speed in the lab frame) (see Methods for details). We found that NPR
scaled with gain (Fig. 3cand Extended DataFig. 2a,b), showing that the
theta-modulated bursting frequency adapts to the experimental gain
to maintain a constant precession slope in the landmark frame. This
scaling in theta-modulated bursting frequency was accompanied by
adecrease in the propensity of place cells to skip firing in every other
theta cycle (thetaskipping****°) in the high gain condition compared
with mid gainand epoch1(G=1) conditions (Extended Data Fig.2c-g).
Theta precession is associated with a population-level phenom-
enon known as the forward theta sequence. Place cells with partially
overlapping fields show differences in the preferred firing phase of
LFP thetaat any given theta cycle due to phase precession; as aresult,
the spatial order of place cells with overlapping fields is reinstantiated
in a compressed temporal sequence within a theta cycle™*° (Fig. 3d).
Given the scaling of theta-modulated bursting frequency and theta
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Fig. 2| Phase precession is maintained in the landmark frame of reference.

a, Position-phase plots of example units using normalized position. The

X axis represents the normalized position within a place field, where the edges
correspond to the start and the end of the place field. b, Smoothed position-
phase plots using all spikes from all units for epoch 1(G =1), low gain (G = 0.1-0.7),
mid gain (G = 0.7-1.3) and high gain (G =1.3-1.9) conditions. The x axis ranges
from 0.01to0 0.99 to avoid the overconcentration of pointsatx=0andx=1,
because fields were defined as starting and ending at a spike. ¢, Precession

slopes for each gain group (n = 246 units). Overall: W(3) =1.08, P=0.781

Low
gain
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gain

Mid
gain

Mid
gain

gain

(two-sided); Wald test on the LMEM. Each violin plot shows the median (white
circle), interquartile range (gray line) and distribution outline. NS, not significant.
d, Circular-linear correlation coefficients for each gain group (n = 246 units).
Overall: W(3) =5.80, P=0.122 (two-sided); Wald test on the LMEM. e, Phase
offsets for each gain group (n =246 units). Epoch 1 versus low: P=0.769, epoch 1
versus mid: P=0.707, epoch1versus high: P= 0.707, low versus mid: P= 0.707,
low versus high: P=0.707, mid versus high: P= 0.707; two-sided Pvalues based
onahierarchical bootstrap test followed by FDR correction.

precession with gain, we hypothesized that the within-cycle sequential
firing pattern would be preserved. To test this idea, we computed the
pairwise coactivation pattern, a sensitive measure to quantify theta
sequences that measures the theta-scale time lag between place cell
pairs from the cross-correlogram (CCG) (Fig. 3e)". The temporal offset
ofthe CCG peak (or the theta-scale timelag) correlates with the distance
between place cell pairsinathetasequence, and the ratio of these two
quantities (compression factor (CF)) can be used to measure the degree
of sequence compressioninathetacycle. CF wasinvariantacross gains
(Fig. 3f), suggesting that the scaling of precession preserves the coher-
ent thetasequence structure in the landmark frame.

Phase precession when allothetic cues are weak or absent

Theanalyses thus far have focused on conditions under which the hip-
pocampal map was controlled by allothetic spatial cues. The findings
can be interpreted in two ways. The first is that phase precessionis a

visually drivenresponse directly controlled by the moving landmarks,
akin to visually evoked firing in CA1 (ref. 61). The second is that the
precession is controlled by the dynamics and circuitry of the internal
hippocampal map, which happens to be locked to the external land-
marks. To dissociate these two possibilities, we studied the temporal
firing pattern of place cells in two different conditions: (1) when land-
marks were turned off and (2) in ‘landmark failure’ sessions, in which
the hippocampal map decoupled from the landmarks.

In condition (1), rats ran inside the Dome after landmarks were
turned off after epoch 3 (that is, the start of epoch 4; Fig. 4a). Without
salient landmarks, the place fields were not locked to the lab frame or
any other external frame; rather, the spiking activity followed aninter-
nal hippocampal frame that was driven by idiothetic cues and strongly
influenced by the previously experienced gain in epoch 3 (ref. 47)
(Extended DataFig. 3b). The gain of this frame, termed the hippocam-
pal gain H, was computed from the spatial frequency spectrogram of
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witha peak at1would indicate that the spiking activity contains acomponent
thatis phase locked to the LFP theta (top). On the other hand, a peak at a value
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precession rates across gain values. Slope = 0.736, r* = 0.243, F, 3, = 26.9,
P=1.45x10"%; F-test. d, Schematic of the formation of a theta sequence. Colored
ticks represent bursting activities from respective place cells. e, Example place
cell pair and its CCG. Left: position-phase plot of two place cells (blue, yellow)
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arrow. The peaks appeared at a period matching the LFP theta (-125 ms).
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place cell firing (Extended Data Fig. 3a). Intuitively, His the ratio of
distance traveled in the internal, cognitive map divided by the dis-
tance traveled in the lab frame. Given that the constantly changing
hippocampal gain duringepoch 4 isincompatible with the NPR metric,
we quantified phase precession using circular-linear regression (the
same applies to condition (2)). In the landmarks-off condition, phase
precessionwaslocked to the hippocampal frame of reference (Fig. 4b).
Other parameters were also invariant (Extended Data Fig. 3c,d). In
condition (2), we looked at sessions in which the hippocampal gain (H)
decoupled from one-to-one correspondence with the experimental
gain (G) during epochs 2 and 3 (Fig. 4c). In these sessions, the map
drifted as a coherent ensemble relative to both the experimentally
controlled landmarks and the lab frame, demonstrating a weaker, or
alack of, control of the allothetic cues over the hippocampal map in
these sessions (Extended Data Fig. 3e-g)®***. By limiting the analysis
to laps with landmark failure (H/ G less than 0.9 or greater than 1.1),
we found that the precession was locked to the hippocampal frame of
reference (Fig. 4d). Other parameters were also similar between the
two groups except for aslight increase in the correlation coefficients
in the landmark failure condition (Extended Data Fig. 3h,i). Overall,
the results from conditions (1) and (2) demonstrate that the scaling
of phase precession is a product of the hippocampal gain rather than
a direct readout of allothetic inputs. Together with results from the

previous subsections, phase precessionis arobust phenomenon that
emerges in the frame of reference at which the spatial tuning of place
cellsis maintained.

Multiplexed theta phase coding revealed in single traversals
Theresults thus far demonstrated that phase precession is maintained
in the hippocampal frame of reference under conditions of conflict-
ing allothetic and idiothetic inputs. However, it is unclear whether
phase ‘procession’ is also maintained under these conditions. To gain
access tothedetailed structure of phase coding, we analyzed the firing
patterns of single traversals through the place fields. Single-traversal
phase coding exhibited high lap-to-lap variability, in concordance with
previous reports*°>¢ (Fig. 5a). Interestingly, the overall distribution of
single-traversal phase coding slopes was multimodal (Fig. 5b). Although
the majority of traversals had negative slopes (mode = -160° per
field), many traversals showed positive slopes (mode =150° per field).
Similarly, a large portion of single traversals exhibited positive cor-
relation coefficients (Extended DataFig. 4a,b). The observed positive
slope could not be explained by a continuous precession combined
withasuddendropinfiringratearound the center of the field (Extended
DataFig. 4c-f).

The prominence of positive position-phase correlationat the end
of the field led us to hypothesize that the whole-field positive-slope
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traversals may reflect traversals that contain bona fide phase pro-
cessions in the second half of the field (as observed by Wang et al.”’),
whereas whole-field negative-slope traversals reflect prominent pre-
cessionthroughout thefield. Indeed, when we created position-phase
plots using either only negative-slope or positive-slope traversals, we
observed a clear difference in the theta phase occupancy (Fig. 5¢).
Although the negative-slope traversals resulted in a continuously
precessing structure in the later phases of theta, positive-slope tra-
versals exhibited a two-lobe structure, with components of initial
phase precession at later phases and a second lobe at earlier phases
oftheta. The two-lobe structure became more evident when comput-
ing the difference between the two plots and thresholding at zero,
which visualized the subspace in the position-phase space where
one type of traversal contributed more than the other (Fig. 5d). The
two lobes in Fig. 5d occur at theta phases where forward and reverse
theta sequences have been observed® (forward window: -110° to
60°, reverse window: 80-230°), matching the association of phase
precession and procession to forward and reverse theta sequences,
respectively. By performinga circular-linear regression using spikes
that belong to the forward or reverse windows”, we confirmed that
thetwo lobesindeed correspond to phase precession and procession
(Fig. 5e,f). Similarly, spike phase spectrum analysis using only spikes
from either one of the two windows showed lower NPRs in the reverse
window compared with the forward window (Fig. 5g), indicating that
the theta-modulated firing of place cells slowed down in the early
phases of theta.

