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Abstract—This paper proposes a new methodology for
subspace-based state-space identification for linear time-periodic
(LTP) systems. Since LTP systems can be lifted to equivalent
linear time-invariant (LTI) systems, we first lift input–output
data from the unknown LTP system as if it was collected from an
equivalent LTI system. Then, we use frequency-domain subspace
identification methods to find an LTI system estimate. Subse-
quently, we propose a novel method to obtain a time-periodic
realization for the estimated lifted LTI system by exploiting the
specific parametric structure of Fourier series coefficients of the
frequency-domain lifting method. Our method can be used to
both obtain state-space estimates for unknown LTP systems as
well as to obtain Floquet transforms for known LTP systems.

Index Terms—System identification, subspace methods, time-
varying systems, linear time-periodic systems.

I. INTRODUCTION

In this paper, we introduce a frequency-domain subspace-
based state-space identification method for linear time-periodic
(LTP) systems. Many problems in engineering and biology,
such as wind turbines [1], rotor bearing systems [2], aircraft
models [3], locomotion [4, 5], and power distribution net-
works [6] require the consideration of time-periodic dynamics.
As such, the analysis, identification, and control of LTP
systems have received considerable attention [7–9].

Pioneering work by Wereley [7] introduced a frequency-
domain analysis method for LTP systems. In this work, time-
periodic system matrices in the LTP state-space formulation
were expanded into their Fourier series coefficients. The prin-
ciple of harmonic balance was used to obtain the concept of
harmonic transfer functions (HTFs). Wereley’s initial formula-
tion for continuous-time LTP systems as infinite-dimensional
operators was subsequently adapted to discrete time, which
conveniently leads to finite-dimensional HTFs [10].

Most existing literature on LTP system identification [2,
11], including our own prior work on identification of legged
locomotion [12–14], focuses on using input–output HTF rep-
resentations rather than state space. In addition, there are
also contributions to state-space-based system identification
for LTP systems [15, 16], analogous to subspace identification
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techniques commonly used for linear time-invariant (LTI)
systems [17]. For instance, Verhaegen et al. developed a
subspace identification method for estimating successive state-
transition matrices from time-domain data for linear time-
varying (including a special derivation for LTP) systems [15].

Critically, LTI subspace identification methods readily sup-
port both time-domain [17] and frequency-domain [18] data,
whereas most subspace methods for LTP systems have focused
on time-domain data [15, 16], and those state-space methods
that do rely on frequency-domain data [19, 20] require that
scheduling functions to be known a priori. To the best of
our knowledge, there are no general methods for frequency-
domain subspace identification of LTP systems.

Here, we present a general subspace identification method-
ology for estimating state-space models from frequency-
domain data for LTP systems. Our proposed methodology is
based on the fact that LTP systems can be represented with
equivalent LTI systems via lifting [10]. Based on this obser-
vation, we first lift the input–output data of the unknown LTP
system as if it was collected from an equivalent LTI system,
following previous methods [10]. We then estimate a discrete-
time LTI state-space equivalent for the original LTP system
by using an existing LTI frequency-domain subspace identifi-
cation method [18]. A key property of the frequency-domain
lifting method we utilize in this paper is the specific parametric
structure of Fourier series coefficients associated with the
original LTP system [10]. However, this structure is not, in
general, preserved during the subspace identification process
due to an inevitably unknown similarity transformation. In
order to solve this issue, we identify a similarity transformation
for the lifted LTI system that recovers the Fourier structure
although not the specific coefficients, because there is a subset
of similarity transformations that preserve the Fourier structure
but not its parameters. Our identification–realization algorithm
also allows realizing Floquet-transformed state-space models
for LTP systems with arbitrary time-periodic system matrices
(see Remark 3), whose analytic derivations are often very
challenging and may even be impossible [21].

This paper is outlined as follows. We introduce the problem
formulation in Section II. Then in Section III, we show the
existence of an equivalent discrete-time LTI system for a given
LTP system via lifting, and estimate its system matrices from
frequency-domain data. In Section IV, we present a novel
LTP realization algorithm for the estimated lifted LTI system.
We provide an illustrative numerical example and comparative
analysis in Section V. Finally, we give our concluding remarks
in Section VI.
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II. PROBLEM FORMULATION

In this paper, we consider single-input/single-output (SISO),
stable, linear time-periodic (LTP) systems represented by

˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t) ,

y(t) = C̄(t)x̄(t) + D̄(t)u(t) ,
(1)

where u(t) ∈ R, y(t) ∈ R and x̄(t) ∈ Rnp represent input,
output and state vectors, respectively. The system matrices are
periodic with a fixed common period T > 0 (see Section III-B
for the computation of T ), with Ā(t) = Ā(t + nT ), B̄(t) =
B̄(t+nT ), C̄(t) = C̄(t+nT ) and D̄(t) = D̄(t+nT ), ∀n ∈ Z.

