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Abstract— Needle insertions serve a critical role in a wide
variety of medical interventions. Steerable needles provide a
means by which to enhance existing percutaneous procedures
and afford the development of entirely new ones. Here, we
present a new time-varying model for the torsional dynamics
of a steerable needle, along with a new controller that takes
advantage of the model. The torsional model incorporates
time-varying mode shapes to capture the changing boundary
conditions caused during insertion of the needle into the
tissue. Extensive simulations demonstrate the improvement
over a model that neglects torsional dynamics and illustrates
the possible effect of torsional model order on efficacy. Pilot
feedback control experiments, conducted in artificial tissue
(plastisol) under stereo image guidance, validate the overall
approach: our results substantially out-perform previously re-
ported experimental results on controlling tip-steerable needles.

I. INTRODUCTION

Percutaneous interventions play a critical role in modern
medicine. Despite the ubiquity of needle-based procedures,
clinical needle interventions are largely based on Alexander
Wood’s nineteenth century idea: delivery therapy subcuta-
neously through the lumen of sharp, stiff tubes [18]. There
have been many new and exciting integrated systems for
deploying needles, but remarkably little advancement in the
needle insertion mechanism itself until recently (see [2],
[11] for a review). Notwithstanding these research advances,
clinical interventions continue to rely primarily on straight
insertion of steel needles. Recent exploration into steerable
needles shows promise to improve existing procedures and
help devise new procedures as needle steering improves [2].

In this paper, we derive and demonstrate a new model
for torsional dynamics which we couple with an existing
kinematic model of tip-steerable needles [16]. The primary
purpose of the additional modeling of torsion is to improve
the estimation and control of the needle tip; here we perform
control to a plane during continuous insertion for comparison
to previous work [7]. The previous modeling and control of
tip-steerable needles makes the assumption that the insertion
and rotational velocities at the tip of the needle are equivalent
to those at the base of the needle. However, twisting a
long slender beam from the controlled proximal end will
result in torsional windup along the length of the needle.
This realization motivates this development of a system
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model that incorporates the torsional dynamics, such that an
automatic feedback controller can be designed to compensate
accordingly.

A. Related work

The foundational papers of DiMaio et al. [3], Okazawa et
al. [9], and Webster et al. [16] have changed the landscape
of percutaneous therapies into a “post Wood era”, at least
insofar as research is concerned. DiMaio and Salcudean
[3] were the first to investigate the complex interaction
between robotically controlled needles and simulated tissues.
Okazawa et al. [9] provided the first known mechanism de-
sign for affecting needle motion inside tissue by engineering
the needle itself; their design consisted of an outer straight
tube and inner stylet with a preset fixed radius of curvature
uses to cause bending during needle insertion. Webster et al.
[16] modeled needles with beveled tips as a nonholonomic
kinematic systems and validated this model in simulated
tissues. Further work shows that this nonholonomic model
remains valid for other types of needle designs under certain
circumstances, in this case a pre-curved section at the tip of
the needle [17].

While the approach given in this paper extends the non-
holonomic kinematic model developed by Webster et al.,
there are other techniques employed to steer needles, such
as transverse and “tip/tilt” motion outside the tissue [5], duty
cycling of the needle tip [4], or manipulation of the tissue
itself [8]. Combinations of these steering methodologies
might ultimately be used in a single, integrated setup, as
proposed in [11] (see Figure 2 therein). In any such system,
torsional dynamics – like those considered in this paper –
will play a critical role in needle motion.

Kallem and Cowan [7] performed closed-loop control to
a virtual plane inside the tissue via feedback linearization,
assuming no torsional dynamics. Reed et al. [12] developed
a model of torsional dynamics for a fixed length inside
the tissue and performed open-loop torsional compensation
during large needle tip reorientations. Kallem and Cowan
noted that the controlled behavior of the needles differed
from the theoretical predictions in a way that suggested
torsional dynamics may have been playing a role. Reed et
al.’s work later confirmed the significance of needle torsion
on needle dynamics. The work presented in this paper builds
on these two papers, incorporating both feedback control
and a new model of torsional dynamics that include both
continuous insertion and length-varying torsional dynamics
inside and outside the tissue.



