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Abstract

Mathematical modeling has commonly been used to represent various an-

imal behaviors. However, for complex system such as sensorimotor process,

explaining its dynamics by simple mathematical formulations would become

very challenging. Therefore, the data-driven techniques could be used for the

identification of animal behavior. In this study, we focus on comparing different

data-driven techniques for system identification of refuge tracking response in

the weakly electric glass knifefish (Eigenmannia virescens).

In the refuge tracking task, Eigenmannia virescens track a polyvinyl chlo-

ride refuge actuated in one degree of freedom via a motor which is controlled

by a PC. The PC can give both deterministic signals (such as sum of sines and

chirp) and stochastic signals (such as noise) to the system. Our data collec-

tion system allows simultaneous recording of movements of the refuge and the

fish via a real-time image processing software. Given the input and output

data, we estimated frequency response functions (FRFs) of the refuge track-

ing behavior by using non-parametric system identification techniques. Then,
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ABSTRACT

we used these FRFs to estimate parameters of parametric transfer function

models for the behavior using parametric system identification techniques.

We investigated how the selection of input signals affect the frequency re-

sponse function estimations. We then compared different mathematical models

for the input–output behavioral response of the fish by using sum-of-sines type

stimulus. We conclude the thesis by discussing the next steps of our research.

Primary Reader and Advisor: Noah J. Cowan

Second Reader: Ismail Uyanik
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Chapter 1

Introduction

This thesis documents the work performed in the fulfillment of the degree of

Master of Science in Engineering in Electrical and Computer Engineering in

2019. Small editorial corrections were made after the degree was conferred and

the thesis is hereby published in its most up-to-date and accurate form.

System identification is a data-driven process, which allows obtaining an-

alytical representations of dynamical systems based on experimental observa-

tions [1, 2]. The goal of this thesis is to apply system identification theory on

an animal behavior towards understanding the underlying dynamics.

There is a vast literature on developing mathematical models to represent

animal behavior [3]. Some of these modeling efforts, such as modeling the

legged locomotion with spring–mass models, are quite successful in predicting
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CHAPTER 1. INTRODUCTION

center of mass trajectories of animal behaviors [4–7]. However, the model-

ing efforts get more and more complicated when the complexity of the system

increases. For instance, it is very challenging to model the dynamics of sensori-

motor processes with simple mathematical formulations. Therefore, this thesis

focuses on data-driven techniques for identification of animal behavior. Specif-

ically, we focus on system identification for refuge tracking response in the

weakly electric glass knifefish (Eigenmannia virescens). We seek to compare a

number of non-parametric and parametric system identification techniques in

the literature to estimate the sensorimotor dynamics of Eigenmannia virescens

during refuge tracking behavior.

In this chapter, we first give a brief description of system identification by

describing some common procedures and techniques. We then continue by in-

troducing our test animal, Eigenmannia virescens. Finally, we conclude the

chapter with the explanation of refuge tracking behavior.

1.1 System Identification

The subject of system identification is concerned with the means and tech-

niques for studying a process or system through observed or experimental

data, primarily for developing a suitable (mathematical) description of that

system [8–11]. Here we introduce the general procedures for system identi-
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CHAPTER 1. INTRODUCTION

fication that are commonly used in the literature. The procedure of system

identification mainly contains five steps.

The first step is data generation and acquisition [8]. The input-output data

sets can be generated and recorded by conducting specifically designed system

identification experiments. When designing system identification experiments,

the inputs are of great significance: they need to be designed as rich as possible

so that the output can reflect full information of the system.

Secondly is the data pre-processing step [8]. Usually, raw data collected

during experiments cannot be directly used for the model estimation. Thus

before they are presented to model estimation algorithms, the quality check

and pre-processing steps should be implemented. Noises can be an obvious

factor that influences data quality. Besides this, outliers, i.e. data which do

not conform to other parts of the data because of the sensor breakdown and/or

abrupt and brief process excursions, will also affect the quality of the data [8].

Therefore, pre-processing the data will be helpful for preparing cleaner data

for next steps.

Thirdly is data visualization [8]. Data visualization is another step prior

to the model development. It is an important step for extracting information

and analysing signals, which can first give us an qualitatively confirmation to

the data quality from an identification point of view [8]. It can also provide

us primary information about the gain, delay, and dynamics of the system.
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Besides, visualizing the time domain data in a transformed domain such as the

frequency domain can also be beneficial since the spectrum or periodograms are

very good methods for signal analysis [8].

Fourthly is model development [8]. Model development is the central goal

of system identification. For each system, there can be a variety number of

candidate models. When developing these candidate models, we first specify

the model structure and order, then estimate the parameters of the model [8].

In practice, some model estimation toolboxes associated with data processing

software such as Matlab can highly improve the efficiency of the model devel-

opment.

Last but not least is model assessment and validation [8]. With many model

candidates, we need to determine the best model guided by the data. Criteria

should be followed or established for assessing the best model among candi-

dates.

In practice, there are mainly two types of system identification methods.

One kind of methods aims to use direct techniques to determine the trans-

fer functions for a linear time-invariant system, rather than first select a con-

fined set of possible models. Such methods are called non-parametric methods

since they are data-driven and do not explicitly use parameters for the descrip-

tion [9]. Instead, if the parameters are estimated and models are built for the

system identification, the methods are called parametric.
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Parametric methods are model-based which possess a particular structure

and order and have less number of unknowns than non-parametric methods

which do not possess any structure or order. However, less prior knowledge

is required when conducting non-parametric system identification while the

estimation of parametric models demands some prior knowledge [8].