To quantify the difference in phase occupancy between the
negative-slope and positive-slope traversals, we defined the second
lobe index (SLI) as the proportion of total spikes that occurred in the
reverse window. Positive-slope traversals showed asignificantly higher
contribution to the second lobe compared with the negative-slope
traversals (Fig. 5h). The same qualitative effect was observed for all
fiveindividual animals (Fig. 5i; P= 0.0313; binomial test). Together, the
prominence of procession within single traversals can be measured
using both the slope of the circular-linear regression and SLIs.

Phase procession diminishes under cue conflict

Using single-traversal phase coding, we next asked how phase pro-
cession is affected under a persistent conflict between allothetic and
idiothetic spatial cues, which requires continuous encoding of new
relationships between the two cues**'. By looking at the single-traversal
slopes, we found that the proportion of positive-slope traversals
decreased in low and high gains (that is, when G deviated from 1)
(Fig. 6a). The effect was maintained even after limiting the analysis to
traversals with strong firing (=25 spikes), indicating that the observed
difference is not due to traversals with weak firing that could yield

erroneous estimation of the slopes (Extended Data Fig. 4g). The cor-
relation coefficient showed a similar effect (Extended Data Fig. 4h).
The phase offset of single-traversal phase coding showed a complex
response to gain, withashift to earlier and later phasesin low and mid
gain conditions, respectively (Extended DataFig. 4i). As predicted from
the relationship between the sign of slopes and phase occupancy, the
overall position-phase plots also demonstrated a diminished second
lobe in the low and high gain conditions (Fig. 6b). In fact, whereas the
mid gain condition showed SLIs similar to the G =1 condition, both
low and high gain conditions exhibited decreased SLIs (Fig. 6¢). The
changein SLIs across gain conditions could not be explained by other
variables, including theta frequency, traversal distance through the
fields, animal’s speed, time passage and sampling bias of unimodal/
bimodal cells (Extended Data Figs. 5 and 6). The results suggest that
the constantencoding of new associations between allothetic and idi-
otheticinputswhen G # 1, regardless of the sign of the error, selectively
disrupts phase procession.

Tofurthertesttheideathat phase processionrequiresastable and
coherent association of allothetic and idiothetic spatial inputs to the
CAl place cell network, we analyzed data from epoch 4, when visual
landmarks were turned off. Given the absence of salient allothetic cues
duringepoch 4, the hippocampal mapis driven primarily by idiothetic
inputs. We observed that SLIs decreased in this condition compared
with epoch 1, when salient allothetic cues were available (Fig. 6d and
Extended Data Fig. 4j). The result is consistent with the increased
demand to encode new associations between pathintegrationinputs
and less salient landmarks in the lab environment that were previously
overshadowed by the prominent visual landmarks in the Dome.

Lastly, we asked how theincoherenceinallothetic and idiothetic
cues affected the two major input streams onto CA1:CA3 and entorhi-
nal cortex layer Il (ECIII). The strength of CA3 and medial EClll inputs
are thought to bereflected in the level of coupling of CAlspikes with
the slow and medium gamma oscillation in the LFP*7° (Extended
DataFig.7a; butseerefs. 71,72). We quantified this interaction using
spike-LFP coupling, which measures the degree of phase locking of
spikes to different frequency components in the LFP. If allothetic
andidiotheticinputsinto CAl are anatomically segregated into CA3
and ECIII pathways, we would expect that spike-LFP coupling to the
input that provides allotheticinformation to be unaffected by the gain
manipulation under landmark control, whereas the idiothetic input
would be affected. Thus, the gain manipulation would affect only the
low or medium gamma bands. On the other hand, if both CA3 and
ECIllinputs conjunctively encode allothetic/idiotheticinformation,
we would expect that spike-LFP coupling to both gamma bands to
be altered. We observed that the spike-LFP coupling relative to the
G =1conditionwas elevated during low and high gain manipulationin
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coding. a, Overall (left) and single-traversal (right) phase coding of an example
unit. Laps 12 and 13 show phase procession. b, Distribution of single-traversal
slopes. ¢, Smoothed position-phase plots of negative-slope (left) and
positive-slope (right) traversals. d, Difference in the two smoothed position-
phase plots, with negative values set to 0. White dashed lines represent the
contour of the overall phase coding structure. Gray horizontal dashed lines
indicate the range of forward (-110° to 60°; left) or reverse (80 to 230°; right)
windows. e, Circular-linear regression slopes in the two windows. Forward:
B=-54.6,s.e.=3.76,(490) = -14.5, P=1.03 x 10™>; reverse: f=33.9,s.e. =3.76,
t(490) =9.02, P=4.23 x107%5; forward versus reverse: S = 88.5,s.e.=5.32,
t(490) =16.6, P=4.35 x 107, ¢-statistics/two-sided P values from the LMEM
followed by FDR correction. f, Circular-linear correlation coefficients in the
two windows. Forward: 8=-0.293,s.e. = 0.0127, £(490) =-14.5,P=1.03 x 10~;

Correlation coefficient

reverse: f=0.184, s.e. = 0.0127,£(490) = 9.02, P=4.23 x 107, forward versus
reverse: f=0.477,s.e.=0.0180, t(490) =16.6, P=4.35 x 10™*; t-statistics/
two-sided Pvalues from the LMEM followed by FDR correction. g, Normalized
precession rates in the two windows (n =148 pairs). f = -0.112, s.e. = 0.0406,
t(294) =-2.76, P= 6.23 x 10°73; t-statistics/two-sided Pvalue from the LMEM.

h, SLIs of negative-slope and positive-slope traversals (n = 226 pairs). = 0.0856,
s.e.=9.86 X107, £(450) = 8.68, P=7.17 x 107Y; t-statistics/two-sided Pvalue from
the LMEM. i, SLIs of negative-slope and positive-slope traversals for each animal
(n=226 pairs).Rat 515: B=0.0287, s.e. = 0.0245, t(68) = 1.17, P= 0.246; rat 576:
B=0.0658,s.e.=0.0388, t(24) =1.70, P=0.128; rat 637: = 0.0662, s.e. = 0.0152,
t(68) =4.35,P=1.19 x10™*; rat 638: = 0.0797,s.e. = 0.0187, t(60) = 4.25,
P=1.25x10"%rat692: f=0.113,s.e.= 0.0158,£(222) =7.17, P=5.38 x 10"};
t-statistics/two-sided Pvalues from the LMEM followed by FDR correction.
*P<0.01,**P<0.001.

both the slow and the medium gammarange (Fig. 6e), although only
the medium gain condition reached statistical significance (Fig. 6f,g
and Extended Data Fig. 7b). The result demonstratesincreased phase
locking to medium, and potentially slow, gamma during gain manip-
ulation, perhaps due to a decrease in more complex interactions
between spiking and gamma oscillations, such as the gamma phase
precession (that is, spiking activity advances in phase across slow
gamma cycles) that would lower the phase locking in a control con-
dition”. The possibility that the interaction between spiking and
both the CA3 and ECIII inputs are modulated by gain manipulation
suggests that both inputs contain a conjunction of allothetic and
idiothetic spatial information, with a potentially stronger influence
of ECIIl inputs when new associations between the two spatial cues
are encoded (Supplementary Text1).

A CAN model captures the modulation of the second lobe

To understand how increased demand to encode new associations
betweenallothetic and idiotheticinputs may resultin the diminishing
of the second lobe, we used the CAN model of Chu et al.*® that incor-
porates feedback inhibition to recapitulate both phase precession
and procession (Fig. 7a). The feedback inhibition term V destabilizes
theactivitybump and allowsit to oscillate around the external input,
resulting in phase precession and procession. To dissociate the effect
ofallotheticandidiotheticinputs, we decomposed the unitary external
input terminthe original model into two Gaussian inputs, /,;, and /ig;,.
The two Gaussians differ in amplitude such that the larger amplitude
was assigned to the cue that had stronger control over the hippocampal
map. For instance, during gain manipulation with landmark control,
the allothetic bump was assigned a larger amplitude to match the
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t(242) =-0.961, P=0.337, mid versus high: 8= 0.0505, s.e. = 0.0216, t(242) = 2.34,
P=0.0200; Wald test followed by ¢-statistics/two-sided Pvalues from the LMEM.
Eachviolin plot shows the median (white circle), interquartile range (gray line)
and distribution outline.d, SLIsin epochs1and 4 (n =233 units). §=-0.0419,
s.e.=0.0159, t(231) = -2.63, P=9.05 x 10°3; t-statistics/two-sided Pvalue from

the LMEM. e, Spike-LFP coupling relative to baseline (epoch1). Each line shows
mean + s.e. The gray-shaded regions correspond to frequency ranges of slow
and medium gamma. f, Spike-slow gamma coupling (n = 151 units). Overall:

W(2) =2.21, P=0.331 (two-sided); Wald test from the LMEM. g, Spike-medium
gamma coupling (n =151units). Overall: W(2) =11.7, P=2.89 x 10~ (two-sided);
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t-statistics/two-sided Pvalues from the LMEM. *P < 0.05, **P < 0.01, ***P < 0.001.

observation that the overall place cell map was stable in the landmark
frame. Note that when G =1, the two Gaussians add up to asingle Gauss-
ian, and thus the dynamics were equivalent to the original model.
When the two bumps were misaligned (that is, gain manipulation),
the idiothetic bump was periodically aligned to the allothetic bump
to account for the effect of allothetic cues correcting accumulated
pathintegration error’™7°,

Using this modified CAN model, we tested how gain manipulation
affects phase coding. Under landmark control, the place cellsare locked
totheallotheticinputs. As the gaindeviates fromlineither direction,
the corresponding idiothetic inputs will lag (G>1) or lead (G<1) the
activity bump in the cognitive map that is excited by the allothetic
cues.Inotherwords, the place cell thatisactivated at agiven moment

will receive reduced excitation due to the decreased contribution of
the idiothetic-driven position inputs onto that cell, as the idiothetic
bump excites neurons on either side of the allothetic bump (Fig. 7b).
Note that the activity bump movesin the same direction as the external
input during phase precession; in contrast, the activity bump moves
inthe opposite direction as the externalinput during procession. Due
to this asymmetry in direction, which makes phase procession more
sensitive to the strength of feedback inhibition compared with phase
precession’®, the decreased excitation (hence the relative increase in
feedbackinhibition strength) should selectively impair phase proces-
sion.Under the G=1condition, when the place cell network s excited by
aunitary Gaussian input, the model units exhibit both phase precession
and procession (Fig. 7c, middle, and Supplementary Table 3). When
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Fig. 7| CAN model explains the selective diminishment of phase procession.
a, Schematic of the CAN model. The nodes represent individual place fields that
arearranged as aring attractor to match the topology of the circular track. Each
node receives an excitatory input/, arecurrent excitatory input/and feedback
inhibition components V. b, Conceptual schematics of the effect of gain. When
the experimental gain s close to1, allothetic and idiotheticinputs provide

coherent excitation to the place cell network, as the two inputs become coupled
during the prior experience. As gain deviates from 1, theincoherence in the
twoinputs resultsin a reduced excitation of the activity bump, indicated by the
lighter shading of the active neuron. ¢, Position-phase plots of model neurons
experiencing different experimental gains. Image of ratinb adapted from
SciDraw™.

theallotheticinput moves faster (G = 2) or slower (G = 0.5) than theidi-
otheticinput, we confirmour prediction of adecreasein the size of the
processinglobe with minimal effect onthe precessing lobe (Fig. 7c, left/
right). Similarly, the processing lobe diminished when the allothetic
input was ablated, mimicking epoch 4 where subtle local cues are not
yetestablished aslandmarks (Extended DataFig. 7c,d). Thus, the CAN
model provides amechanistic explanation of how novel associations of
allotheticandidiotheticinputs selectively diminish phase procession
attheearly phases of theta (Supplementary Text 2).

Discussion

Previous studies on the theta phase coding by CAl place cells largely
focused on phase precession. Using a virtual reality system that pro-
motes the continuous encoding of new associations between allothetic
and idiothetic inputs, we show that the early and late phases of theta
contain functionally distinct phase codes. Although phase precession
remained intactin the internal hippocampal frame during the encoding
of spatial inputs, the prominence of phase procession was impaired.
Thisasymmetric response was captured usinga CAN model. Theresults
demonstrate that theta phase coding consists of two modes that dif-
ferintheir reliance on spatial cues and how they may support distinct
computational processes within a theta cycle.

Thelocking of phase precessionto the hippocampal frame of refer-
ence emphasizes the adaptability of the temporal firing pattern of the
place cells. The scaling of phase precession was observed previously
in conditions where a familiar linear track was shortened™* (see also
refs. 54,56 for stretching of place fields with weakened self-motion
inputs). We extend these findings and show that the scaling can hap-
pen even when the hippocampal map dissociates from external land-
marks, indicating that the scaling cannot be solely explained by the
change in the perceptual speed derived from a specific, allothetic
input; rather, the precession speedrelative to the field size is invariant

in the hippocampal map. Such scaling might be synchronized among
the place cells by the intrinsic network connectivity**”’, as shown by
the preservation of theta-related co-firing patterns between place
cell pairs. Furthermore, studies using various ramping gain profiles
in epoch 2 will allow us to test whether scaling in theta-modulated
firing frequencies occurs continuously or in discrete steps, perhaps
quantized by the theta-nested gamma oscillations®.

In contrast to phase precession, theta-modulated activity at the
earlier phases of thetais much less understood. Our study extends the
current understanding of this two-lobe structure of phase coding in two
importantways. First, we describe aconnection between the two lobes
and trial-by-trial variability. Although phase coding has been shown to
exhibit variability on single traversals, sometimes exhibiting positive
slopes®, the observation remained largely unexplained. Our study
shows that negative-slope (that is, net precession) and positive-slope
(that is, net procession) traversals consist of spikes with different
theta phase preferences, such that they mainly contribute to the major
and the minor lobes of phase coding, respectively. Furthermore, this
relationship may relate to another line of studies demonstrating that
different types of gamma oscillations that are coupled to the ongoing
theta oscillation affect place cell firing’>”®”°, Because the precessing
and the processing lobes occupy theta phase ranges that match the
preference of slow and medium gamma oscillations, the variability in
single-traversal phase coding, two-lobe structures and different theta—
gamma coupling states may be all the same phenomena described
through different lenses.

Second, procession was impaired as the experimental gain devi-
ated bidirectionally from1, where the large conflict between the spatial
cues forced the system to encode a new mapping of allothetic cues
onto the idiothetic cue-driven internal map every lap. This finding
suggests that the two modes of phase coding are not only different
in terms of the theta-modulated spiking activity that makes them
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up (precession versus procession) but also in terms of the types of
spatial cues that contribute to them; whereas phase precession is
controlled by the most prominent cue (idiothetic or allothetic) ina
seemingly winner-take-all manner, phase procession may require a
more balanced level of excitation from these cues. One speculation
isthat the variability in single-traversal phase coding duringthe G=1
condition reflects the degree of drift between the allothetic and idi-
othetic maps, potentially caused by the amount of attention paid to
external landmarks. This view matches the result of a different study
where error trials during a delayed match-to-place task biased the
place cell firing to later phases of theta, likely due to the discrepancy
between internal estimates of the location and the actual position®.
Interestingly, another study also reported a shift in theta phase pref-
erence inside a body-fixed virtual reality setup that causes conflict
within self-motion cues®, which may reflect a similar phenomenon
observed here.

What does the dissociation of the two modes of phase coding
tell us about their functional roles? The two ranges of theta have been
implicated indistinct functional properties. Inthe late phases of theta,
place cells exhibit phase precession that leads to the prediction of
future trajectories via forward theta sequences*>>%"% In the early
phases of theta, two processes are hypothesized to take place. First,
inthe framework proposed by Hasselmo et al.””, the early theta phase
range is specific for the encoding of new information, where the level
of plasticity is heightened®**. By allowing dendritic depolarization
to induce plasticity at individual synapses while suppressing axonal
spikingactivity, the network canreduce interference betweenthe new
associationand previously stored associations (memories) that might
be activated by the current inputs. Such subthreshold plasticity in
hippocampal cells was shown ex vivo®* and was later observed in place
cellsinvivo®. Second, the spiking activity in the early phases of theta
as rats navigated a familiar environment, where the cognitive map is
already established, formed aretrospective (reverse) theta sequence;
suchreverse-ordered sequences are hypothesized toserve as the sub-
strate of reverse replay events for value learning during subsequent
rest epochs®®, These ideas can be unified into aframework where late
phases of theta are reserved for phase precession-based prediction,
whereas early phases of theta can be used for either encoding or phase
procession-based reversed retrospective sequences, depending on
the cognitive demand.

The framework described above concurs with the results of the
present study. Our discovery of a substantial loss of spiking in the
early theta phase whenthereis anerror between the pathintegration
prediction oflocation and the landmark-based location information
strongly supports the model of Hasselmo et al.>”, as this spatial pre-
dictionerrorislikely to be the signal that generates plasticity to recali-
brate the path integration gain*”*°*!, At the same time, the reduced
occurrence of phase procession and reverse thetasequences will likely
reduce thereverse replay-based consolidation of these states, where
the association of allothetic and idiothetic cues is not established.
Notably, such switching in the firing pattern spares the activity at
later phases of theta and preserves the ability to continuously predict
the animal’s future location. Given that theta phase coding is also
observed during non-spatial behaviors’”**** and in numerous brain
regions®*?, the different dynamics of phase precession and proces-
sion may serve as a general circuit logic that allows flexible control of
prospective representation, retrospective evaluation and encoding
of newinformation.
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Methods

All animal care, housing procedures and experimental procedures
complied with National Institutes of Health guidelines and followed
protocols approved by the Institutional Animal Care and Use Commit-
tee at Johns Hopkins University.