Other work incorporates needle and needle-tissue dy-
namics, but these have typically focused on tissue defor-
mation and have approached the modeling problem using
finite element methods [3] or simplified “virtual spring”
models [5]. Here, we neglect tissue deformation, and focus
our modeling effort on needle torsional wind-up, including
the viscous drag between needle and tissue. Our approach
uses a proper orthogonal decomposition, coupled with a
Galerkin projection [6], [14], allowing us to side-step fi-
nite element techniques altogether. This approach gives us
an exact, infinite dimensional representation of the system
dynamics, which can then be systematically reduced to a
manageable form by truncating higher-order terms in the
infinite-dimensional expansion. Our work is analogous to
a time-varying modal approach used for approximating the
dynamics of a spacecraft antenna as it is extended [15].

II. MODELING

A. Previous Models of Tip-Steerable Needles

Given the body-fixed frame at the tip of the needle,
as shown in Figure 1, the kinematic model developed by
Webster et al. [16] describes the motion of the needle using
the bicycle model with a fixed turning radius. The insertion
velocity at the base of the needle prescribes the forward
velocity of the bicycle and the rotational velocity at the base
changes the orientation of the plane in which the bicycle
travels.

This model can be succinctly described by the left-
invariant vector field describing the motion of the needle
tip in its body-fixed frame. The rigid body transformation

g =

[
R d
0T 1

]
∈ SE(3) (1)

describes the orientation and position of the needle tip with
respect to an inertial frame, where R ∈ SO(3) and d ∈
R3 are the rotation matrix and tip position respectively. The
velocities in the body fixed frame are given as

Ωtip =
(
g−1ġ

)∨
= V1v + V2ω, (2)

where the twists associate with needle insertion velocity and
tip rotational velocity are V1 = κe3 + e4 and V2 = e6, with
ei, i = 1, . . . 6 the standard basis in R6. In most previous
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Fig. 1. The kinematic model used to represent the insertion of tip-steerable
flexible needles, adapted from [16]. As the needle is inserted at velocity v, a
tip asymmetry causes a lateral force that deflects the needle along a curved
path of radius 1/κ. Rotations about the tip with angular velocity ω reorient
the bevel tip (Modified with permission from [10]).

work on tip-steerable needles, it is assumed that the insertion
and rotational velocities at base and tip were equal such that
v = u1 and ω = u2 with (u1, u2) the control inputs to
the needle insertion robot. However real needles, for which
we are twisting a long slender rod, the rotation at the base is
coupled to the rotation at the tip through a dynamical system
describing needle torsion. The work done by Reed et al. [12]
demonstrates the need for torsional dynamics compensation,
but their solution for torsion compensation assumes that the
needle remains a fixed length inside the tissue, an assumption
clearly violated during needle insertion. We build on Reed
et al.’s result in the next section by incorporating the time-
varying boundary conditions that result from continuous
needle insertion.

B. Main Modeling Result: Time-Varying Torsional Dynamics

Our model of continuous needle insertion accounts for
torsion both inside and outside the tissue as shown in
Figure 2. We model the portion inside the tissue using
a partial differential equation (PDE) that incorporates the
rotational inertial forces of the needle, viscous drag forces
between needle and tissues, and the shear forces due to
needle properties. We model the portion outside the tissue as
an ideal torsional spring whose spring constant is a function
of the polar moment of inertia, J , the needle shear modulus,
G, and the length outside the tissue, L− l(t).

Using the Newton-Euler formulation for an infinitesimal
portion of the needle inside the tissue, Reed et al. [12]
derived a PDE in θ(x, t) a function of space and time,

η
∂2θ

∂t2
+ β

∂θ

∂t
− κ∂

2θ

∂x2
= δ(x)τin(t), (3)

where β represents viscous damping (assumed to be uniform
along the needle shaft), and η is rotational inertia. In Reed
et al.’s model, it is assumed that the external torque on the
needle is applied at the point that the needle enters the tissue,
which is incorporated mathematically via the product of a
spatial Dirac impulse function, δ(x), and the torque at the
coupling between motor and the needle, τin(t).