In this research, both of the two methods are used for system identifica-

tion. A more detailed introduction to these two methods and how can they be

realized in our research are included in Chapter 3 and Chapter 4.

Note that our research focuses on some common input signals and para-

metric models that have previously tested in similar studies. However, there

are also many other techniques in the literature that can be used for the same

purpose [12,13].

1.2 Eigenmannia virescens

Eigenmannia virescens is a species of weakly electric glass knifefish which

is widely distributed in the rivers of South America. Due to their natural refuge

seeking behavior, these fish prefer to hide inside tree trunks or leaf litter in the

wild in the light but they swim out in the dark [14–17].

Eigenmannia virescens, like most of the other species of weakly electric fish,

generate electric currents to sense their surroundings in the dark and turbid
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waters [18]. The continuous production of these electric currents, known as

electric organ discharge (EOD), generate electric fields around the body of the

fish [19]. The weakly electric fish can be classified into two categories based

on the way they generate this electric field: wave-type fish and pulse-type fish.

The wave-type fish produce nearly sinusoidal electric currents at frequencies

ranging between 200 Hz and 700 Hz [20]. The fish can sense the shape, size

and distance of the objects nearby by using the reflections of this electric fields

on their electroreceptors. These fish can also integrate the sensory informa-

tion from electrosensory system with vision to obtain a more accurate repre-

sentation of the environment [21]. This unique feature makes Eigenmannia

virescens to be particularly special test animal to study multisensory integra-

tion and sensorimotor control [14,21,22].

Previous studies show that, as excellent maneuverable swimmers, Eigen-

mannia virescens also have a long, undulating ventral ribbon fin which is help-

ful for the generation of the propulsive force for locomotion [23]. The ribbon fin

is composed of two inward-counterpropagating waves, one generated from their

head and the other from their tail, meeting at a point called nodal point [22,24].

By adjusting the nodal point position at which the two waves meet, the fish can

swim forward and backward equally well without reorienting their bodies.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Eigenmannia virescens, the “weakly electric glass knifefish”.
Photo credit: Will Kirk.

1.3 Refuge Tracking in Eigenmannia as

a Feedback Control System

In the refuge tracking task, Eigenmannia virescens swims back and forth to

keep its position inside a longitudinally moving refuge [17]. Fig 1.2 illustrates

a block diagram representation of refuge tracking behavior in the form of a

closed-loop feedback control model.

While it is clear [15] that this system possesses many rich and interesting

nonlinearities, this research assumes that the refuge tracking behavior can be

treated as a linear time-invariant (LTI) system. The input for the central ner-

vous system (CNS) is the difference between the refuge movement and the self

movement of the fish. We call this signal the sensory slip [14,25,26], represent-
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r(t)
(refuge position)

+
_
e(t) P(s)

y(t)
(fish position)

Central Nervous
System (CNS)

Swimming
Dynamics

C(s)

Eigenmannia virescens Refuge Tracking System

Figure 1.2: A block diagram representation of refuge tracking behavior. The
input, refuge position, r(t), and output, fish position, y(t) were all baseline
subtracted. The sensory slip e(t) is the difference between system input and
output as the input to the “controller” Central Nervous System (CNS). CNS will
send control signal to the “Plant”, the Swimming Dynamics for the locomotion.

ing the drift or error in tracking. Then, the CNS produces the control signals

that stimulate the plant (swimming dynamics) to generate locomotion. The

refuge tracking behavior has also been studied before and its linear functioning

regimes has been described [15]. Therefore, we will perform our experiments in

a similar input–output regime to ensure LTI response of the system for further

analysis.
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Chapter 2

Experimental Environment and

Apparatus

2.1 Experimental Environment

Adult Eigenmannia virescens (10–15 cm in length) were obtained through

commercial vendors and housed according to the guidelines [27] previously

published. The experimental tanks were maintained with a water tempera-

ture around 78◦F and conductivity in the range of 10–150 µS/cm. All the ex-

periments were conducted in the illumination in the range (300–500 lux) and

all experimental procedures were approved by the Johns Hopkins Animal Care

and Use Committee and followed guidelines established by the National Re-

search Council and the Society for Neuroscience.
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2.2 Experimental Apparatus

The methods are from Biswas et al [25], and are only briefly described here.

For full details, please see [25]. The experimental apparatus is similar to that

reported in previous studies [14–16, 21, 25, 28]. The test environment is a 17

gallon rectangular glass tank. A heater is placed inside the water to maintain

the temperature and air filter is connected to the air sources providing oxygen

for the environment. The refuge was machined from a 152 mm (152.49±0.28)

segment of 46.64×50.65 (46.64±0.33×50.65±0.10) mm gray rectangular PVC

tubing, with the bottom surface of the tube removed. Both sides of the refuge

were machined with a series of six rectangular windows (with a width of 6 mm

and spaced 19 mm apart) to provide visual and electrosensory cues.

Linearactuator

Mirror

Camera

PC

Figure 2.1: Experimental Apparatus

A PC gives the designed input signal to the refuge actuated by a stepper
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motor, leading to the one degree of freedom refuge moving in real time. The

high-resolution camera captures the real time refuge and fish image by mir-

ror reflection and transfers the image to a Labview PC. Template matching is

employed in Labview to determine the real-time position of the fish for time-

domain data collection. After each trial, both the input refuge position r(t) and

the output fish position y(t) are saved in PC.