We formulate the identification problem as follows:
Given
• a single pair of input–output signals, u(t) and y(t), in the

form of a sum-of-cosines signal containing different fre-
quency components that provide LTP frequency response

Estimate
• the four LTP system matrices that will be equivalent to

(1) up to a similarity transform.
The remaining sections detail our solution methodology (see

Appendix A for the procedure). Obviously, LTI subspace iden-
tification methods would result in oversimplified LTI systems
due to ignorance of harmonic responses. On the other hand,
one can use linear time-varying (LTV) subspace identification
methods in the time domain to solve a discrete-time version
of this problem [15, 16]. Our solution method is unique in that
it solves the problem in the frequency domain and results in
intuitive state-space estimates in Floquet-transformed form.

III. EXISTENCE AND ESTIMATION OF A DISCRETE-TIME
LIFTED LTI SYSTEM REPRESENTATION

This section first introduces a system of transformations
that needs to be used to prove the existence of a real-valued
discrete-time LTI representation of (1). We then show how we
estimate such an LTI system using input–output data of the
original LTP system. Naturally, the original state-space form
of (1) will not be available. Therefore, the transformations
described in this section are not directly applied on the state-
space form of (1); rather the transformations map the input–
output data into a form that makes it as if they were collected
from the transformed (LTI) system.

Based on Floquet theory, there exists a transformation that
converts (1) into the form

ẋ(t) = Ax(t) + B(t)u(t) ,

y(t) = C(t)x(t) + D(t)u(t) ,
(2)

where A, B(t), C(t) and D(t) can be obtained as real-valued
(by doubling the system period if necessary) as long as the
system matrices in (1) are real-valued [21]. Note that deriving
a Floquet transform is challenging even when the state-space is
known. On the other hand, the Floquet transform is a similarity
transformation and does not affect input–output data. Hence,
we assume without loss of generality that the LTP system to be
identified has the state-space form in (2). Note that Floquet-
transformed forms are easier to work with since they have
a time-invariant state matrix. Thus, we seek to find an LTP
state-space estimate for (1) in a Floquet form such as (2).

A. Discretization via Bilinear (Tustin) Transform

In principle, we could directly lift (2) to a continuous-time
LTI equivalent and utilize continuous-time LTI subspace iden-
tification methods. However, the Hankel (data) matrices used
for continuous-time LTI systems may become ill-conditioned
with increasing system dimension [22]. Therefore, we find it
more convenient to work with discrete-time LTI systems. To
this end, we transform (2) to an approximate discrete-time
LTI system. This has two benefits. First, lifting discrete-time
LTP systems yields finite-dimensional LTI representations,
unlike infinite-dimensional ones in continuous-time models.
Second, and more importantly, it generalizes the applicability
of our solutions to both continuous-time and discrete-time
LTP systems. To accomplish this, we utilize the time-varying
bilinear (Tustin) transformation to obtain a discrete-time LTP
state-space representation of (2). Note that (2) is a special case
of LTV systems with time-periodic system matrices (and time-
invariant state matrix). Therefore, our special case reduces the
transformations in [23] to

xd[k + 1] = Adxd[k] + Bd[k]ud[k] ,

yd[k] = Cd[k]xd[k] + Dd[k]ud[k] ,
(3)

where xd[k] represents discrete-time states and

Ad = ((2/Ts)I + A)((2/Ts)I −A)−1 ,

Bd[k] = (2/
√
Ts)((2/Ts)I −A)−1B(kTs) ,

Cd[k] = (2/
√
Ts)C(kTs)((2/Ts)I −A)−1 ,

Dd[k] = D(kTs) + C(kTs)((2/Ts)I −A)−1B(kTs) .

(4)

Here, Ts is the sampling period yielding sampled input–output
data as ud[k] := u(kTs) and yd[k] := y(kTs). Derivations for
(3) can be found in [24]. Note that (3) is an LTP system,
where Bd[k] = Bd[k + nN ], ∀n ∈ Z (also valid for Cd[k]
and Dd[k]) and N is the discrete-time system period defined
as N := T/Ts. For the sake of simplicity, N is assumed to be
even. The sampling period, Ts determines N and hence the
dimension of the lifted LTI equivalent. Using higher sampling
frequency allows capturing high frequency dynamics but also
increases the complexity by increasing the lifted LTI system
dimension. In addition, bilinear (Tustin) transformation causes
frequency warping (distortions) at higher frequencies. To avoid
this problem, we utilize the experimental design procedure of
[25] by first pre-warping the input frequencies that will be
used while designing the sum-of-cosines input.

B. Lifting to a Time-Invariant Reformulation

One of the key properties of LTP systems is that a complex
exponential input with frequency ω produces output not only
at the input frequency (which is the case for LTI systems),
but also at different harmonics ω ± kωp, k ∈ Z separated
by the system frequency, ωp = 2π/T , with possibly different
magnitudes and phases in steady-state (this also allows esti-
mating T from input–output data). In this context, the concept
of Harmonic Transfer Functions (HTFs) was developed to
represent each harmonic response of the LTP system with
a distinct transfer function Gk(w + kωp) for k ∈ Z [7].
This approach represents an LTP system as the superposition
of multiple modulated LTI systems. As such, HTFs can be
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used as a lifting technique to transform an LTP system to an
LTI equivalent [10]. This motivates our use of HTFs as the
frequency-domain lifting method to obtain an LTI equivalent
state-space model for (3). Among possible alternatives (see
[10] for a survey), we use frequency lifting in state space due
to the convenient structure of Fourier series coefficients for
periodic system matrices in lifted (semi)-Toeplitz matrices.