Henceforth, our derivations deviate significantly from the
previous work done by Reed et al. [12]. Fundamentally, the
model from Reed et al. is only valid for a fixed distance of
needle inside the tissue and assumes an exact measurement
of the relative angle between base and tip. The subsequent

Tissue

Fig. 2. The torsional dynamics of the needle is divided into the portion
inside the tissue and outside the tissue. There is a time-varying changing
boundary condition as the needle is inserted. The portion inside the needle is
modeled through Newton force formulation resulting in a partial differential
equation solved via modal methods. The portion outside the tissue is
modeled as a torsional spring. Here, the dashed line represents an imaginary
inscribed line with zero torsion. The gray line indicates the same inscribed
line while the needle is under torsion.



derivation improves on this model in the following key
respects: (1) we no longer model the system as a fixed length
inside the tissue, (2) the system state is observed through
limited measurements, and (3) we do not assume torque
control at the point the needle enters the tissue.

First, we note that the torque at the motor–needle interface
is exactly the same as the torque at the tissue boundary, since
we assume a pure torsional spring for the portion of the
needle outside the tissue. Hence, for the portion of the needle
inside the tissue, we can still adopt the formulation in (3),
where the spatial impuse is taken at x = 0. In other words,
the torsional angle of the needle at the point of insertion into
the tissue can be different from the angle at the motor, but
the torque is the same all along the portion of the needle
outside the tissue.

Because the needle length inside the tissue is changing,
we cannot make the assumption that the modal solution
is separable in both space and time. Instead, we can only
assume that the mode shapes are functions of both space
and time and the mode coefficients are functions of time:

θ(x, t) =
1

2
ψ0(x, t)q0(t) +

∞∑
k=1

ψk(x, t)qk(t)

+

∞∑
k=1

φk(x, t)pk(t) (4)

where

ψj(x, t) = cos(ωj(t)x)

φj(x, t) = sin(ωj(t)x)

}
, and ωj(t) =

jπ

l(t)
. (5)

A common practice in solving PDEs is to find the infinite
dimensional solution to the PDE using the assumed modal
solution and projecting back onto the first n-modes [1], [15].
The technique taken in this paper is one technique among
a broader field of proper orthogonal decomposition and
subsequent Galerkin projection [6], [13]. When the assumed
solution is separable in space and time, where the mode
shapes are function of the spatial variable and the mode
coefficients are functions of time, the result of a Galerkin
projection is an ordinary differential equation (ODE) in time.
This method of model order reduction is particularly apropos
when the system has a dissipative term causing exponential
decay for states with high wavenumber.

For our system, the basis for the proper orthogonal de-
composition are the torsional modes along the length of the
needle as given in (5). As intimated previously, our system
does not separate in space and time and we must perform the
Galerkin projection and verify that each projection results in
an ODE in time only; fortunately, the Galerkin projection
for this system results in an ODE in time. To perform our
Galerkin projection, we first substitute (4) into (3), and then
project onto each mode shape. This rote computation is
not included here in its entirety for brevity. However, the
properties of key importance for simplification during the
computations are related to the orthogonality conditions for

the mode shapes, as shown in (6).∫ l(t)

−l(t)
ψk(x, t)φj(x, t)dx = 0 ∀j, k > 0.

∫ l(t)

−l(t)
ψk(x, t)ψj(x, t)dx =


2l(t), j = k = 0,

l(t), j = k > 0,

0, j 6= k.∫ l(t)

−l(t)
φk(x, t)φj(x, t)dx =


0, j = k = 0,

l(t), j = k > 0,

0, j 6= k.

(6)

The appropriate number of torsional modes to include in
the truncated approximation of the system depends signifi-
cantly on the tissue properties, needle properties, and control
scheme employed. In Section IV, we compare and contrast
through simulation and experimentation several model order
truncations. Reed et al. analyzed a specific needle and tissue
combination with experimentally computed damping and
used Hankel singular values to determine an appropriate
model order. For a general n-th order projection, the resulting
ODE is of the form[
M1 0
0 M2

] [
q̈
p̈

]
+

[
D1 0
0 D2

] [
q̇
ṗ

]
+

[
K1 0
0 K2

] [
q
p

]
=

[
P
0

]
τin,

(7)
where the vectors q and p are the time-varying coefficients
to the cosine and sine modes, respectively, as shown in (4).

We first note that the cosine and sine modes are decoupled,
the sine modes are unforced, and the sine modes are naturally
asymptotically stable. Thus, we can assume that for any
experiment the sine modes are initially unexcited and can
never be excited. From this point forward we will disregard
the sine modes as both uncontrollable and always zero.