11



Chapter 3

Non-parametric System

Identification of Refuge Tracking

Behavior

Our goal is to do system identification of fish refuge tracking behavior. In

this chapter, we introduce the non-parametric system identification for refuge

tracking behavior. Non-parametric system identification means estimating the

frequency response characteristics of a system relying on the input and output

data without mathematical modeling. Since it is a data-driven process, it is

very crucial to design input signals rich enough so that the input can trigger

different dynamics of the system for us to observe the response in the output.

Then the frequency response characteristics can be estimated by using the in-
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put and output.

In our research, we designed three different input signals with rich fre-

quency contents. All of them would be extremely helpful for frequency domain

analysis but also require different methods when processing the data. By com-

paring the results of different input stimuli, we could find the best stimulus

and the best data processing method for data with that stimulus, preparing for

model-based system identification.

3.1 Experimental Stimuli

Our Experimental Stimuli could be classified as two types. One is called

Deterministic Input. The other is called Stochastic Input. Deterministic input

has a completely known physical description, whereas stochastic input is not

deterministic, which includes noise.

3.1.1 Sum of sines

First stimulus we tested was sum of sines, which has also previously been

used for identification of refuge tracking response of the fish [15]. It is a kind

of deterministic input, including 13 single sinusoidal signals at different fre-
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quencies, written as below:

r1(t) =
13∑
i=1

1

0.1πki
· cos(0.1πkit+ Φi), (3.1)

where ki = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 are prime numbers to prevent

harmonics in the input stimuli. From Eq. (3.1), we can find that the frequency

of each single sinusoidal component was designed to be 2π×0.05×ki. Then

the sum of sines input has a period of 20 s. The amplitude of each single

sinusoidal signal was inversely proportional to its own frequency in order to

ensure constant velocity magnitude, while phases Φi were randomized for each

frequency components. The total sum of sines stimulus duration we designed

was 40 s, twice of the period of sum of sines.

3.1.2 Chirp

We then implemented a chirp type stimulus signal, which has previously

been used for identification of legged locomotion [29]. Chirp stimulus we im-

plemented were also a sort of deterministic input. It is a 40-second sinusoidal

signal, logarithmically increasing its frequency from 0.05 Hz to 2 Hz but lin-

early decreasing its amplitude from 0.05 m to 0.001 m. The equation of chirp
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stimulus is as follows:

r2(t) = (αt+ a0) · sin (2πf(t)) . (3.2)

In Eq. (3.2),

α =
a1 − a0
t1 − ts

,

f(t) =
t1

ln(f1
f0

)
·

(
f0 ·

(
f1
f0

) t
t1

− f0

)
,

where a0 = 0.05 m, a1 = 0.001 m, t1 = 40 s, ts = 0.04 s, f0 = 0.05 Hz, f1 = 2 Hz,

ts represents the sampling time and ln(·) represents the natural logarithm of a

number.

3.1.3 Noise

We also tested with noise type input signal, which is a type of stochastic

stimulus and previously used for identification of legged locomotion [30].

Here we first generated a vector of random numbers in a length of 1000,

uniformly distributed between -0.2 and 0.2. Then we transferred these ran-

dom numbers into frequency domain by computing Discrete Fourier Transform

(DFT) and cut off all the frequency components bigger than equal to 2.05 Hz.

After that, in frequency domain, at each remaining frequency component fm,

the signal was multiplied by 1

(2πfm)
3
4
. Finally we transferred the signal back to
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time domain and got our noise stimulus with frequency components between 0

Hz and 2.05 Hz. The duration of this noise stimulus was 40 seconds.

3.2 Experimental Procedure

Each fish (N = 3) were tested individually. Each fish was transferred to the

experimental tank and allowed to acclimate for 2 – 12 hours prior to the start

of the experiment.

For each fish, the experiments with three stimulus were conducted in one

day. First, we performed 5 – 10 trials of the sum of sines experiment, then 5 –

10 trials of chirp experiment and 5 – 10 trials of noise experiment in the end, all

in light environment. Each trial lasts 70 seconds in total. One-minute breaks

were given between two consecutive trials for the fish to have rest. We took

experimental notes for every trial of the experiments with each fish, describing

the observation of the fish performance during that trial, such as tracking loss

happened during the experiment, since template matching was used to track

the fish position.
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3.3 Data Analysis

Time domain refuge and fish trajectories, r(t) and y(t) accordingly, were

automatically digitized with the sampling rate 25 Hz and saved in the PC of

the experimental apparatus.

In the data pre-processing step, for the data we got from each trial with

each fish, the first 20 seconds and last 20 seconds of input and output raw

data (including those in the first 10 seconds of ramping-up period for sum of

sines and noise input case) were discarded to get purer, cleaner data for further

analysis. Besides, we subtracted baseline so that the initial position of the

refuge and that of the fish relative to the refuge couldn’t make any difference.

Outlier experiments were eliminated based on the experimental notes.

Then for each individual fish, we observed time domain trajectories of all

the trials and eliminated other outlier experiments. Then we averaged the

fish trajectories in time domain. Next step was to use a common way for non-

parametric system identification such as Empirical Transfer Function Esti-

mate (ETFE) to estimate the FRF of the refuge tracking system. Primarily,

we used Discrete Fourier Transform (DFT) to transfer the time domain input

r(t) and output y(t) to the frequency domain as complex-valued functions of

frequency, R[ω] and Y [ω]. The DFT computations are as follows:
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R[ω] =
N∑
t=1

r(t)e−jωt, (3.3)

Y [ω] =
N∑
t=1

y(t)e−jωt, (3.4)

where ω = 2πk/N , k = 1, 2, 3, . . . , N .