The lifting method starts by analyzing the input–output
spectra of the LTP systems by referring the concept of expo-
nentially modulated periodic (EMP) signals. An input signal,
ud[k] is a discrete-time EMP signal if there is a nonzero
complex number z such that

ud[k + pN ] = ud[k]zpN (5)

over one period for p ∈ Z and can be written as

ud[k] := zk
∑N/2−1

n=−N/2
Une

j2π nk
N , (6)

where Un are called modulated Fourier series coefficients for
EMP signals and are defined as

Un :=
1

N

∑N−1

k=0
(ud[k]z−k)e−j2π

nk
N . (7)

It has been shown that when an LTP system is given an EMP
input, state and output signals are also EMP in steady-state [7].
Therefore, similar to (6), we obtain the state vector

xd[k] = zk
∑

n∈IN
Xne

j2π nk
N , (8)

and a similar expression for yd[k] where IN defines the
interval IN = [−N/2, N/2 − 1]. In addition, discrete-time
Fourier synthesis equation for Bd[k] is computed as

Bd[k] =
∑

n∈IN
Bne

j2π nk
N . (9)

Similar expressions are also valid for Cd[k] and Dd[k].
Substituting Fourier synthesis equations into (3) yields

0 = zk
∑
n∈IN

(
zXne

j2π n
N −AdXn −

∑
m∈IN

Bn−mUm
)
ej2π

nk
N .

(10)
The exponentials {ej2π nk

N | n ∈ IN } constitute an orthonor-
mal basis. Thus, by the principle of harmonic balance, each
term enclosed by the brackets must be zero to ensure that the
overall sum is zero. Therefore, for all n ∈ IN, we have

zej2π
n
NXn = AdXn +

∑
m∈IN

Bn−mUm . (11)

Note that the above equation is valid since Fourier coefficients,
Bm, are also periodic with N . For the output, we also have

Yn =
∑

m∈IN
Cn−mXm +

∑
m∈IN

Dn−mUm (12)

for all n ∈ IN. Similar to continuous-time systems, (11) and
(12) can be represented with (semi)-Toeplitz matrices to obtain
an LTI state-space model. To this end, we first define the N-
block state (Xd), input (Ud) and output (Yd) vectors, whose
ith block for i = 1, 2, . . . , N are given as

Xd(i) = Xi−1−N
2
, Ud(i) = Ui−1−N

2
, Yd(i) = Yi−1−N

2
.

(13)
In addition, time-invariant reformulation of the unlifted N -
periodic output matrix can be obtained as

Cd :=


C0 C−1 . . . C−N

2
CN

2
−1 CN

2
−2 . . . C1

C1 C0 . . . C−N
2
+1 C−N

2
CN

2
−1 . . . C2

...
...

...
...

...
...

C−1 C−2 . . . CN
2
−1 CN

2
−2 CN

2
−3 . . . C0

 .

(14)
Similarly, (semi)-Toeplitz forms for Bd and Dd matrices
can be obtained in terms of their Fourier series coefficients,{
Bn | n ∈ IN

}
and

{
Dn | n ∈ IN

}
, respectively. Note that,

since Ad is time-invariant, its Toeplitz form, Ad includes only
Ad in its diagonals as

Ad := blkdiag{Ad} | Ad ∈ RNnp×Nnp , (15)

where blkdiag represents a block-diagonal matrix and Ad is
repeated block-wise on diagonals. Lastly, we define a modu-
lation matrix, Nd to capture the exponential terms in (11) as

Nd := blkdiag{ej2π n
N Inp

| ∀n ∈ IN} . (16)

We also define

AdN := N−1
d Ad , BdN := N−1

d Bd . (17)

Now, (11) and (12) can be represented as

zXd = AdNXd + BdNUd ,
Yd = CdXd +DdUd .

(18)

This is called the harmonic state-space (HSS) model and it
represents a lifted LTI equivalent of (1) for a general class of
input–output signals. Next sections explain how we transform
this HSS model to a more intuitional single-input multi-output
(SIMO) LTI equivalent by limiting the space of EMP inputs.