Subjects

Five male Long-Evans rats (Envigo Harlan; 5-8 months old at the time
of surgery) were used in this study. Animals were housed individually
onal2-hourlight/dark cycle. Some dataincluded in this analysis were
used in previous publications for different purposes*”*°.

The Dome apparatus

The planetarium-style, virtual reality environment (the ‘Dome’) con-
sisted of a hemispherical projection shell (2.3-m inner diameter) and
anannular table (152.4-cm outer diameter and 45.7-cminner diameter).
Theinterior surface of the shell served as a projection screen. Anannu-
lar ring was projected near the zenith throughout the session to provide
illumination, and an array of visual landmarks was projected below it.
Thevisual landmarks were stationary (epoch 1), rotated in response to
the animal’s movement (epochs 2 and 3) or disappeared (epoch 4), as
detailed in the ‘Experimental procedure’ subsection.

The annular table, concentric with the shell, served as a one-
dimensional circular track for the animals. The animals were harnessed
onto a radial arm via two three-dimensional printed arms; the radial
armwas connected to acommutator placed inthe center of the table.
Aliquid reward vial, pump and battery were mounted on the commu-
tator drum. The displacement of the radial arm was monitored using
anoptical encoder. To mask auditory cues, white noise was played by
aspeaker underneath the table.

The experiment makes use of multiple frames of reference to
control the visual scene. The lab frame is the location of the animal
relative to theroom, and the landmark frame is the location relative to
the array of landmarks. A third frame of reference is the hippocampal
frame, whichis thelocation decoded from the activity of hippocampal
place cells and will be discussed later (see the ‘Hippocampal gain and
the hippocampal frame of reference’ subsection). The motion of the
visual scenes was governed by the experimental gain, G, such that
G x (displacement in lab frame) = (displacement in landmark frame).
For instance, landmarks are stationary at G =1, and landmarks move
proportionally to the animal’s movementin the same direction as the
animalwhen G <1andinthe opposite directionas theanimalwhen G >1.

Experimental procedure
After animals were trained to run counterclockwise in pursuit of aliquid
reward (Yoo-hoo or 50% diluted Ensure) onacircular track, hyperdrives
with six (two rats) or 12 (three rats) independently movable tetrodes
wereimplanted. After surgery, tetrodes were advanced to the CAlacross
days, and rats were trained inside the Dome to recover their running
behavior. For the experimental sessions, a unity-gain headstage was
connected tothe hyperdrives, and the spiking (600-6,000 Hz) and the
LFP (1-475 Hz) signals were digitized at 30 kHz and recorded through
Cheetah 5 recording software (Neuralynx). Rats ran counterclockwise
inpursuit of the liquid reward that was provided at pseudorandominter-
vals (auniformdistribution with means 40-80°), pulling the radial arm
with them, until they completed the required number of laps; the num-
ber of laps was determined based on the final experimental gain value.
For the first 1-3 sessions, landmarks were stationary (G =1) and
were turned off after 30 laps. Subsequent sessions consisted of four
epochs. In epoch 1, landmarks remained stationary (G=1), and the
length varied across animals (four laps for rats 515 and 576, six laps for
rats 637 and 638 and 15lapsforrat 692).Inepoch 2, Ggradually ramped
up or down linearly until it reached the final gain value for epoch 3.
Thegainramprates ranged from 1/128 to 1/26 (gain change per lap).In
epoch 3, Gwas maintained at the final gain value. The final gain values

were as follows: 0,0.9375and 1.0625 for rat 515; 0.25,0.5,0.9375,1.5,1.6
and1.75forrat576;1+n /13 (n=2, 6 and 10) for the remaining animals.
The valuesfor the last three animals were chosen such that the position
of the animal in the lab and the landmark seldom aligned (once every
13 laps). In addition, rat 637 had a session with Gg,, = 0, and rat 692
had two sessions with Gy, = 0.1. In epoch 4, landmarks were turned
off, and ratsraninside the Dome with only the spatially uninformative
ring light. The sessions were ordered such that the same final gains
did not repeat in consecutive days (other than a few exceptions) and
that the gain deviance from 1 mostly increased over sessions. From the
quantitative analyses, gain values were grouped into low (0.1-0.7), mid
(0.7-1.3) and high (1.3-1.9) gain conditions.

Unitinclusion criteria

For all data analysis, MATLAB 2023b, as well as various MATLAB pack-
ages, was used. Sessions that contained epochs 1-4 were used in the
analysis (a total of 51 sessions), excluding familiarization sessions and
sessionsthat were terminated halfway due to poor behavior of the ani-
mal. For these sessions, spikes fromeach tetrode were sorted into units
using custom software (WinClust; J.J.K.). Each cluster was assigned an
isolation quality from 1 (very well isolated) to 5 (poorly isolated). The
following procedure was used to define the units/spikes to be included
in the quantitative analysis. First, we limited the analysis to putative
pyramidal cells with good isolation quality (1-3). Units were classified
as putative pyramidal cells using k-means clustering based on the firing
rate, spike durationand autocorrelation®. Second, for units that passed
the above criteria, spikes during immaobile periods (movement speed
<5° per second) were removed from the analysis. Third, to ensure that
we were analyzing only units that displayed robustactivity, each unit was
required to fireaminimum of 50 spikesinagiven epoch ofinterest to be
included in the analysis, except for the following two analyses. For the
landmark failure analysis, units with at least 50 spikes during landmark
failure wereincluded because the analyses did not segment the session
into separate epochs. For the hippocampal gain decoding analysis,
units with at least 50 spikes throughout the session were included, for
the samereason that the analysisis agnostic to the epoch structure.

Hippocampal gain and the hippocampal frame of reference

To quantify the rate at which the animal updates its location in the
hippocampal map, the hippocampal gain H (defined as the spatial
frequency of place cell firing) was computed. For example, without
any visual manipulation, H =1, meaning that a place cell with one place
field on the track will fire at one location per lap. On the other hand,
when the hippocampal mapis locked to the moving landmarks, H = G;
if G=2,the above cell will fire every 180° (twice per lap), whereas, when
G=0.5,itwillfireevery twolaps.

The hippocampal gain H was computed as follows. For each unit,
the spatial frequency spectrogram was obtained using a window of
12 laps shifted every 5°. The spectrogram was sharpened through a
reassignment procedure and thresholding. Finally, the maximum
energy trajectory was extracted upon masking out harmonics of the
fundamental frequency at each spatial bin. Once these unit-level hip-
pocampal gaintraces wereyielded, the population-level hippocampal
gain H was defined for each spatial bin as the median of all unit-level
hippocampal gains. The hippocampal frame was defined as a refer-
ence frame that rotated with a gain value H. A session was defined asa
landmark control sessionif the mean value of H/ G during epochs 1-3
was 0.9-1.1, meaning that the hippocampal map was anchored to the
landmarks. Sessions that passed this threshold were used for further
analyses (except for the landmark failure analysis).

To quantify the coherence of the hippocampal population, we
defined a coherence error score for each unit as the session median of
[1-H,/ H|, where H;is the gain of unit i and H is the median gain of the
session computed with H;excluded. If the gains of individual place cells
are nearly identical to each other, the error score should be close to 0.
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Definition of place cells and place fields
All subsequent analyses were limited to cells that were classified as
place cells. To this end, the spatial information (SI) score” was com-
puted for each cellin the landmark frame as

N

747

where p;isthe occupancy probability of the animalinbin; A;isthefiring
rate in bin i; and A is the mean firing rate. Units with (1) SI > 0.7 and (2)
SI=95% of circular shifted SIs during epochs 1-3 were defined as place
cells.Here, the circular shifting procedure was performed as astatistical
test that preserved the temporal structure of spike trains; the shifting
procedure candecouple the temporal structure of the spike train from
the animal’s position when the trajectory is highly variable (for example,
openarena). However, the animalsin our task ran on acircular track at
relatively regular speeds, yielding regularized trajectories; as aresult,
simple shifting more likely retained the coupling of the spike train and
the animal’s position. To reduce such spurious place tuning, we first
inverted the spike trainin time; for instance, spikes emitted at the begin-
ning of the session were now assigned to the end of the session®. Shifts
werethensetevery 0.5 seconds starting from 15 seconds after the begin-
ning of the session until 15 seconds before the end of the session. For
epoch 4 and landmark failure sessions, place cells were defined sepa-
rately using the hippocampal frame to compute the Sls, because there
was no external frame to which the place cell firing was locked.