Then the ETFE Ĝ(ejω) can be calculated by

Ĝ(ejω) =
Y [ω]

R[ω]
. (3.5)

The Eq (3.5) means that ETFE can be computed at each frequency compo-

nent of input and output in frequency domain. This computation provides a

set of complex numbers, which represent the estimation of FRF at each corre-

sponding frequency. However, we need to be careful that ETFE was not defined

when the denominator term R[ω] = 0.
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3.4 Results

3.4.1 Refuge Tracking Performance of Eigenman-

nia virescens in Time Domain

After outlier detection with notes, we put all trials of output data together

with their average in the same figure, and compared the average with the input

stimulus during that period. Fig 3.1, Fig 3.2, Fig 3.3 indicate the fish tracking

performance in time domain.

In sum of sines input case, since the input signal was the summation of

multi-frequency sinusoidal signals, it stimulated a broad range of dynamics be-

cause of the high frequency components. The Fig 3.1 shows that the fish could

track the low frequency components of sum of sines input very well, but may

not track the high frequency components as well as it does for low frequency

components.

In chirp input case, the input is a signal with logarithmically increased fre-

quencies but linearly decreased magnitude. As shown in Fig 3.2, the fish could

also perform their tracking well at low and medium frequencies, but again

could not track the high frequency very well.

In noise input case, we noticed from Fig 3.3 that the fish could track the

noise dynamics well, but at the same time, didn’t move as much as the refuge
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Figure 3.1: Sum of sines input signal r(t) at t = 0 − 40s (in red color) and
corresponding output fish position y(t) (in blue color). Take one fish data (out
of N = 3) as an example.

moved during the experiments.

3.4.2 Issues with the Estimation of True FRF Us-

ing ETFE

Tracking performance of the fish in time domain will dramatically influ-

ence the frequency domain analysis. Ideally, assume that the fish could track

the refuge movement exactly the same magnitude without any time delay, then

we will get a Bode plot with gain to be one and zero phase at all frequencies.

However, the fish tracking system cannot be an ideal system like that, so at
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Figure 3.2: Chirp input signal r(t) at t = 0− 40s (in red color) and correspond-
ing output fish position y(t) (in blue color). Take one fish data (out of N = 3) as
an example.

some frequencies, the response would have a lower gain and more phase lag.

In the sum of sines input case, as our hypothesis, the fish tracking system is

an LTI system, which means that if the input has 13 frequency components,

the output should also be composed of exactly these 13 frequency components.

So in our case, we plotted the frequency domain amplitude of input in Fig 3.4

and found that the input only had 13 spikes at each frequency components.

We could also clearly observe spikes at those 13 frequencies in the output fre-

quency domain amplitude plot Fig 3.5. So ETFE would be defined at all these

13 frequencies and the estimation results were 13 complex numbers.

The Bode plot Fig 3.6 was drawn by those 13 complex numbers we got from
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Figure 3.3: Noise input signal r(t) at t = 0− 40s (in red color) and correspond-
ing output fish position y(t) (in blue color). Take one fish data (out of N = 3) as
an example.

ETFE results. Here we could also interpolate the FRF at other frequencies

by connecting the adjacent two frequencies among all 13 of them because we

didn’t design the input signal at those frequencies for sum of sines case. And

the time domain tracking performance has already shown that the fish couldn’t

track the dynamics of high frequency components that perfect. So in Bode plot

Fig 3.6, we witnessed that although at low frequency, the gain of fish was close

to 1 and the phase lag was very low, as frequency increasing, the gain had a

trend of decreasing and phase lag tended to rise up.

Since the sum of sines stimulus only contained 13 frequency components,

other frequency components would merely be interpolated based on ETFE com-
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Figure 3.4: Frequency domain amplitude of sum of sines input signal. Clearly
witnessed 13 spikes at each frequency component. Take one fish data (out of
N = 3) as an example.

puted at existed frequencies in sum of sines case. These interpolation might be

less accurate than directly computation by ETFE. So this is a disadvantage for

a stimulus with not too many frequency components such as our designed sum

of sines.

But the chirp stimulus contained more frequencies than sum of sines. We

could compute ETFE at all frequencies in the range of 0.05 Hz to 2 Hz with fre-

quency resolution of 0.025 Hz rather than interpolate FRF from a small num-

ber of frequencies. Again, the Bode plot could be drawn at these frequencies in

Fig 3.7.

From Fig 3.7 we can see that both the gain and phase decrease but have
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Figure 3.5: Frequency domain amplitude of fish output corresponding to sum
of sines input. Here we also witnessed 13 spikes at same corresponding fre-
quencies of sum of sines input. Take one fish data (out of N = 3) as an example.

more oscillations as frequency increasing.

Similarly, the noise stimulus we designed was composed of more frequency

components than the other two stimuli. If we followed the same process we did

for the sum of sines and chirp case, we could get Bode plot for the noise input

case in Fig 3.8.

From the Fig 3.8 we can see that the noise input case has a very messy

Bode plot. Oscillations happen a lot at all frequencies, but more severe at high

frequency parts.