C. A Single-Input Multi-Output (SIMO) LTI Equivalent

The input to the original LTP system (1) is a sum-of-cosines
signal in the form u(t) =

∑M
m=1 2K cos(ωmt). As stated

earlier, each cosine input at ωm produces an output spectra at
±ωm±kωp for k ∈ Z, since cosine triggers both ±ωm. Hence
the input frequencies should be carefully selected to avoid any
coincidence of harmonic responses (see [26] for illustrative
explanations). Once this is satisfied, we can separate the input–
output response of each individual cosine signal in frequency
domain. At this point, we write each single cosine input as

uc(t) = 2K cos(ωmt) = Kejωmt︸ ︷︷ ︸
u+
c (t)

+Ke−jωmt︸ ︷︷ ︸
u−c (t)

. (19)

Let the output of (1) to inputs u+
c (t), u−c (t) and uc(t) be

y+
c (t), y−c (t) and yc(t), respectively where yc(t) = y+

c (t) +
y−c (t). Ensuring that ωm 6= 0.5kωp for k ∈ Z, one can also
guarantee that there will be no coincidence in harmonic re-
sponses of the single-cosine input [26]. Thus, we can simulate
(1) with uc(t) and only use y+

c (t) as the output assuming
that our input was u+

c (t). We choose distinct exponential
modulation, z = ejωm in (5) for each individual input signal.
Hence, the modulated Fourier series coefficient vector in (18)
becomes Ud = [0 . . . 0 K 0 . . . 0]T with K on row (N/2+1)
for each input. More importantly, with its current form, Ud
selects only column (N/2+1) in (14) for Bd and Dd, yielding

zXd = AdNXd + B̄dN Ūd ,
Yd = CdXd + D̄dŪd ,

(20)
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where Ūd = K, z = ejωm , and

B̄dN := N−1
d

[
B−N/2 . . . B0 . . . BN/2−1

]T
,

D̄d :=
[
D−N/2 . . . D0 . . . DN/2−1

]T
.

(21)

D. Transforming to a Real-Valued State-Space Model

One problem with LTI subspace identification methods is
that they rely on real-valued input–output data in the time do-
main to estimate real-valued system matrices [27–31]. Hence,
we need to transform (20) to a system that, if it were converted
to time-domain, would produce real-valued states and outputs
given real-valued inputs. Note that this system would not
correspond to our original time-domain system. Rather, the
time-domain equivalent of (20) is a fictitious system, useful
only for the purpose of analysis. This SIMO LTI system has
N states and outputs:

Xd[k] :=
[
X̄−N/2[k] . . . X̄0[k] . . . X̄N/2−1[k]

]T
,

Yd[k] :=
[
Ȳ−N/2[k] . . . Ȳ0[k] . . . ȲN/2−1[k]

]T
.

(22)

Considering (20) as an LTI system in the z-domain and by
utilizing the block-diagonal structure of AdN (noting that Ad

is stable), one can simply solve for each state equation in
steady state as

X̄m[k] =

k−1∑
i=0

(e−j2π
m
N InpAd)

k−i−1(e−j2π
m
N InpBm)u[i] (23)

where u[k] = 2K cos(ωmkTs). This follows since Ūd = K in
the z-domain corresponds to a single cosine input signal for the
time-domain signal. (We write the input as in (19) and ignore
the negative frequency component for the sake of our analysis).
Also note that Bm = B∗−m, since Bd[k] is real-valued by
definition. Hence, we can state that X̄m[k] = X̄ ∗−m[k] except
for X̄−N/2[k] and X̄0[k], which are both real-valued as seen in
(23). A similar analysis can be done for Yd[k] by using (23).
However, solutions for each LTI output signals, Ȳm[k], is more
challenging since complex-conjugate state solutions are now
multiplied with shifted versions of Fourier series coefficients
as illustrated in (14). To achieve our goal, we first write the
steady-state solutions for each output signal as

Ȳm[k] =
∑

n∈IN
Cm−nX̄n[k]. (24)

By using lengthy but straightforward calculations, one can
show that Ȳm[k] = Ȳ∗−m[k] in steady state. Having shown
the complex-conjugate nature of the time-domain state and
output signals, we define two complex-valued transformation
matrices Tx and Ty as

X d[k] := TxXd[k] , Yd[k] := TyYd[k] , (25)

where Tx can be defined as

Tx := 0.5

2Inp 0 0 0
0 I(N/2−1)np 0 J(N/2−1)np

0 0 2Inp 0
0 −jJ(N/2−1)np 0 jI(N/2−1)np

 ,

(26)
with a similar expression for Ty , where In̄ is the usual n̄× n̄
identity and Jn̄ is an anti-diagonal n̄ × n̄ matrix (i.e. 1 for

the entries where i = n̄− j + 1, 0 else) with associated sizes,
respectively. Eq. (25) transforms (20) to

zX = TxAdNT −1
x X + TxB̄dN Ūd ,

Y = TyCdT −1
x X + TyD̄dŪd.

(27)

where X := TxXd and Y := TyYd. Note that Tx and Ty also
transform the system matrices to real-valued equivalents.

E. Estimating an LTI Equivalent via Subspace Identification

At this point, we could utilize a variety of LTI subspace
identification methods [17, 18, 27, 32, 33]. Although we could
not find a general benchmarking study on these algorithms, it
has been shown that CVA [18] performs better than N4SID
[17] and MOESP [32] in terms of prediction error and compu-
tational complexity [34]. Moreover, CVA [18] is MATLAB’s
(The MathWorks, Inc., Natick, MA) built-in frequency-domain
subspace identification method. Hence, we use CVA for esti-
mating the equivalent LTI system by carefully selecting the
estimated system dimension (see Remark 1).