To define place fields, the circular positioninthe landmark frame
was quantized into 1° bins. To create a place tuning curve for each
epoch, thenumber of spikes was divided by the time spent by the animal
ineachbin, both smoothed using a circular kernel density estimation
(Gaussian kernel width = 4°). Place fields were defined from the tuning
curve as consecutive bins of at least 25° in size whose firing rate was
atleast 10% of the maximum firing rate. To avoid artificial splitting of
fields when the firing rate fell below the threshold for shortintervals,
fields that were closer than 10° were concatenated””*®.

To control for the subtle yet continuous shift in the field position
relative to landmarks that often occurred during gain manipulation®*
(for example, the slow drift in the place field location in the land-
mark frame between laps 30 and 80 in Fig. 1e), we defined lap-based
fields by assigning the first and the last spike that occurred within the
lap-averaged field for agiven lap as the start and the end of the field,
similar to ref. 80. Lap-based fields were defined only for laps with at
least three spikes. The lap-based place field size was defined as the
median of the lap-based firing range (distance between the first and
last spikes) across laps. For field-based analyses, fields with at least 50
spikes wereincluded inthe analysis. Because of remapping events dur-
ing gain manipulation”, place fieldsin epochs1and 3 were treated as
independent data points. For epoch 4 and landmark failure sessions,
place fields were defined in the hippocampal frame of reference.

LFP extraction

For each experimental session, the tetrode with the strongest mean
theta power was used to extract the thetacomponents usinga 6-12-Hz
bandpass Butterworth filter. The Hilbert transform was applied to
the signal to obtain the phase and amplitude of theta components.
To account for differencesin theta phase depending onthe recording
sites”” and to allow comparison across sessions and animals, zero phase
was defined for each recording session as the phase with maximal CA1
pyramidal cell activity. In two of the sessions, owing to the poor sam-
pling of cells, the estimated zero phase seemed to be 180° offset (as
judged by the position-phase plot of phase precession). For these two
sessions, this phase offset was manually corrected. The correction d
id not qualitatively change the results reported here. Gamma compo-
nents of the LFP were extracted by band-passing the signal from 30 Hz
to 240 Hz and applying a continuous wavelet transform (31 Morlet

wavelets with logarithmically equidistant frequencies in the range
specified above).

Theta modulation modality of place cells

Although many place cells in the hippocampus preferentially fire at
the trough of the local theta oscillation in the stratum radiatum, thus
exhibiting unimodality, some cells exhibit bimodality, also firing at
the peak. The second peak arises in deep-layer cells due to increased
innervation from ECIII (ref. 100). To categorize these two types of place
cells, we defined the modality of place cells by the number of peaks
in the theta phase preference histogram. The theta phase preference
histogram was created by compiling the LFP theta phase at which spikes
occurred during mobility in epochs 1 and 3. First, theta modulation
was tested against a uniform phase distribution (Hermans—Rasson
test, P< 0.05). Note that the use of the Hermans-Rasson test allows for
the detection of a multimodal distribution, in contrast to the circular
Rayleigh test that assumes a von Mises distribution'®’. All units passed
the test. To characterize the modality of thetamodulation, asmoothed
phase preference curve was created using circular kernel density esti-
mation (bin width =10°, Gaussian kernel width =12°). The firing rate
index* was obtained from this smoothed histogram by first dividing
the values by the maximum value and then subtracting the minimum
value of theresulting histogram. Peaks of the histogram were included
in the analysis if they met the following criteria: peak prominence
>0.05, peak height >0.3 x (max peak height), peak distance =50° and
peak width >30°. Units with one peak and two peaks were classified as
unimodal and bimodal units, respectively. Units with more than two
peaks were left unclassified.

Quantification of phase precession

Foreach placefield, the relationship between the normalized position
and theta phase for the spikes was visualized (for example, Fig. 1a). A
small number of precessions showed doublets, where a single field
contained two precessions, presumably due to two fields that were
adjacent to each other** these doublets (n = 10) were removed from
further analyses. To characterize the position-phase relationship, we
obtained the slope as afirst-order structure parameter using circular-
linear regression®. The analysis allows us to treat position as a linear
variable and theta phase as a circular variable. In brief, for the mean
resultant length R defined as

1 «n 2 1 «n 2
R= \/[ﬁ ijl cos(; — 2naxj)] + [E ijl sin(g; — 2max ;)| ,

the slope d was defined as the parameter a that maximized R with
rangerestricted from-4m to4m. Two additional parameters, the phase
offset and correlation coefficient, were also computed. The phase
offset was derived as

Z;'ﬂ sin(¢ ; — 2mdx )

$o = arctan — —.
Ej:l cos(¢ ; — 2madx )

The circular-linear correlation coefficient was computed as
5. Y, sin@ ; - §)sin(6; - 6)
\/Z;;l [sin(g; — (f))]2 Z}’zl [sin(8; — 9)]2

where 6; = 2r|d| x ; (mod 2m) and ¢ and  are circular sample means.
Parameters for single-traversal statistics were computed similarly using
spikes from each lap separately.

To quantify phase precession during epoch 4 and landmark failure
sessions, where the place cell firing was not locked to either the land-
mark or the lab frame, circular-linear regression was performed with
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position based on the hippocampal frame. The mean hippocampal
gain during the epoch was used as the gain experienced by the cell.
Equivalent analysis was done for landmark failure sessions, except that
only landmark failure traversals (H/ G >1.10or H/ G < 0.9) were used.
One of the landmark failure sessions had a hippocampal gain locked
to the lab frame, potentially due to residual local cues and, thus, was
eliminated from the analysis.

Spike phase spectrum analysis

To quantify the theta-modulated firing frequencies of cells, we used
spike phase spectrum analysis'®*". The analysis is similar to standard
spectral analyses, except that the frequency is defined in relation to
the LFP theta phase and not time. This modification allows for quanti-
fication of the difference in theta-modulated place cell firing and the
LFP theta frequency while allowing for the theta frequency to change
over time. Inthis analysis, aspike frequency of 1corresponds to afiring
lockedtothethetarhythm, whereasavalue greater than1corresponds
to spike bursts occurring faster than the LFP (phase precession).

To compute the spike phase spectrum, the LFP theta phase was
first unwrapped such that the phase monotonically increased with
time. A spike train was constructed by binning the LFP theta every r/90.
The power spectrum was computed from the spike train viaThomson’s
multi-taper power spectral density estimate using Slepian tapers with
a time-half-bandwith product of 4. The resulting spectrum was
smoothed with a Gaussian kernel (kernel width =100 bins), and the
theta-modulated peak was defined as the peak frequency between 0.7
and 1.3. Prominent theta peaks were defined as those whose mean
power around the peak (width of 0.05) was larger than double the mean
power between 0.5and 0.7 and between 1.3 and 1.5 (ref. 57). Fields with
prominent theta-modulated peaks were included in the analysis. Raw
precessionrate was defined as the peak frequency from the spike phase
spectrum - 1. Because the spectral analysis requires that the animal is
running continuously, only sessions withgood running behavior (mean
speed >20° per second) were included.

Burst frequency is known to be modulated by the field size
and the animal’s running speed’®. To isolate the effect of gain on the
theta-modulated firing properties, we computed an NPR, defined as
(raw precessionrate) x (field sizeinlandmark frame) x (mean theta fre-
quency) / (mean animal speed). This index was derived as follows. The
timeit takes for theanimalto traverse throughafieldis given as (field size
inlandmark frame) / (animal speedinlandmark frame). At the same time,
thetimetocompleteafull precessionis1/ ((raw precessionrate) x (theta
frequency)) assuming linear precession. By equating the two terms
and using the fact that (animal speed in landmark frame) = (animal
speed) x G, we obtain (raw precession rate) x (field size in landmark
frame) x (meanthetafrequency) / (mean animalspeed) = G,or NPR=G.
Thus, under theassumption of linear precession that extends afull theta
cycle, NPR should scale linearly with gain at a slope of 1. Three outlier
units (NPR < -3) were removed from the analysis when estimating the
slope, but this exclusion did not significantly alter the results. Note that
multiplyingthe precessionrate by the meanthetafrequency is different
from taking the difference between the mean burst frequency and the
mean theta frequency because the formeris amore sensitive measureif
the bursting and LFP theta frequencies vary over time within a session.
Results held using the raw precessionrate. Spike phase spectrumanalysis
fortheforward/reverse windows was done similarly but only using spikes
that occurred in the respective theta phase ranges and only using cells
that showed prominent theta peaks inboth windows.