Based on the observation of Bode plot for three kinds of inputs, we could

observe that the Bode plot were not smooth in both chirp and noise input case.
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Figure 3.6: Bode plot of the sum of sines input case by ETFE at 13 frequency
components and interpolation at other frequencies. Take one fish data (out of
N = 3) as an example.

However, for a physical system, the Bode plot should definitely be smoother

than the plot we got. So we found that actually ETFE has an issue about the

estimation of FRF for refuge tracking system.

In order to dig out the reason that bring about the issue of inaccurate esti-

mation of ETFE, we had to study the properties of ETFE.

First, consider a system S with actual FRF G0(q), given an input r(t), there

is a stochastic disturbance v(t) with zero mean before the output y(t). Then the

relationship between input and r(t) output y(t) is:

y(t) = G0(q)r(t) + v(t). (3.6)
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Figure 3.7: Bode plot based on ETFE for the chirp stimulus case with the
frequency range of 0.05 Hz – 2 Hz. The frequency resolution is 0.025 Hz. Take
one fish data (out of N = 3) as an example.

Because of the stochastic disturbance term corrupting the data, the ETFE

of a system, which is the estimation would be a random variable. That means,

for different experiments, ETFE is different.

Second, ETFE is computed at a variety of frequencies. But there is no corre-

lation between estimation at the frequency ωk and the other frequencies, such

as ωk−1 and ωk+1.

Third, at one frequency ωk , the estimate is a random variable distributed

around the actual G0(e
jωk) because the disturbance term v(t) has zero mean.

So the ETFE will be more reliable if the variances of the estimates are small

for all ωk.
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Figure 3.8: Bode plot based on ETFE for the noise stimulus case. Take one
fish data (out of N = 3) as an example.

For the system S with zero-mean disturbance term v(t), we could compute

its DFT V [ω],

V [ω] =
N∑
t=1

v(t)e−jωt. (3.7)

Then, transfer the Eq (3.6) in freuqency domain,

Y [ω] = G0(e
jω)R[ω] +Q[ω] + V [ω]. (3.8)

Here, based on Theorem 2.1 in [9], Q[ω] is the error incurred in the approx-

imating the exact FRF with a finite-sample version and bounded with 1/
√
N

and will decay as the number of samples N increases.
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Then, FRF can be estimated as

Ĝ(ejω) = G0(e
jω) +

Q[ω]

R[ω]
+
V [ω]

R[ω]
. (3.9)

Since we know that the variance of the estimated FRF is

var
[
Ĝ(ejω)

]
= cov

(
Ĝ(ejω), Ĝ(ejω)

)
= E

[(
Ĝ(ejω)− E

[
Ĝ(ejω)

])2
]
,

(3.10)

By assumption, E
[
V [ω]

]
= 0, ∀ω

E
[
Ĝ(ejω)

]
= G0(e

jω) +
Q[ω]

R[ω]
. (3.11)

Thus, we can get

Ĝ(ejω)− E
[
Ĝ(ejω)

]
=
V [ω]

R[ω]
. (3.12)

So the variance of estimated FRF is

var
[
Ĝ(ejω)

]
= E

[(
Ĝ(ejω)− E

[
Ĝ(ejω)

])2
]

= E

[∣∣V [ω]
∣∣2∣∣R[ω]
∣∣2
]
.

(3.13)

For deterministic input signals r(t) (such as sum of sines signal and chirp
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signal):

E
[∣∣R[ω]

∣∣2] =
∣∣R[ω]

∣∣2. (3.14)

Then the variance of estimated FRF can be written as

var
[
Ĝ(ejω)

]
=
E
[∣∣V [ω]

∣∣2]∣∣R[ω]
∣∣2 . (3.15)

We could let E
[∣∣V [ω]

∣∣2] ≈ Φv(ω), Φv(ω) is the spectrum of v(t) [9]. Then we can

get this expression:

var
[
Ĝ(ejω)

]
≈ Φv(ω)∣∣R[ω]

∣∣2 . (3.16)

For stochastic input signals u(t) (such as noise signal):

var
[
Ĝ(ejω)

]
=
E
[∣∣V [ω]

∣∣2]
E
[∣∣R[ω]

∣∣2] . (3.17)

Again, E
[∣∣V [ω]

∣∣2] ≈ Φv(ω), Φv(ω) is the spectrum of v(t); E
[∣∣R[ω]

∣∣2] ≈ Φr(ω),

Φr(ω) is the spectrum of r(t) [9]. Then get this approximation expression:

var
[
Ĝ(ejω)

]
≈ Φv(ω)

Φr(ω)
. (3.18)

First look at our sum of sines input case:

r1(t) =
13∑
i=1

1

0.1πki
· cos(0.1πkit+ Φi),
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where ki = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, the ETFE is only computed at

ωk = 0.1πki. Based on Eq (3.16),
∣∣R[ω]

∣∣2 could be computed at ωk, based on the

results of example 2.1 in [9], we can get:

∣∣R[ωk]
∣∣2 =

NA2
k

4
. (3.19)

Ak is the amplitude of the sinusoid at ωk. Thus, the variance of ETFE at the

available frequencies ωk is:

var
[
(Ĝ(ejωk)

]
≈ Φv(ωk)∣∣R[ωk]

∣∣2 =
4Φv(ωk)

NA2
k

. (3.20)

So the variance of ETFE can decay as N and Ak increase [9].