Remark 1. In classical LTI subspace identification, the es-
timated system order, n̂, is chosen based on large drops in
singular values of Hankel matrices [17]. However, one needs
to be aware of the specific parametric structure of LTP systems
while selecting n̂. Let the eigenvalues of Ad be Sd = {λdi }

np

i=1.
Lifting to (17) results in AdN with the following eigenvalues

S =
{{

λdi e
−j2π k

N

}np

i=1

∣∣∀k ∈ IN

}
. (28)

Once n̂ is chosen based on the singular values (not the
eigenvalues), the user should check the eigenvalues of the
estimated state matrix for the phase structure defined in (28).
This phase structure will both reveal the underlying LTP
system’s dimension, np, as well as the number of harmonics
that will appear in state vector, Nh. The user might need to
use expert knowledge to decide on n̂ to maintain the phase
structure of (28). The correct choice of n̂ will yield eigenvalues

Ŝ =
{{

λdi e
−j2π k

N

}np

i=1

∣∣∀k ∈ [−Nh, Nh]
}
. (29)

Note that under these constraints n̂ would be equal to the
cardinality of Ŝ, i.e. n̂ = |Ŝ| = (2Nh + 1)np and this will
limit the dimensions of X̂ (and associated system matrices)
in (30). It is quite possible that the user could also limit the
output harmonics in (13) based on LTP frequency response.
This choice will be independent of n̂ and it will limit the
dimensions of Ŷ (and associated system matrices) in (30). �

The CVA method estimates a quadruple of real-valued LTI
system matrices as [ ˆ̄A, ˆ̄B, ˆ̄C, ˆ̄D], which is equivalent to (27)
up to a similarity transformation. However, we need to back-
substitute the transformations in (17) to find an equivalent
lifted LTI system for the unknown LTP system. To this end,
we use Â = ˆ̄A, B̂ = ˆ̄B, Ĉ = T −1

y
ˆ̄C and D̂ = T −1

y
ˆ̄D and

obtain the equivalent lifted LTI system as

zX̂ = ÂX̂ + B̂Ūd ,
Ŷ = ĈX̂ + D̂Ūd

(30)
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where Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×1, Ĉ ∈ CN×n̂ and D̂ ∈ CN×1.
Note that we do not substitute Tx back, since it is already in
the form of a similarity transformation.

At this point, our method provides a parametric system
representation, which is equivalent to the lifted LTI form (27)
of the original LTP system. However, the main drawback of
this representation—lifted LTI—is that it is unintuitive and
requires additional processes (unlifting the signals) to predict
the output of the original LTP system. In Section IV, we
introduce an LTP realization method that collapses the lifted
LTI system to an LTP system in Floquet form.

IV. TIME-PERIODIC REALIZATION FOR THE ESTIMATED
LIFTED LTI EQUIVALENT

The specific parametric structure of Fourier series coef-
ficients is not generally preserved during subspace identifi-
cation. Finding a computationally effective solution to this
problem remains an open issue [35]. Motivated by this, we
propose a time-periodic realization method for lifted LTI
systems. Unlike the previous work that considers unforced LTP
systems [36], we provide a framework for a general class of
LTP systems with inputs. Our goal can be defined as finding
a similarity transformation matrix, T such that[

T −1 0
0 I

] [
Â B̂

Ĉ D̂

] [
T 0
0 I

]
=

[
AS BS
CS DS

]
, (31)

where [AS , BS , CS , DS ] represents the parametric structure of
Fourier series coefficients as defined in (14), (15) and (21).

Assumption 1. Â has non-repeated eigenvalues and hence it
is diagonalizable via a similarity transformation matrix, TD.
Note that this also constrains Ad in (3) to be diagonalizable.

Assumption 1 is reasonable, since even small perturbations
eliminate repeated eigenvalues. We find such a TD using an
eigenvalue decomposition of Â and transform the system as

ÂD = T −1
D ÂTD , B̂D = T −1

D B̂ ,

ĈD = ĈTD , D̂D = D̂ .
(32)

Recall that there is a freedom in performing the eigenvalue de-
composition, so when doing this, we ensure that TD is selected
such that eigenvalues of ÂD enjoy the same parametric phase
structure and ordering as (28). Lastly, because of the SIMO
structure of the lifted system, there are additional constraints
(14) on the output matrix, ĈD but not on B̂D (the input matrix
is a column vector). These constraints can be satisfied with a
similarity transformation, TC . Note that such a transformation
should maintain the parametric form of ÂD.

Proposition 1. Given Assumption 1, the similarity transfor-
mation matrix, TC ∈ Cn̂×n̂, that satisfies

T −1
C ÂDTC = ÂD (33)

has a diagonal structure as TC = diag{γ1, γ2, . . . , γn̂}.