Theta compression

Theta phase precession is associated with the formation of forward
thetasequences, where asequence of place cell firing is reinstantiated
within a single theta cycle'”°. To quantify this theta compression, the
CF was computed as follows. First,among place cells with single place
fields, we selected pairs of place cells with overlapping fields (overlap

>10°; pairs where one field was engulfed in the other were excluded)
and similar place field sizes ((larger field size) / (smaller field size) < 2).
Second, for each place field pair,a CCG was computed with 5-ms bins,
followed by a Gaussian smoothing (kernel width = 50 ms). Third, the
theta-scale time lag was computed as the highest peak of the CCG
within125 ms (or -125 ms, depending on the spatial sequence of place
fields traversed by the animal). Previous studies showed that when
theta sequences are observed in a given theta cycle, cells with nearby
placefieldsfire closely intime, resulting in the CCG peaking around O;
ontheother hand, place cells with fields that are further apart fire with
alarger temporal delay, producing a larger offset of the CCG peak®.
CCGs that did not have a peak in this range or with the largest peak in
the opposite sign compared with predicted were excluded from this
analysis. Lastly, CF was defined as the ratio between the theta-scale
timelagand the distance between the center-of-mass of the two place
fieldsinthelandmark frame.

Quantifying burst and theta skipping dynamics

To compute the burst dynamics, spikes that occurred within 6 ms of
another spike were considered a part of burst firing, whereas spikes that
did not belong to bursts were treated as isolated spikes'**'*>. Bursting
rate was defined asthe number of bursting events relative to all events
(bursts and isolated spikes). To quantify ‘theta missing’, theta-missing
index was defined as the rate of inter-burst intervals (IBls) that were
greater than1/6 seconds. To ensure that we were notincluding longIBls
due to intermittent pausing, we excluded IBIs that were greater than
1second. Theinclusion of all IBIs within a traversal did not change the
result qualitatively. To quantify the rate of alternate theta skipping,
where cells fire at every other theta cycle, autocorrelograms (ACGs)
were computed with a 5-ms bin, smoothed with a Gaussian kernel
(kernel width = 50 ms) for cells with single fields***’. If a cell spikes
every theta cycle, the corresponding ACG will exhibit a high peak at
around 125 ms together with lower peaks at its harmonics (250 ms,
375 msandso on). Onthe other hand, if the cell systematically fires at
every n-th cycle, the ACG will exhibit high peaks at around 125 x n ms.
The theta-modulated peak (peak 1) was defined as the highest peak
between1/12 seconds and 1/6 seconds and peak 2 as the highest peakin
therange1/6-1/3 seconds. From these peaks, the theta skipping index
was computed as (peak 1 - peak 2) / max(peakl, peak2).

Quantifying the two-lobe structure
To examine whether the occupancy of spikes in position-phase space
differs between positive-slope and negative-slope traversals, we com-
piled spikes thatbelong to one of the two types of traversals. Each spike
was convolved with a Gaussian kernel for smoothing, and the overall
position—-phase plot was normalized. The two resulting smoothed
precession plots were subtracted from each other to visualize the sub-
space within the position-phase space that was occupied more by
negative-slope traversals than positive-slope traversals (and vice versa).
To quantify the prominence of phase procession, we first assigned
each spiketooneof thetwolobes by using the phase range that was pre-
viously reported to show forward (-110° to 60°) and reverse (80-230°)
theta sequences®. Forward and reverse theta sequences emerge from
phase precession and procession, and the phase ranges matched the
range at which the two lobes were observed in our data (Fig. 5d). Using
these two phase ranges, the SLI was defined as the proportion of the
spikesinthe reverse window; the larger the valueis, the phase code con-
tainsastronger processing component. SLIwas computed for individual
traversals, and the medianSLIvalue for each cellwas used for the analysis.
Several control analyses were done to test if the change in the SLI
canbe explained away by factors other than gain. To control for the dif-
ferenceinthetafrequency, we binned the traversals based onthe mean
thetafrequency of the traversal (binwidth = 0.5 Hz), and the SLIs were
randomly shuffled within each frequency bin (Extended Data Fig. 5a).
Werecomputed the SLIof each cell using these shuffled values, and the
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medianSLIs for each of the four gain groups (epoch 1, low, mid and high)
were obtained. This shuffling process was performed 1,000 times, and
the Pvalue was computed by comparing the difference in median SLI
values fromepoch1andthe low/mid/high groups against the true dif-
ference. Tostrictly enforce equal sampling of theta frequencies, median
SLIvalues were computed only using frequency bins that were sampled
by all four groups. Similar shuffling analyses were done for traversal
distance through the fields inthe lab frame (bin width = 30°), animal’s
mean speed (bin width =10° per second), time passed since the start
of the experiment (bin width =100 seconds) and theta modulation
modality. Note that, for the shuffling in time, only epoch 3 was used
because epochs1and 3 were by definition separated in time.

Theta-gamma coupling/spike-LFP coupling
To visualize gamma components coupled to the underlying theta
rhythm, we used an unsupervised clustering algorithm developed by
Zhangetal.'”.Inshort,afrequency and theta phase power (FPP) matrix
was computed for each theta cycle using the LFP signal. A k-means
clustering algorithm was employed to detect groups of pixels whose
power was co-modulated across theta cycles. The detected compo-
nentswere thenranked in the order of central frequency, and the first
two components were labeled as slow and medium gamma (Extended
Data Fig. 7a). Note that the frequency ranges of these components
match previous literature®®'*, For each session, gamma components
were extracted by averaging over the components extracted fromtet-
rodes that contained place cells. The resulting components showed the
slow gamma componentin approximately 20-60 Hz and the medium
gamma component in approximately 70-140 Hz. Spike-LFP coupling
analysis was limited to frequency ranges higher than 30 Hz to avoid the
leakage of theta harmonics'**.

To measure how the spiking activity is locked to the underlying
LFP, spike-LFP coupling was computed using the mean resultantlength
(MRL) of phases of each frequency. Spike-LFP coupling measures are
known to suffer from two issues. First, spectral contents of individual
spikes can contaminate the LFP even down to 50 Hz'* . Such spectral
leakage canlead to spurious spike-LFP coupling. Second, MRL is highly
sensitive to the number of spikes used for the analysis'°®. To address
theseissues, the spike-LFP coupling indices were computed for each
cell as follows. First, among all tetrodes that contained place cells,
the tetrode that contained the cell of interest was excluded from the
analysis to minimize spike leakage. Second, for each of the remaining
tetrodes, MRL was computed for each frequency component of the LFP.
Here, the spikes were randomly downsampled to 50 before computing
the MRL, addressing the issue of spike number dependence of MRL.
This procedure was performed 50 times, and the maximum value of the
mean MRL across tetrodes was taken as the spike-LFP coupling index of
the cell. Mean spike-gamma coupling values during the G =1 condition
for each frequency were subtracted to obtain the baseline-subtracted
spike-LFP coupling. Peak values of the resulting spike-LFP coupling
strength in slow and medium gamma frequency ranges for each cell
were used for analysis.

Continuous ring attractor model

Toaddress a potential mechanism that gives rise to the observed result,
weadopteda CAN model of Chu etal.* that reproduced abehavior akin
to theta phase precession and procession'°*"'°, The model consists
of a CAN with the addition of feedback inhibition connections to
each node that destabilizes the activity bump. The CAN framework
is constructed such that each node x represents a place field, and
the synaptic input received by the corresponding place cell and its
activity level are denoted as U(x,t) and r(x,t), respectively. The nodes
send recurrent connections to each other, denoted as J(x,x’), where
fields closer to each other send stronger excitations, typical of CAN
models. Here, the connectivity ismodeled as a ring attractor to mimic
the circular track used inthe Dome. When an external excitatory input

Lo 06,8) = Lo (X, 8) + 1iio (x,0) is applied, the recurrent connection allows for
the formation of astable Gaussian activity bump centered around node
xunder coherent allothetic and idiothetic inputs. However, eachnode
alsoreceivesafeedbackinhibition component V(x,t), which destabilizes
the activity bump. In a certain regime between the balance of excita-
tory and inhibitory inputs, the network exhibits oscillatory tracking,
where the activity bump oscillates around the external excitatory input.
Under this state, the activity of each node was shown to exhibit phase
precession and procession relative to the network oscillation. During
experimental gain manipulation, the speed of the allotheticinput was
faster (or slower) thantheidiotheticinput by afactor of G.In such cases
of incoherence in allothetic and idiothetic inputs to the network, the
idiotheticinput was periodically aligned to the allotheticinput (every
D (m) of movement in the idiothetic frame) to account for the influ-
ence oflandmarks to correct for cumulative path integration error™ 7,

More formally, the dynamics of the CAN model can be described
as follows:

n
rdU,(;’ D= Um0 +p [ JOXIE. A - VEO+ el 0
-

Joexy = o exp<_<x—x')2>
? \/fm 2a?
gux. b’
rx,t) =

1+kp " UG, 0 dx’

o - vty

4q2 ]for i = allo, idio

I; (x,t) = a;exp [—

where the description of each parameter can be found in Supplemen-
tary Table 3. Note that the synaptic input U(x,t) and the activity level
r(x,t) arerelated viadivisive normalization. From the resulting simula-
tion, the theta phases at each timepoint were obtained vialinear inter-
polation between the peaks and troughs of the network oscillation. For
adetailed analysis of the model, refer to Chu et al.*.