We model the portion of the needle outside the tissue as
an ideal torsional spring, namely

θbase − θin = τin(t)
L− l(t)
JG

. (8)

Here, the position at the insertion point of the needle, θin, is
written in terms of the mode shapes and mode coefficients:

θin = θ(x, t)|x=0 ≈
1

2
q0 +

n∑
k=1

ψ(0, t)qk(t)[
1
2 1 · · · 1

]︸ ︷︷ ︸
C0

q.
(9)

The torque resulting from the rotational position at the base
of the needle and the modal representation of the rotational
position at the insertion is

τin = − JG

L− l(t)
C0q +

JG

L− l(t)
θbase, (10)

where θbase is the control input for subsequent control com-
putations. The term JG

L−l(t) can be thought of as the time-
varying, lumped-parameter spring constant for the portion of
the needle outside the tissue. Note that treating the portion
of the needle outside the tissue as a torsional spring fails
when the needle is fully inserted, which is demonstrated



by a singularity in the time-varying spring constant when
l(t) = L.

Substituting the torque constraint from (10) into the ODE
representing the torsional dynamics inside the tissue in
(7) and neglecting the sinusoidal modes, the full torsional
dynamics from base to tip is

M1q̈+D1q̇+

(
K1 +

JG

L− l(t)
PC0

)
q =

JG

L− l(t)
Pθbase. (11)

We also note that the inertial forces associated with this
system are quite small compared to the damping, shear, and
control forces such that we can simplify the system to a
coupled first order system,

q̇ = −D−1
1

(
K1 +

JG

L− l(t)
PC0

)
︸ ︷︷ ︸

A(t)

q+D−1 JG

L− l(t)
P︸ ︷︷ ︸

B(t)

θbase.

(12)
Notice also that the velocity at the tip of the needle in the tor-
sional dynamics, θ̇(x, t), is equal to the body fixed rotational
velocity, ω, given in equation (2). Thus, we compute

θtip = θ(x, t)|x=l(t) ≈
1

2
q0 +

n∑
k=1

ψ(l(t), t)qk(t)

=
[
1
2 −1 1 · · · (−1)n−1

]︸ ︷︷ ︸
C`

q (13)

and differentiate this to obtain

ω = θ̇tip = C`q̇ = C`A(t)︸ ︷︷ ︸
C(t)

q + C`B(t)︸ ︷︷ ︸
D(t)

θbase,

such that the final system can be written in a familiar linear,
time-varying form:

q̇ = A(t)q +B(t)θbase

ω = C(t)q +D(t)θbase.
(14)

C. Integration: Full Needle Dynamics

We now couple the torsional dynamics with the existing
kinematic model. The velocity at the tip of the needle in
the torsional dynamics, θ̇(x, t), is equal to the body fixed
rotational velocity, ω, given in equation (2). The full coupled
form of the system can be described as

Ωtip = V1v + V2 (C(t)q +D(t)θbase) ,

q̇ = A(t)q +B(t)θbase.
(15)

To compare controllers built on our general torsional model
with previous methods, we choose local coordinates for
the tip of the needle, namely Z-Y-X Euler angles (α, β, γ)
for orientation and (x, y, z) for position as in Kallem and
Cowan [7]. Following Kallem and Cowan further, we define
the control task to be controlling the tip of the needle to an
arbitrary plane in the tissue. With this control objective in
mind, we can choose the local coordinates such that these
local coordinates, sT =

[
x y z α β γ

]
, are relative

to the plane. That is, (y, z) are the position of the needle
tip projected to the plane, x is the orthogonal distance from
the plane, and α is the rotation of the needle about an axis

orthogonal to the plane. The remaining parameters, β and
γ, represent the pitch away from the plane and the rotation
about the tip of the needle, respectively. The velocities in
local coordinates can be related to the velocities in the body-
fixed frame via the appropriate Jacobian,

ṡ = J−1(s)Ωtip. (16)

Coupled with the torsional dynamics, the system can be
represented as[

ṡ
q̇

]
=

[
J−1(s)V1v + V2 (C(t)q +D(t)θbase)

A(t)q +B(t)θbase

]
. (17)

For the task of controlling to a plane, Kallem and Cowan
showed that (16) can be further reduced by “throwing away”
the states (y, z, α), since they do not couple into the states
(x, β, γ), and that (x, β, γ) = (0, 0, 0) corresponds to the
needle tip traveling in the desired plane [7]. Thus, we
augment these three states with the torsional states, i.e.
r =

[
x β γ qT

]T
. In these coordinates, the full needle

model with reduced state and torsional dynamics included is

ṙ =

 v sin(r2)
κv sin(r3)

−vκ cos(r3) tan(r2) + C(t)r4···n +D(t)θbase
A(t)q +B(t)θbase


=: f(r, θbase, t).