Given Assumption 1, the proof is trivial. Hence, we use TC
to put ĈD into the desired parametric form CS as

ĈDTC = CS , (34)

where CS is the N × n̂ center columns of Cd in (14). Note
that CS is still in a parametric representation. However, we
know that (34) projects ĈD onto CS such that there will
be multiple equality constrains due to same complex Fourier
series coefficients in main and sub diagonals as shown in (14).
However, these terms will not be numerically equal due to
inevitable noise and hence we first find the optimal Fourier
series coefficients candidates. For simplicity, we will show
the computations as if each Fourier series coefficient in CS
is a complex-valued scalar term, although they are vectors
(C1×np ). However, each variable in these vectors individually
satisfies the form of CS and is multiplied with a different ele-
ment of the diagonal similarity transformation matrix. Hence,
we can process them separately and combine the results. With
this in mind, we choose the candidate solutions as the mean
of their occurrences in CS as
for −Nh − 1 ≤ m ≤ Nh

C̄m =

2Nh+1∑
i=1

ĈD(N/2−Nh +m+ i, i)γi

2Nh + 1
, (35)

for m > Nh

C̄m =

3Nh+1−m∑
i=1

ĈD(N/2−Nh +m+ i, i)γi

3Nh + 1−m
, (36)

for m < −Nh − 1

C̄m =

3Nh+1+m∑
i=1

ĈD(i, i−Nh − 1−m)γ(i−Nh−1−m)

3Nh + 1 +m
. (37)

Now, we can generate CS in terms of the estimated (and
transformed) output matrix, ĈD and the diagonal similarity
transformation matrix, TC . We equate each variable on the left
hand side of (34) to their corresponding value in CS using the
complex Fourier series coefficients defined by (35)–(37). Note
that these equalities will constrain the similarity transformation
matrix, TC . However, we expect to have infinitely many
solutions that satisfy (34). Therefore, we formulate the set of
all possible solutions and select one towards an LTP realization
of the estimated system. For instance, for the fundamental
harmonic, the first equality can be written by using (35) as

ĈD(N/2 + 1−Nh, 1)γ1 =

2Nh+1∑
i=1

ĈD(N/2−Nh + i, i)γi

2Nh + 1
. (38)

Organizing terms and multiplying both sides by 2Nh+1 yields

2NhĈD(N/2 + 1−Nh, 1)γ1 =

2Nh+1∑
i=2

ĈD(N/2−Nh + i, i)γi . (39)

We utilize a vector form for (39) as ν1
0Γ = 0, where

ν10 := [2NhĈD(N/2 + 1−Nh, 1),−ĈD(N/2 + 2−Nh, 2), . . . ] ,

Γ := [γ1, γ2, . . . , γ(2Nh+1)]
T .

(40)

Here, ν1
0 represents the coefficients of the first constraint for

the 0th Fourier series coefficient. Similarly, ith constraint on
the 0th Fourier series coefficient can be written as

νi0 := [. . . ,−ĈD(., .), 2NhĈD(., .),−ĈD(., .), . . . ] . (41)

Once we derive all constraint equations for all Fourier series
coefficients, we combine in matrix multiplication form as

VΓ = 0 , (42)
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where V includes all coefficient vectors for all complex Fourier
series coefficients. We expect a complex-valued similarity
transformation matrix and write (42) in real-valued form as[

Re{V} −Im{V}
Im{V} Re{V}

]
︸ ︷︷ ︸

V̄

[
Re{Γ}
Im{Γ}

]
︸ ︷︷ ︸

Γ̄

= 0. (43)

Note that V̄ ∈ R(2M)×(4Nh+2), where M > 2Nh + 1.

Proposition 2. V̄ is rank deficient and hence the nullspace
of V̄ (with dimension 2) defines the subspace of similarity
transformation matrices that satisfy (34). �

Proof. We start by replacing the RHS of (38) with C̄m to
show that each ĈD(., .) in V̄ can be written in terms of C̄m
(see Remark 2). Hence, we can rewrite ν1

0 as

ν10 := [2NhC̄0/γ1,−C̄0/γ2, . . . ,−C̄0/γ(2Nh+1)] . (44)

At this point, we can expand ν1
0 as

ν10 := [2NhC̄0,−C̄0, . . . ,−C̄0︸ ︷︷ ︸
ν10

]

1/γ1
. . .

1/γ(2Nh+1)


︸ ︷︷ ︸

γ

,
(45)

where the summation of the elements of ν1
0 is 0. We can also

apply the same expansion on V̄ as

V̄ =

[
Re{V} −Im{V}
Im{V} Re{V}

]
︸ ︷︷ ︸

V̄†

[
Re{γ} −Im{γ}
Im{γ} Re{γ}

]
︸ ︷︷ ︸

γ†

(46)

such that the summation of columns in V̄† would be 0 based
on (45). Thus, one of the columns can always be written in
terms of the others proving that V̄ is rank deficient.

Note that rank of V̄ equals to the rank of V̄†, since γ† is full
rank by definition. Further, the way we define V̄† ensures that
column space of its left and right halves are orthogonal to each
other. Hence, we simply add the dimensions of nullspaces of
the left and right halves to obtain the overall dimension of
the nullspace of V̄ . We know that the left and right halves
are rank deficient by (45). In order to find the dimension of
the nullspace of left half, we consider the constraint equations,
νi0, ∀i = {1, 2, . . . , 2Nh+1} for C̄0 only, which will generate
the coefficient vectors as (also valid for Im{γ})

2NhRe{C̄0} −Re{C̄0} . . . −Re{C̄0}

−Re{C̄0} 2NhRe{C̄0}
. . . −Re{C̄0}

...
. . .