Then look at the stochastic input case, such as our noise input case. If we

know the variance of noise input is σ2
r . The variance of ETFE at the available

frequencies ωk can be estimated by:

var
[
(Ĝ(ejωk)

]
≈ Φv(ωk)

Φr(ωk)
=

Φv(ωk)

σ2
r

. (3.21)

Note σ2
r � NA2

k since power of our sum-of-sines signal is concentrated in just a

few signals [9].

Based on the above discussion, the reason why ETFE does not perform very

well for stochastic signals is that the estimation is random, and variance of
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estimation is high. To improve our estimation, we can decrease the variance

of ETFE by increasing sample size or magnitude of input signal for determin-

istic input case. However, this method is not quite useful when the input is

stochastic.

3.4.3 Smoothing Window in ETFE Could Improve

the Estimation for Stochastic Stimulus Case

From the last section we know that when the input is stochastic signal,

the variance of ETFE cannot be decreased by lifting sample size or increasing

the input amplitude. So we tried to implement more methods to improve the

estimation. One idea was to use smoothing window in ETFE.

Matlab uses Hamming window for the smoothing of their “etfe” command.

Fig 3.9, Fig 3.10, and Fig 3.11 illustrate the comparison between original

ETFE and smoothed ETFE for each case using Hamming Window in matlab

“etfe” command.

For sum of sines input case, we can find that the Hamming smoothing win-

dow didn’t affect the estimation very much. The smoothing window really

smoothed oscillation of the gain and phase in chirp input case but keep the

trend to be similar, which suggests that the smoothing windows can actually

improve the estimation of deterministic input case as well. For the noise input
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Figure 3.9: Bode plot based on ETFE for the sum of sines stimulus case and
that smoothed with Hamming Window. Take one fish data (out of N = 3) as an
example.

case, in the Fig 3.11, the smoothing window had a strong impact on the case,

which dramatically decreased variances of the original ETFE estimation.

The principle of smoothing window is that it can reduce the variance by

averaging over neighbouring frequency points. Smoothing is motivated by two

important ETFE properties. First of all, ETFE estimations are independent for

different ωk. Besides, averaging over a frequency area whereG0(e
jω) is constant

reduces the variance.

A Hamming window was what used to smooth the ETFE. But an important

thing that should be noticed is that there is bias/variance trade-off. Windowing

introduces bias while reducing the variance. And we need to be careful to
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Figure 3.10: Bode plot based on ETFE for the chirp stimulus case and that
smoothed with Hamming Window. Take one fish data (out of N = 3) as an
example.

choose window sizes. If the window is too narrow, the variance is still too large.

If the window is too wide, it may also smooth the dynamic.

3.5 Discussion

Following our hypothesis, if the refuge tracking system is an LTI system,

then no matter what the stimulus is, the FRF would not change. That means

we should obtain the same Bode plot for all three cases. However, based di-

rectly on computation of ETFE in all three input cases, we found that these

three estimates of FRF vary a lot (see Fig 3.12). But we could not tell whether
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Figure 3.11: Bode plot based on ETFE for the noise stimulus case and that
smoothed with Hamming Window. Take one fish data (out of N = 3) as an
example.

the difference comes from fish refuge tracking system itself or not since the

disturbance noises during experiments caused high estimation variances with

ETFE method in chirp and noise input cases. Besides, “windowing artifact” for

chirp and noise inputs could also result in the imperfect FRF estimations with

ETFE method because the spectral leakages occur across frequencies for these

non-periodic stimuli. The periodic sum of sines stimulus wouldn’t be effected

by windowing artifact since the length of data for processing was perfectly cho-

sen as multiples of the period of the input. Thus we applied smoothing window

to improve the estimation of ETFE in three input cases and compared the re-

sults (Fig 3.13). From the Fig 3.13, all these three estimates generally follow
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the trend of decreasing gain and more phase lag as frequency increasing. But

we still observed that the FRF estimation in chirp input case has an “rise-up”

gain at above 1 Hz. Besides, the estimation of FRF from chirp input case has

the smallest phase lag and that from noise input case has the lowest gain at

most frequencies within the frequency range 0.1 Hz – 2 Hz. These results sug-

gest the nonlinearity of the refuge tracking system of Eigenmannia virescens

across different stimulus cases. The possible reason could be related to but not

restricted to the stimulus predictability [15] and amplitude saturation.

Figure 3.12: Bode plot based on ETFE for all three stimulus cases. Take one
fish data (out of N = 3) as an example.

All in all, the ETFE itself might not provide us a good estimate. However,

we were able to improve the estimation performance of ETFE. For the deter-

ministic stimulus, the ETFE results could be improved by increasing the sam-
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Figure 3.13: Bode plot based on ETFE for all three stimulus smoothed with
Hamming Window. Take one fish data (out of N = 3) as an example.

ple size and input amplitude or applying smoothing windows. For the stochas-

tic stimulus, smoothing windows could be used for getting a better estimation.

However, among the three cases, since the fish would have more predictable

movement when tracking the chirp input, the smoothing window size would be

hard to be chosen for the noise case, we would choose the sum of sines input for

the parametric system identification.
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Chapter 4

Parametric System Identification

of Refuge Tracking Behavior

Parametric system identification is a technique which allows fitting math-

ematical models to input output data. Here, we used non-parametric system

identification results, such as ETFE, and then estimate the parameters of the

parametric models based on the ETFE. Our idea of parametric system identi-

fication for fish refuge tracking system was to input the ETFE (complex num-

bers) results to the System Identification Toolbox in Matlab for the initial fit-

ting and then manually adjusted the parameters of the model to get a better

fitting visualized in Bode plot.