Statistics

Linear mixed-effects models (LMEMs) were used for most analyses
unless stated otherwise. Here, the response variable (for instance, field
size) was modeled with a group variable (for instance, gaingroup) asa
fixed effectand ratID and session ID as random effects. When comparing
more thantwo groups, a Wald test was first used to assess whether there
was an overall effect of the group variable; if significance was found, the
t-statistics of each group pair comparison were reported. In cases where
each unit contributed two data points (Fig. 5e-i), unit ID was added as
anadditional random effect to account for the paired data.

For phase offsets, hierarchical bootstrapping was used, because
the circular nature of phase isincompatible with asimple LMEM. First,
five rats were randomly sampled with replacement from the five rats
inthe original dataset. Second, for each sampled rat i, k sessions were
randomly sampled with replacement, where k equaled the number
of sessions from rat i. Third, circular means were computed for each
gaingroup from thisbootstrapped sample, and the circular distances
between gain groups were obtained. Lastly, this procedure was per-
formed 1,000 times, and the significance of the observed circular
differences was assessed by computing the two-tailed P values using
the bootstrapped distribution.

The Pearson correlation was used to test for the relationship
between epoch-based and lap-based fields. The F-test against a
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constant model was used to test for the significance of a correlation.
The two-sample Kuiper test was used to compare the shape of the dis-
tribution of phase offsets for single-traversal phase coding statistics,
accounting for the circularity of the variable. The chi-squared (x?) test
was used to test for differences in proportions. Outlier points were
removed in some plots (Figs. 3f and 5g and Extended Data Fig. 7b) for
visualization purposes but were included in all statistical analyses
unless stated otherwise. Each data point corresponds to individual
units unless specified otherwise. The reported P values are false dis-
covery rate (FDR) corrected for multiple comparisons when omnibus
tests (for example, Wald test) are not applicable: *P < 0.05, **P< 0.01,
***P < (0.001; NS, not significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Preprocessed data used to perform the analyses and generate the
figures in this paper are available via OSF at https://osf.io/nq65k/?.
Source data are provided with this paper.

Code availability
The code is available via OSF at https://osf.io/nq65k/?.
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Extended Data Fig. 1| Characterization of phase precession inside the Dome.
a, Example position-phase plots in landmark frame with different values

of G.Red lines indicate the best-fit lines of the precession, computed using
circular-linear regression. Place fields that contained double precessions are
indicated by daggers and were excluded from further analyses. b, Comparison
of precession statistics in epoch-based vs. lap-based fields. Epoch-based fields
were defined from the tuning curve of the place cell during the entire epoch,
while lap-based fields were defined as the range within the epoch-based field
thatthe cell fired inagiven lap. The lap-based field accounts for the lap-to-lap
variability of the firing field locations'. This is especially important in this
dataset, since the gain manipulation often caused a slight but continuous drift of
the field locations throughout the session, making the epoch-based field larger
than typical individual passes through the field. To test that our definition of

lap-based fields produced a position-phase plot consistent with amore standard
epoch-based field definition when fields did not have a biased drift, we compared
the statistics of precession using data from epoch 1. Lap-based definition of place
fields did not affect the correlational structure of phase coding but shallowed the
slope estimate. Left, Precession slope. Best fit line:y = 0.622x + 6.33 (rho = 0.753,
P=1.00x107%). Middle, Correlation coefficient. Best fit line: y = 0.919x - 0.0189
(rho=0.935, P=4.44 x10"%). Right, Phase offset. Best fit line: y = 1.04x -26.5
(rho=0.709, P=8.64 x10™°). Since the phase offsetis a circular variable, the

best fit line was found after wrapping around each lap-based phase offset such
that the difference with its epoch-based counterpart was less than 180 degrees.
Moreover, the correlation coefficient and the Pvalue were computed using a
circular-circular regression.
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gain (n =246 units). Overall: W(3) =2.75, P= 0.432 (two-sided); Wald test on the
LMEM. e-g, Quantification of theta-skipping®****’. e, Autocorrelogram (ACG)

of an example unit without theta-skipping. f, Top, ACG of an example unit with
theta-skipping. Note the disappearance of peak 1. Bottom, spiking of this unit
relative to theta. g, Theta-skipping index was higher (less theta-skipping) in high
gain condition compared to mid gainand G =1conditions (n = 242 units). Overall:
W(3) =14.6, P=2.17 X107 (two-sided); Epoch 1 vs. Low: 8=-0.0808, s.e. = 0.0500,
t(238) =-1.62, P=0.107, Epoch 1vs.Mid: S = -0.0438, s.e. = 0.0304, t(238) = -1.44,
P=0.150,Epoch1vs. High: =-0.146,s.e. = 0.0408, t(238) =-3.59, P=3.98 x10™*,
Low vs. Mid: #=0.0370, s.e. = 0.0552, t(238) = 0.671, P= 0.503, Low vs. High:
B=-0.0656,s.e.=0.0601, £(238) =-1.09, P= 0.276, Mid vs. High: = -0.103,
s.e.=0.0458, t(238) = -2.24, P= 0.0259; Wald test followed by ¢-statistics/
two-sided Pvalues from the LMEM. *: P < 0.05, ***: P< 0.001.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Quantification of theta phase coding in the absence of
landmarks and under conditions of failure of landmark control. a, Schematic
ofthe hippocampal gain. When the pattern of place cell firing repeats every
physical lap, the hippocampal map is locked to the lab frame (H =1). Under gain
manipulation, the same pattern repeats every nlaps (n # 1), which is defined as a
hippocampal gain of 1/n. Reproduced from'2. b, Example gain traces for epochs
1through 4 and respective position-phase plots in epoch 4. The black (G) and
blue (H) lines overlap during epochs 1-3, demonstrating the strong control of the
hippocampal map by the landmarks. Inepoch 4, the blue traces were maintained
at values different from 1, demonstrating path integration gain recalibration*’.

¢, Circular-linear correlation coefficients for epochs 1and 4 (n = 233 units).

S =0.0148, s.e.= 0.0305, t(231) = 0.485, P= 0.628; t-statistics/two-sided p-value
from the LMEM. Each violin plot shows the median (white circle), IQR (gray

line), and distribution outline. d, Phase offsets for epochs 1and 4 (n = 233 units).

P=0.556 (two-sided); hierarchical bootstrap test. e, Example gain traces of
landmark failure (LMF) sessions and respective position-phase plots during LMF.
Theblue line (H) dissociated from the blackline (G) during epochs 2 and 3.

f, Example gain traces of an LMF session from individual place cells. The thick
blue line (H) and the red lines (unit gains) overlap, demonstrating the coherence
of the hippocampal map. g, Coherence error score of all place cells recorded
during LMF as reported in Fig. 2g of 7. The dashed line indicates a coherence
error score of 0.1, analogous to the threshold defining landmark control. Most
place cells (69/85) exhibited error scores < 0.1, indicating the coherence of the
hippocampal population. Units with coherence error scores > 0.5 were grouped
into asingle bin. h, Circular-linear correlation coefficients for epoch 1and LMF
(n=137 units). f=0.0816, s.e. = 0.0397, (135) = 2.05, P= 0.0419; t-statistic/two-
sided Pvalue from the LMEM. i, Phase offsets for epoch 1and LMF (n =137 units).
P=0.802 (two-sided); hierarchical bootstrap test. *: P< 0.05.
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Extended Data Fig. 4 | Quantification of single-traversal phase coding. a,
Distribution of single-traversal correlation coefficients. b, Distribution of

single-traversal phase offsets. ¢, Constant precession canstill be fit by a positive

slope (red line). The blue-shaded region indicates one theta cycle, withadropin

firing rate in the middle of the field. d, Example single-traversal phase coding, fit
with half-field slopes. e, Proportion of half-field slopes shows the nonmonotonic
nature of many single-traversal phase coding. f, Proportion of positive half-field

slopes. The second half of the field shows increased positive-slope traversals,

suggestive of bona fide procession. x*(1) = 91.97, P=8.79 x10%; chi-squared
test.g, Proportion of positive single-traversal slopes using traversals with

strong firing (>=25 spikes). Overall: x*(3) =29.13, P= 2.10 x10™%; Epoch 1 vs. Low:

x’(1)=18.64,P=9.46 X107, Epoch 1vs. Mid: x’(1) =1.37, P= 0.242, Epoch 1 vs. High:

x°(1)=13.66,P=4.39 x10™*, Low vs. Mid: x*(1) = 15.45, P=2.54 x10™, Low vs. High:

-180
0 Normalized Position 10
within Place Field
X°(1)=2.13, P=0.173,Mid vs. High: x’(1) =10.53, P=1.76 x1073; chi-squared test
followed by FDR correction. h, Proportion of positive single-traversal correlation
coefficients. Overall: x*(3) =41.53, P=5.05x10"%; Epoch 1 vs. Low: x’(1) =15.54,
P=1.61x10"* Epoch1vs.Mid: x*(1) = 2.53, P= 0.112, Epoch 1 vs. High: x’(1) = 4.24,
P=0.0474,Low vs. Mid: x*(1) = 26.90, P=1.29 x10°°, Low vs. High: x*(1) =8.77,
P=4.59 x107%, Mid vs. High: x*(1) = 22.80, P= 5.40 x10°; chi-squared test followed
by FDR correction. i, Phase offsets of single-traversal phase coding for each gain
group. Epoch1vs. Low: k(1) =3.09 x104, P= 6.00 x107, Epoch 1 vs. Mid: k(1) =1.66
x105, P=1.50 107, Epoch 1vs. High: k(1) = 9.12 104, P=1, Low vs. Mid: k(1) =1.04
x105, P=1.50 x1073, Low vs. High: k(1) = 7.56 X104, P=1.50 x107%, Mid vs. High:
k(1) =5.78 x105, P=1.50 x1073; two-sample Kuiper test (two-sided) followed by
FDR correction. j, Phase occupancy histograms in epoch 4, similar to Fig. 6b.
*P<0.05,**:P<0.01,**:P<0.001
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Extended Data Fig. 5| Differences in SLIs cannot be explained by other
experimental variables. a, Schematic of the shuffling test based on theta
frequency. SLIs in the same theta frequency bins (same color) were shuffled to
create a null distribution of SLIs for each gain group. The same procedure was
done for the shuffling based on the other parameters. b, Shuffling analysis to
testif the difference in theta frequency (Fig. 3a) can explain the observed SLIs.
The difference in the median SLI compared to epoch1was computed and tested
against the null distribution. The differences in SLIbetween epoch 1and the low
and high gain groups were larger than the null distribution, demonstrating that
the difference in theta frequency cannot explain the observed effect of SLI. Low:
P<=1.00 x107,Mid: P=0.249, High: P <=1.00 x107, ¢, Shuffling analysis to test
ifthe difference in distance traveled by the rat to pass through the field in the
lab frame can explain the observed SLIs. The decrease in SLIs in the low and

Median SLI Difference
high gain conditions was greater than the null distribution. Low: P<=1.00 x1073,
Mid: P=0.0870, High: P<=1.00 x107. d, Shuffling analysis to test if the difference
inthe animal’s speed can explain the observed SLIs. The decreasein SLIs in
the low and high gain conditions was greater than the null distribution.
Low: P<=1.00 x1073, Mid: P=0.127, High: P<=1.00 x107. e, Shuffling analysis
to test if the difference in time since the start of the experiment can explain
the observed SLIs. Because epoch 1is temporally segregated from epoch 3 by
definition, shuffling was performed only using epoch 3 data. The decrease in
SLIsin the low and high gain conditions compared to the mid gain condition
was greater than the null distribution. Low: P<=1.00 x1073, Mid: P=8.00 1073,
High: P<=1.00 x107%. Multiple comparisons correction was not applied for these
shuffling analyses. **: P< 0.01, ***: P< 0.001.
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Extended Data Fig. 6 | Differences in SLIs cannot be explained by a biased
sample of bimodal units. a, Histograms of theta phase preference for example
units classified as unimodal, bimodal, and unclassified (> 2 peaks) units.
Pyramidal cells in the deep layer of CAl tend to exhibit strong firing in both the
early and late phases of theta (bimodal cells), while cells in the superficial cell
layer tend to fire only in the late phases of theta®'°° (unimodal cells). X-axis
shows the theta phase repeated for two cycles. b, Number of units classified in
each category. No significant difference in the distribution was observed among
gaingroups. This finding suggests that gain manipulation affects the relative
size of the second lobe while sparing the modality of theta phase preference; for
instance, bimodal units maintain their bimodality despite a smaller second lobe

during gain manipulation. x’(6) = 4.45, P= 0.616; chi-squared test. ¢, Smoothed
phase coding plots for units classified as unimodal and bimodal cells. The plot
for the bimodal cells showed a larger second lobe. d, Shuffling analysis to test
ifthe difference in the sampling of unit modality can explain the observed SLIs.
The decrease in SLIs in the low and high gain conditions was greater than the
null distribution. The finding complements that of b, together demonstrating
that the effect of gain on the size of the second lobe is not due to the change in
the theta modality of the units or abiased sampling of unimodal/bimodal units
across gain groups. Low: P<=1.00 x107%, Mid: P= 0.229, High: P<=1.00 x107>.
Multiple comparisons correction was not applied. ***: P < 0.001.
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Extended Data Fig. 7 | Further characterization of the diminishment of the
second lobe. a, Slow, medium, and two fast gamma components averaged across
sessions. Gamma components were extracted using the unsupervised clustering
method of Zhang et al.'>. The algorithm computed the frequency and the phase
power matrix (FPP) for each theta cycle and obtained the groups of pixels in this
theta phase-frequency space whose power co-fluctuates across theta cycles
using k-mean clustering. The gamma components are coupled to theta phases
that match previous studies®®'%*'>, We observed a slow gamma componentata
frequency range of ~20-60 Hz associated with CA3 inputs (first column) and a
medium gamma component at a frequency range of -70-140 Hz associated

with MECIIlinputs®”*® (second column). The two fast gamma components

(last 2 columns; >-100 Hz) may include spiking artifacts'”” and were not used for
further analyses. b, Spike-medium gamma coupling comparison between gains,

Epoch 1

allo

Epoch 4

1 0 1
Normalized Position within Place Field

limited to the lower half of the medium gamma range ( - 70-105 Hz) to minimize
the overlap in frequency with fast gamma (n =151 units). Overall: W(2) =8.78,
P=0.0124 (two-sided); Low vs. Mid: 8= 0.0131, s.e. = 4.49 x10°7, £(148) = 2.92,
P=4.01x10", Lowvs. High: 8=8.07 X107, s.e. =4.85 %1073, t(148) = 1.66,
P=0.0985, Mid vs. High: 8=-5.07 x1073, s.e. = 3.70 X103, £(148) = -1.37, P= 0.172;
Wald test followed by t-statistics/two-sided Pvalues from the LMEM. Each violin
plot shows the median (white circle), IQR (gray line), and distribution outline.

¢, Conceptual schematics of the network dynamics during epoch 4.Inepoch 4,
allothetic input is ablated. Note that the idiothetic Gaussian is assigned the larger
amplitude (assigned to the allothetic Gaussian inepoch 1), since idiothetic input
has the primary control over the hippocampal map in this condition. d, Position-
phase plots of model neurons in epochs 1and 4. The processing lobe diminished
inepoch 4 compared to epoch1(same as the middle panel of Fig. 7c).
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preestablished. Criteria 5-6 were specific for this experiment, not pre-established but were used to ensure that the session provided data of
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(landmark control or landmark failure). In some cases, the visual landmarks lost control over the hippocampal map at a gain that had control
in a previous session; the observation aligns with the understanding that landmarks that are deemed unstable by the animal from previous
sessions would show weaker control of the place field map in the subsequent sessions. Analyses of individual rats are presented when
applicable. There have been no indications that would prevent replication of these results, except the emergence of failure of control of the
hippocampal place fields by landmarks. Since this happens upon repeated exposure to moving landmark cues especially in gains further from
1, care must be taken to avoid excessive/abrupt landmark manipulation while replicating these results.

Randomization  There were no experimental groups for the subjects, since we ran similar sessions on all five animals used in this study.
Blinding The investigators were not blind to the identity of the animal or the experimental gain being applied during data collection, since the
experiments had to monitor the VR system to ensure proper functionality and and intervene when necessary. Isolation and classification of

clusters, however, was done blind to the experimental manipulation being applied. The data analysis software was also blind
to the parameters of the trial.
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Wild animals No wild animals were used in this study.
Reporting on sex This work analyzes a previously published dataset that consisted of five male animals. The composition of sex follows the field

standard at the time when the original data was collected.
Field-collected samples  No field-collected samples were used in this study.
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