. . .
...

−Re{C̄0} . . . . . . 2NhRe{C̄0}

 . (47)

Putting (47) to row echelon form, one can simply show that
Re{V} is only rank-1 deficient (as Im{γ}). Considering the
same derivations for the right half, one can find that the
dimension of the nullspace of V̄ as 2.

Remark 2. Note that (35), (36) and (37) defines the “optimal”
Fourier series coefficients as the mean of their occurrences. In
the proof of Proposition 2, we assume that we can write each
ĈD(., .) in V̄ in terms of C̄m. However, this equivalence is only
valid for the noise free case. Noise will perturb the constraint

equations and numerically V̄ will be full rank. The reason
we computed the dimension of the nullspace is that we can
use this dimension to choose the number of least significant
eigenvectors of V̄ when generating solution space for Γ̄. �

Now, we know that dimension of the nullspace for V̄ should
be 2. Therefore, we use SVD to find the eigenvectors for V̄ .
Then, we choose 2 eigenvectors, v1 and v2, corresponding
to least significant singular values as the basis vectors of
nullspace of V̄ . Hence, the solution set for Γ̄ can be written as
Γ̄ = α1v1 +α2v2 and any choice of (α1, α2) pair yield a valid
solution for Γ̄ that will construct the similarity transformation
matrix TC , which transforms (32) to

ÂS = T −1
C ÂDTC , B̂S = T −1

C B̂D ,

ĈS = ĈDTC , D̂S = D̂D .
(48)

Given (48), we identify the Fourier series coefficients for
system matrices and construct LTP state-space realization as

x̂d[k + 1] = Âdx̂d[k] + B̂d[k]ud[k] ,

ŷd[k] = Ĉd[k]x̂d[k] + D̂d[k]ud[k]
(49)

by using the Fourier synthesis equations such as (9). Finally,
inverse bilinear (Tustin) transformation on (49) yields

˙̂x(t) = Âx̂(t) + B̂(t)u(t) ,

ŷ(t) = Ĉ(t)x̂(t) + D̂(t)u(t) ,
(50)

where

Â = (2/Ts)(Âd + I)−1(Âd − I) ,

B̂(kTs) = (2/
√
Ts)(Âd + I)−1B̂d[k] ,

Ĉ(kTs) = (2/
√
Ts)Ĉd[k](Âd + I)−1 ,

D̂(kTs) = D̂d[k]− Ĉd[k](Âd + I)−1B̂d[k],

(51)

and intersample behavior is obtained via linear interpolation.

Remark 3. Note that one can use this methodology to obtain
Floquet transforms for known LTP systems. To accomplish
this, one can simply equate the system matrices in (30) to
those in (27) by skipping the LTI subspace identification part.

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to both
illustrate the practicality of the proposed method as well as to
present a comparative analysis with one of the time-domain
LTP subspace identification methods in the literature [15].

The numerical example we consider is in the form
˙̄x(t) = Ā(t)x̄(t) + B̄(t)u(t) ,

y(t) = C̄(t)x̄(t)
(52)

with the following system matrices

Ā(t) =

[
−2s2(t) + 0.5s(2t) s(t) + s(2t)
−c2(t) + s(2t) −2c2(t)− 0.5s(2t)

]
,

B̄(t) =

[
−s(t)(1 + βbc(t))

c(t)(1 + βbc(t))

]
,

C̄(t) =
[
c(t)(1 + βcc(t)) s(t)(1 + βcc(t))

]
,

(53)

where s(t) = sin(4πt), c(t) = cos(4πt), s(2t) = sin(8πt),
βb = 0.5 and βc = 0.3.

We simulate the LTP system with a sinusoidal input signal
as sum of different frequency cosine inputs. In order to design



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2867360, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

our input signal, we first choose the sampling frequency
as fs = 1 KHz. We plan to use the summation of 400
different frequency cosine signals in the range (0.1, 250) Hz
for 200 s. Instead of choosing equidistant frequency values
in continuous-time, we transform our limits to discrete-time
frequency equivalents using the technique presented in [25]
and then choose 400 equidistant frequency values in discrete-
time to avoid distortion (warping) in high frequencies. Then,
we transform the discrete-time frequency values back to
continuous-time. This process is called pre-warping [25].

Once we obtain the input–output data from the unknown
system, we apply the proposed subspace identification method
to estimate an LTP realization for the original system (see
Appendix A). We estimate an equivalent representation for
(52) in the form of (50) with the system matrices as

Â =

[
0 1

−170.4848 −2.0001

]
,

B̂(t) =

[
0

12.5671 + 6.2836c(t)

]
,

Ĉ(t) =
[

1 + 0.3c(t) 0
]
.