We took different approaches in modeling the refuge tracking system de-

picted in Fig 1.2. As seen from the Block Diagram, the refuge tracking system
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has a closed-loop model with Controller (transfer function C(s), abbreviated as

C here), Plant (transfer function P (s), abbreviated as P here) and a unit nega-

tive feedback. First we obtained a model for the closed-loop transfer function,

noted as G here. Then we modeled the inner loop CP (the multiplication of

transfer function C and P ) directly from input output data.

In parametric system identification part, we use frequency response func-

tion estimations obtained through sum of sines input signals, a sample of which

is illustrated in Fig 4.1, since they provide accurate and intuitional Bode plots

as shown in the results of Chapter 3.

Figure 4.1: Sampled trial with one fish (out of N = 4), containing the time-
domain input (red color) and output (blue color) plot on the top and Bode plot
(both gain and phase) at bottom.
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4.1 Models

Just as mentioned in Chapter 1, Model development was the central goal for

system identification. So in this section, we introduce the process of developing

three model candidates and make a discussion about these models.

4.1.1 The Canonical Second Order Transfer Func-

tion Model with Time Delay

Following the previous efforts on identifying the refuge tracking perfor-

mance of these fish [16,24], we used a canonical second order transfer function

model as our base parametric form. These type of second order models are also

common in engineering applications such as the mass-spring-damper system

and RLC circuit. In Laplace domain, the transfer function of canonical second

order system, noted as G(s), can be written as following:

G(s) =
Kωn

2

s2 + 2ξωns+ ωn2
. (4.1)

So we initially imported the complex values of ETFE, frequencies corre-

sponding to these complex values as well as the sampling time to the system

identification toolbox, the interface of which is in Fig 4.2, then estimated the

transfer function model with two poles and no zeros. We could get an initial

39



CHAPTER 4. PARAMETRIC SYSTEM IDENTIFICATION OF REFUGE
TRACKING BEHAVIOR

canonical second order model estimation of the fish refuge tracking system.

Figure 4.2: Matlab System Identification Toolbox provided an easier way for
model development.

However, in our case, we observed in the Bode plot Fig 4.3 that although

the gain plot fitting was reasonable, this initial canonical second order model

couldn’t fit the phase of ETFE very well because the ETFE had more phase

lag especially at high frequencies. Then, instead, a better fitting would be ac-

complished if we introduced a delay term in the model. So, we finally modeled

the system with a time-delayed transfer function of two poles and no zeros.

We call this model as “The Canonical Second Order Transfer Function Model

with Time Delay”. In other words, our estimation of FRF for the refuge track-

ing system here was very similar to the original second order system, the only

difference being that our model included a delay.

Then, this “The Canonical Second Order Transfer Function Model with

Time Delay” model for the estimation of FRF Gest1 of fish refuge tracking sys-
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Figure 4.3: Comparison between the estimated FRF using ETFE (red color)
and canonical second order model estimated by Matlab System Identification
Toolbox (blue color) in Bode plot. Take model of one fish data (out of N = 4) as
an example.

tem can be written as:

Gest1(s) =
Kdcωn

2

s2 + 2ξωns+ ωn2
e−τs. (4.2)

The Bode plot in Fig 4.4 indicates the comparison between the non-parametric

FRF estimation ETFE and the fitted “The Canonical Second Order Transfer

Function Model with Time Delay” model using modeling for one fish data as

illustration. The bad fitting in phase plot at high frequency was solved by this

delay term. But one structural deficiency of this model is that it treats the

delay as occurring as a feed forward (open-loop) term. Given the topology of
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Fig. 1.2, the delay should really be included in the feedback, as in the next

section.

Figure 4.4: Comparison between the estimated FRF using ETFE (red color)
and “The Canonical Second Order Transfer Function Model with Time Delay”
(blue color) in Bode plot. Take model of one fish data (out of N = 4) as an
example.

4.1.2 McRuer Crossover Model for Fish Refuge

Tracking System FRF G

McRuer Crossover Model is a mathematical model of Human Pilot Behavior

developed by Duane T. McRuer in 1974 [31]. Recent study has discovered that

this model can be used to predict tracking response of Eigenmannia virescens

[32]. The form of McRuer Crossover Model is typically like the Eq (4.3):
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M(s) =
Kp

s
e−τs. (4.3)

This model includes a gain Kp, an origin pole and delay for a transfer func-

tion M(s). In our case, we followed the procedure done in section 4.1.1, us-

ing the process models estimation in Matlab System Identification Toolbox.

And we also manually tuned the parameters of the Matlab System Identifica-

tion Toolbox fitting results to get a better model. Then we observed that this

McRuer Crossover Model could fit the data-driven ETFE of fish refuge tracking

system very well, and could be even improved when the pole location was not at

the origin. Then, a more generalized form was used for our McRuer Crossover

Model fitting, which no longer restricted the pole location to be zero. In that

way, our McRuer Crossover Model for the estimation of refuge tracking system

FRF Gest2 became:

Gest2(s) =
Kp

s+ p
e−τs, (4.4)

i.e. a lag filter with delay, instead of a pure integrator. We fitted this model

with the ETFE and had the comparison in Bode plot Fig 4.5. From Fig 4.5, we

could observe a very nice model fitting of ETFE by McRuer Crossover Models.
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Figure 4.5: Comparison between the estimated FRF using ETFE (red color)
and McRuer Crossover Model fitting with FRF G (blue color) in Bode plot. Take
model of one fish data (out of N = 4) as an example.