(18)

Here we have a nonlinear and time-varying system for which,
in the following section, we devise a control strategy with
the assumption that the orthogonal distance of the needle tip
from the plane is our only measurement.

III. CONTROL WITH TIME-VARYING TORSIONAL
DYNAMICS

Kallem and Cowan used feedback linearization to generate
a system for which LQR/LQG control was implemented.
Using the model in (18), an attempt to feedback linearize
the kinematic states necessarily introduces a nonlinearity into
the torsional states due to the manner in which the control
input, θbase, enters into the system

The approach we take here is to (1) linearize the system
about the origin, (2) define a feedforward control to decouple
the kinematic state from the torsional states, and (3) compute
the infinite horizon LQR gain to optimally control the decou-
pled kinematic states to the plane. A key component in this
control strategy is to show that the final control input ensures
that the torsional state remains bounded for the duration of
our insertion.

The linearization of the system about the origin is

ṙ =


0 v 0 0
0 0 κv 0
0 −κv 0 ClA(t)
0 0 0 A(t)

 r +


0
0

C`B(t)
B(t)

 θbase. (19)

Let the control input be defined as

θbase =
1

C`B(t)
(−C`A(t)r4···n + u2(t)) . (20)



The first term decouples the kinematic and torsional states.
This results in

ṙ =

0 v 0 0
0 0 κv 0
0 −κv 0 0
0 0 0 A(t)

 r+


0
0
1

1
C`B(t)

B(t)

u2(t), (21)

where A(t) = A(t) − 1
C`B(t)B(t)C`. The first three states

of the decoupled system are controllable and we implement
a controller of the form

u2(t) =
[
k1 k2 k3 0 · · · 0

]
r, (22)

where the gain is from the infinite horizon LQR solution to
minimize the cost function

J =

∫ ∞
t0

rT1···3(τ)Qr1···3(τ) +Ru22(τ)dτ. (23)

Heretofore we have assumed full state feedback, but in
practice, we are only able to measure a scalar output:
the distance from the desired plane. Fortunately, a straight
forward calculation can be used to verify observability of
the system analytically by reconstructing the state from the
output and its first n − 1 derivatives (the proof is omitted
here due to space constraints). So, in our simulations and
experiments we use a Kalman filter to estimate the states of
the linearized system (19), and apply state feedback on this
estimate, as is standard practice.

IV. EXPERIMENTAL RESULTS

Here we present simulations and experiments to demon-
strate that the modeling and control methods described herein
provide an improvement over existing control methods which
do not compensate for torsional dynamics during insertion.
In lieu of a systematic approach for model reduction (e.g.
based on the Hankel singular values) for this LTV system,
we compare control efficacy based on models of different
orders in an extensive set of simulations. We consider
both deterministic simulations assuming full state access,
as well as simulations assuming stochastic dynamics with
output feedback. In addition, we present pilot experiments
on our needle insertion robot. In all simulations, we use
a 25th order torsional truncation as the “real” system. In
both simulations and experiments we show results associated
with representing the torsional dynamics with 1, 5, and
25 truncated states. Table I lists parameters used for all
simulations and experiments. Density and polar moment
of inertia were computed from manufacturer specifications.
Shear modulus, viscous drag between needle and tissue, and
radius of curvature were determined experimentally.

Parameter Value
Density (ρ) 6.45× 103 kg

m3

Polar moment of inertia (J) 2.3572× 10−14 m4

Shear modulus (G) 2.72× 1010 Pascals
Viscous drag (β) 2.23× 10−2 N ·m · s
Radius of curvature (1/κ) 0.122 m

TABLE I
PARAMETERS USED IN SIMULATIONS AND EXPERIMENTS SHOWN IN

FIGURE 3 AND FIGURE 4.