(54)

Note that we neglected the sine terms with magnitude less
than 10−8 for the clarity. Since it is challenging to derive the
Floquet transform for Ā(t) given in (53), we numerically com-
puted a similarity transformation matrix that will give us the
Floquet multipliers ({eλiT }|np

i=1, where {λi}|
np

i=1 are the eigen-
values of A [21]) as µ1,2 = 0.5903 ± 0.1419j. On the other
hand, Floquet multipliers of Â, which is computed through our
subspace identification method, are µ̂1,2 = 0.5911± 0.1360j,
which are very close to numerical solution. In order to evaluate
the prediction performance, we compute the normalized root
mean squared error (nrmse) on identification data (see Table I).
We also contaminate the output data y(t) with zero mean
white Gaussian noise to quantify prediction performance with
different signal-to-noise (SNR) conditions. As seen in Table I,
the proposed method generates accurate output predictions
for noise free case. For the noisy cases, we performed 100
independent noise realizations and report mean nrmse errors.

TABLE I
NRMSE OF IDENTIFICATION DATA WITH DIFFERENT NOISE REALIZATIONS

SNR ∞ 40 30 20
Our Method 10−8 0.1921 0.6417 2.4961
Verhaegen [15] 10−13 0.9355 1.7326 3.3741

To provide a comparative analysis, we implemented the
time-domain subspace identification method proposed in [15]
for the same example defined in (52). We simulated (52) with
a white noise sequence and collected sampled input–output
data. Note that [15] works with discrete-time LTP systems.
However, since we are working with sampled data, it is fair
to compare input–output data of the two methods. Note that
the nrmse results presented in Table I for [15] are based on
prediction performance of its own identification signal (noise
sequence). Our method works slightly better than [15] for
predicting the identification signals under different noise real-
izations. In addition, we tested both methods with different test
signals such as a sinusoidal, noise sequence, step and square

0 1 2 3 4 5 6
Time (s)

-0.1

0

0.1

0.2

0.3

y 
(t)

Actual
Our method
Verhaegen [15]

Fig. 1. Comparison of the proposed method and [15] for predicting the
output of a square wave input signal with period π. Shaded and white regions
represent the +0.5 and −0.5 regions of the square wave, respectively.

wave input signals (Table II). Again, the proposed method
works slightly better for prediction of different test signals as
compared to [15]. To illustrate, we show a comparison plot
for the square wave test signal prediction performance of the
two methods in Fig. 1. The minor difference in prediction
performance can be spotted in this comparison plot.

TABLE II
NRMSE FOR TEST SIGNALS

Sinusoid Noise Step Squarewave
Our Method 0.00002 0.00001 0.00003 0.00002
Verhaegen [15] 0.02020 0.00760 0.02790 0.02010

The comparison of our method with [15] reveals that both
methods are accurate in predicting identification and test
signals. However, we emphasize certain points for a complete
discussion. First, the LTP state-space model generated by our
method is more intuitive than the model obtained using [15],
which seeks to find a time-invariant state-space quadruple
for each discrete-time step. Therefore, for an N -periodic
discrete-time LTP system, [15] generates N different state-
space quadruples, which is much more difficult to interpret
than the form in (54) generated by our method. Moreover,
the Floquet form in (54) is more preferable due to the time-
invariant state matrix. Nevertheless, even though both methods
work with a single input–output data pair, [15] finds and
works with the smallest data length. Therefore, [15] is more
advantageous in terms of using less data.

VI. CONCLUSION

In this note, we proposed a new method for subspace-based
state-space identification of LTP systems using frequency
response data. Our solution is based on the fact that LTP
systems can be transformed into equivalent discrete-time LTI
systems. To accomplish this, we utilize bilinear (Tustin) trans-
formation and a frequency domain lifting method available in
the literature. Then, we estimate an LTI system representation
that can predict the input–output data of the original system.

We then introduced a novel method to obtain a time-periodic
realization for the estimated equivalent lifted LTI system. Note
that the proposed LTP realization method works with the com-
plexity of a standard subspace identification procedure. Finally,
the estimated LTP system has a time-invariant state matrix.
Therefore, our method allows finding Floquet transforms for
known LTP systems via system identification.
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APPENDIX A

This appendix gives a summary of implementation details.
• Simulate (1) with a sum-of-cosines input, selecting the

frequencies as defined in [25].
• Obtain sampled data ud[k] and yd[k] for (3).
• Use (13) and (7) to obtain Ud and Yd.
• Process each frequency separately; choose Ūd = K and

use (25) to obtain Y .
• Combine Ūd and Y for each frequency in vectors and use

CVA [18] to obtain (30) (backsubstitute Tx and Ty).
• Perform eigenvalue decomposition on Â and perform the

similarity transformation in (32).
• Construct the constraint equation in (42) and use SVD to

find the nullspace vectors.
• Choose a solution from the nullspace and do the similarity

transformation in (48) to obtain (49).
• Use (50) as the inverse bilinear (Tustin) transform.
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[26] E. K. Hidir, I. Uyanik, and Ö. Morgül, “Harmonic transfer functions
based controllers for linear time-periodic systems,” T I Meas Control,
2018.
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