4.1.3 McRuer Crossover Model for Fish Track-

ing System Inner Loop CP

From the second idea of parametric system identification, we could model

the inner loop CP of refuge tracking system and calculate the FRF back using

the Eq (4.5):

G(s) =
C(s)P (s)

1 + C(s)P (s)
. (4.5)

Here, by observing the Bode plot of the inner loop CP for refuge tracking
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system, we also fitted it with McRuer Crossover Model. That was

CPest(s) =
Kp

s+ p
e−τs. (4.6)

Following the previous procedure to get an initial fitting in Matlab System

Identification Toolbox and manually adjusted parameters for better model re-

sults, we got the final fitting result like the Fig 4.6 which indicated a good

fitting.

Figure 4.6: McRuer Crossover Model fitting with CP. Take model of one fish
data (out of N = 4) as an example.

Then we calculated back using the Eq (4.5) for the estimation of the FRF of

refuge tracking system Gest3, with the Bode plot in Fig 4.7.
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Figure 4.7: Refuge tracking system FRF G calculated back from McRuer
Crossover Model for CP. Take model of one fish data (out of N = 4) as an
example.

4.2 Discussion

In parametric system identification, we used three different models to rep-

resent the FRF of refuge tracking system.

As we can see from Fig 4.8, all of these three models can fit the non-parametric

FRF estimate with ETFE very well for the sampled fish. The fitting graphs for

all the fish (N = 4) are in the Fig 4.9 and parameters of each model fitting for

these fish are in the Table 4.1. However, we do not currently have a quantative

metric to judge which fitting method is best. We need strategies and meth-

ods that can evaluate the fitting (for example modeling consistency, fit error)

so that we can easily decide which model provides the best fit for the refuge
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Figure 4.8: Comparison among three parametric system identification models
and ETFE. The red, blue, green and yellow curves represent: the estimated
G by ETFE, the parametric model of G calculated from the McRuer Crossover
Model for CP, the McRuer Crossover Model for G, and the Canonical Second Or-
der Transfer Function Model with Time Delay for G, respectively. Take model
of one fish data (out of N = 4) as an example.

tracking system. This will become a significant part in our future work.
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Fish Name
Model Type

The Canonical
Second Order
Transfer Func-
tion Model with
Time Delay

McRuer Model
for G

G Calculated
back from
McRuer CP

Gui 15.2
s2+7.28s+28.80

e−0.10s 2.74
s+4.77

e−0.22s 1.61e−0.18s

s+1.15+1.61e−0.18s

Key 16.6
s2+6.24s+24.28

e−0.09s 3.17
s+3.79

e−0.19s 2.05e−0.18s

s+0.50+2.05e−0.18s

Doc 17.97
s2+8.69s+40.08

e−0.14s 2.71
s+5.76

e−0.22s 1.42e−0.19s

s+1.22+1.42e−0.19s

Luna 11.3
s2+10.6s+18.54

e−0.10s 1.02
s+1.58

e−0.17s 0.90e−0.14s

s+0.19+0.90e−0.14s

Table 4.1: Parameters of three models with four fish.
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(a) “Gui” Parametric Comparison. (b) “Key” Parametric Comparison.

(c) “Doc” Parametric Comparison. (d) “Luna” Parametric Comparison.

Figure 4.9: Comparison among three parametric system identification models
and ETFE for N = 4 (fish name: Gui, Key, Doc and Luna). The estimates of
G by ETFE for each fish is in red color, the “Canonical Second Order Transfer
Function Model with Time Delay for G” is in yellow color, “Estimated G cal-
culated back from McRuer Crossover Model for CP” is in blue color, “McRuer
Crossover Model for G” is in green color.
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Chapter 5

Conclusion and Future Works

In this study, we focused on comparing different system identification tech-

niques for animal behavior – refuge tracking of Eigenmannia virescens. The

techniques include non-parametric system identification and parametric sys-

tem identification. In non-parametric system identification, we implemented

both deterministic (sum of sines and chirp) and pseudo-stochastic (noise) in-

put to analyze how the input signal affects the frequency response function

estimation. In parametric system identification, we compared different para-

metric models to see how different mathematical models capture the animal

behavior. Our finding is that for stochastic stimulus, fish didn’t track the high

frequency refuge movement very well. We were also not able to assess by vi-

sual inspection if the fish performed the behavior or not. The chirp stimulus

has similar problems due to the frequency increasing and magnitude decreas-
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ing with time. But in sum of sines case fish presented the smoothest Bode plot

and this case could be more accurate to be estimated by ETFE. So among all

these three stimulus, the sum of sines seems to be the most practical and con-

venient input for us to study the fish tracking behavior. In parametric system

identification, we found that the second order model with delay, the McRuer

Crossover Model for FRF G and McRuer Crossover Model for Fish inner loop

CP could capture the fish tracking behavior very well.

A natural next step is to develop a metric to evaluate the performance of

the parametric models for model selection. Besides, various other system iden-

tification techniques can be tested to investigate if there are better techniques

to be used for identifying the refuge tracking response of the weakly electric

fish. Such techniques include but are not limited to using subspace-based state

space identification techniques for example.
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