A. Numerical simulations suggest that higher order models
can improve robustness to noise

We conducted two series of simulations to identify the
effect of model order on control of the needle tip to the plane:
1) deterministic control with full state access and 2) control
of a noisy system with reduced measurements. The deter-
ministic simulations allow us to identify the best possible
performance for our control method. The noisy system and
reduced measurements are more indicative of the conditions
experiences during real experimentation. Neither simulation
is an exact representation as we simulate the “real”system
with a 25 state representation of the torsional dynamics. A
higher order model could have been generated at the cost
of prohibitively long Galerkin projections in Mathematica,
and since we found that the fifth order modal model almost
exactly reproduces the twenty-fifth order model, we are
reasonably confident that 25 modes are more than sufficient
to capture the dynamics for simulations.

Figure 3(A) shows the deterministic simulation results.
Interestingly, with full state access there is very little differ-
ence between the various model orders of torsional dynamics.
This may indicate that the windup outside the tissue is the
dominant effect for the chosen simulation parameters, thus
even one modal state captures the salient dynamics. Figure
3(B-D) shows the simulation results of a noisy system with
output feedback (1000 simulations for each model order).
These results indicate that all controllers (based on different
order modal models) exhibit similar rise times, but the
overshoot and final settling time improves with increased
model order.

B. Physical experiments suggest that one modal state is
sufficient to enhance control

We conducted preliminary experiments with our needle
insertion robot and artificial tissue (plastisol). The experi-
mental setup consists of an industrial PC running a modified
Ubuntu installation with RTAI realtime extensions, stereo
cameras for needle tip triangulation, and our needle insertion
robot (the system is similar to that of Kallem and Cowan
[7]). For these experiments we performed a single insertion
without rotating at the base and fit a circle to the recorded
tip measurements to identify the radius of curvature. Values
for density, shear modulus, and viscous drag were obtained
by dimensionally scaling the reported results in [12] based
on our needle diameter of 0.635 mm.

Figure 4 shows the results of 5 experiments for each
model order. These preliminary experiments show very little
difference between each of estimator/controller pairs based
on the different model orders. We suspect that some of
this is due to the model parameters being inaccurate and in
future experiments we will characterize the model parameters
explicitly for each needle/tissue pairing, rather than relying
on previous results.
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Fig. 3. Simulation results for 15 cm insertions at v = 1 cm/s. All
simulations assume a “real” system of 25 modal states, but the feedback
control is based on either 1, 5, or 25 modal states. (A) Deterministic
simulation using a control signal based on 25 modal states and full-state
feedback. (B, C, D) Estimator-based output feedback control assuming
process and sensor noise. The mean trajectory (center line, solid or dashed)
and standard deviation (shaded regions) for 1000 trials of each model order
are shown: (B) The 25 modal state model, (C) the 5 modal state model,
and (D) the 1 modal state model. Here we see that more torsional states
can improve performance when using estimator-based output feedback.
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Fig. 4. Physical experiments for 6 cm insertions at v = 1 mm/s. These
results show little difference between different model orders, but categorical
improvement over previously reported experimental control results [7]. The
mean trajectory and standard deviation for 5 trials of each model order
are shown, with an initial error of 6 mm from the desired plane: 1 modal
state (red), 5 modal states (blue), and 25 modal states (black). Note scale
differences when comparing with Figure 3.

V. DISCUSSION

A. Significant improvement over previously reported experi-
mental results

This paper presents a new model for torsional dynamics,
that takes into account time-varying boundary conditions.
The primary conclusion from our experimental results is
that the incorporation of these time-varying dynamics into
a closed-loop control scheme significantly improves per-
formance over the purely kinematic control method used
previously. Specifically, the experimental trials reported in
Kallem and Cowan [7], which did not incorporate torsional
dynamics into the control algorithm, required an insertion
distance of about 8 cm to recover from a 3 mm initial
error from the desired plane. Here we show experimental
convergence to the plane in approximately 2.5–3 cm of
insertion despite a larger initial error from the plane of
6 mm. Future experiments should evaluate both algorithms
using the exact same tissue and needle for a more equitable

comparison.

B. Faster than expected convergence in physical experiments

Interestingly, the model order did not seem to have a
great impact on the rate of convergence for the physical
experiments. This may indicate that our noise parameters
in the simulations were significantly greater than those of
the real system. To examine this more carefully requires a
careful system identification of noise and system parameters,
which will be the subject of future studies.
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