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Control of Movement

Control becomes habitual early on when learning a novel motor skill
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Abstract

When people perform the same task repeatedly, their behavior becomes habitual, or inflexible to changes in the goals or struc-
ture of a task. Although habits have been hypothesized to be a key aspect of motor skill acquisition, there has been little empiri-
cal work investigating the relationship between skills and habits. To better understand this relationship, we examined whether
and when people’s behavior would become habitual as they learned a challenging new motor skill: maneuvering an on-screen
cursor with a nonintuitive bimanual mapping from hand to cursor position. After participants practiced using this mapping for up
to 10 days, we altered the mapping between the hands and the cursor to assess whether participants could flexibly adjust their
behavior or would habitually persist in performing the task the way they had originally learned. We found that participants’
behavior became habitual within 2 days of practice, at which point they were still relatively unskilled. Further practice led to
improved skill but did not alter the strength of habitual behavior. These data demonstrate that motor skills become habitual after
relatively little training but can nevertheless further improve with practice. We suggest that building habits early in learning may
be a crucial step in acquiring new motor skills.

NEW & NOTEWORTHY Habits and motor skills have often been thought to be deeply related, but very few studies have empiri-
cally examined the relationship between the two. We present evidence that habits emerge early in learning, long before a motor
skill has been fully learned. Our results suggest that habits may play an integral role in the learning and performance of motor
skills from even the early stages of acquiring a new skill.

motor skill; habit

INTRODUCTION

We have all experienced the frustration of having to over-
come old habits when we need to alter the way we perform a
task. In a recent striking example of this, YouTuber Destin
Sandlin created a “backwards bicycle,” a bicycle in which
rotation of the handlebar in one direction causes the front
tire to rotate in the opposite direction (i.e., opposite of a nor-
mal bicycle) (1). Although it is easy to understand how the
handlebarmoves the tire and it is trivial to rotate the handle-
bar, people find it difficult to ride the backwards bicycle,
seemingly because they habitually try to balance themselves
using the same movements they would perform on a normal
bicycle.

Habits are generally defined as behaviors that, through
extensive repetition, have become inflexible to changes in

the goals or structure of a task (2–4). Specifically, the exam-
ple above illustrates a particular type of habit known as a
“slip-of-action” habit, a process whereby incorrect actions
are obligatorily selected (see Ref. 5 for more details about dif-
ferent types of habits). Slip-of-action habits are particularly
relevant to motor skill learning as they tend to occur when
one action among many must be selected rapidly. Habits of
this kind are thought to be beneficial for the performance of
motor skills since they enable actions to be selected and gen-
eratedmore rapidly while also freeing up cognitive resources
(6–10). As a result, neuroscientists and psychologists have
long speculated about the potential relationship between
habits and skills (5, 11–13). Although the repetitive practice
required to master a skill might well lead to slip-of-action
habits being formed, the relative timing and interdepend-
ence of these processes are not clear. One plausible scenario
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is that habits might form early during learning, cementing a
possibly rudimentary version of the skill that can be refined
through further practice. Alternatively, habits might only
occur as an entrenched version of a skill, forming only after
a skill has been fully learned and overpracticed.

Relatively little is understood about the relationship
between slip-of-action habits and skills largely because
there has been a dearth of empirical studies examining
this relationship (for brevity, we use the term “habit” to
refer specifically to a slip-of-action habit from here
onwards). In human behavioral studies, very few experi-
mental protocols have successfully induced habits in
motor behaviors (5, 14). Studies that have induced habits
have employed simple tasks that require choices between
a few discrete actions (14–19), such as deciding which but-
ton to press on a keypad, or whether or not to perform an
action at all (14, 20). In such cases, habits are conceptual-
ized as stimulus-response associations that have become
obligatory through repetition (21–24).

It is unclear whether findings from discrete tasks can be
generalized to more complex, real-world tasks that entail
continuous state and action spaces, such as riding a bicycle.
In the continuous domain, the analog of a stimulus-response
association guiding behavior is a controller, a mapping from
the instantaneous states of the environment and one’s body
to outgoing motor commands. Although it is conceptually
straightforward to extend the concept of a habit from dis-
crete tasks to continuous movement control, it is unknown
whether habits form in the same way in both cases. A key
tenet of the stimulus-response framework is that a particular
stimulus and resulting response must be paired repeatedly
for a habit to form, but in continuous control tasks there is a
continuum of (i.e., infinitely many) possible states and
actions and it is unclear whether one will ever repeat the
same action in the same state often enough for a habit to
form. To a limited extent, behavior that could be interpreted
as habits has been studied in continuous control tasks such
as reaching under mirror-reversed visual feedback (25, 26) or
more real-world skills like javelin throwing (27), swimming
(28), and weightlifting (29). However, such work has exam-
ined the process of replacing already highly skilled move-
ments (baseline or well-practiced behavior) with new
movements rather than how habits form when people ini-
tially learn a skill.

To better understand the relationship between habits
and skills, we performed an experiment to investigate how
quickly a learned motor skill would become habitual.
Participants learned to maneuver an on-screen cursor to-
ward a visual target using a nonintuitive mapping from
the position of both hands to the location of a cursor: for-
ward-backward movements of the left hand were mapped
to left-right movements of the cursor and left-right move-
ments of the right hand were mapped to forward-back-
ward movements of the cursor. Previous work suggests
that people learn this mapping by building a new control-
ler de novo (30), in contrast to how people learn simpler
perturbations like rotations of visual feedback by adapting
an existing controller (31–34). Three separate groups of
participants learned to control the bimanual mapping
over 2, 5, or 10 days of practice. At the end of the final day
of practice, we flipped the direction of the mapping

between movement of the left hand and movement of the
cursor (i.e., a mirror reversal) and assessed whether partic-
ipants would habitually continue to control the cursor
according to the originally practiced mapping or would be
able to flexibly adjust their control to accommodate the
new flipped mapping. If participants exhibited habitual
behavior, we assessed whether their habit expression
depended on how long they had practiced using the bima-
nual mapping to control the cursor, as well as how long
this habit persisted while participants continued to prac-
tice the flipped mapping.

MATERIALS AND METHODS

Participants

A total of 32 right-handed participants were recruited for
this study [age = 23.0±4.3 yr (mean ± standard deviation); 13
male, 19 female], 13 for the 2-day group, 14 for the 5-day
group, and 5 for the 10-day group (recruitment for the 10-day
group was cut short because of the COVID-19 pandemic). All
participants reported no prior history of neurological disor-
ders. All methods were approved by the Johns Hopkins
School of Medicine Institutional Review Board and were car-
ried out in accordance with relevant guidelines and regula-
tions. Written informed consent was obtained from all
participants in the study.

Experimental Setup

Participants were seated in front of a table with both of
their hands supported on the table by frictionless air sleds.
The positions of participants’ hands were monitored at 130
Hz with a Flock of Birds magnetic tracker (Ascension
Technology, Shelburne, VT) placed near each hand’s index
finger. Participants viewed stimuli on a horizontal mirror
that reflected an LCD monitor (60 Hz), and the mirror
obscured vision of both hands.

Tasks

Participants learned to maneuver an on-screen cursor
(circle of radius 2.5 mm) using one of two versions of a bima-
nual hand-to-cursor mapping. Half of the participants
learned one version in which forward-backward movements
of the left hand produced right-left movements of the cursor
while right-left movements of the right hand produced for-
ward-backward movements of the cursor (Fig. 1). The other
half of participants learned a different version in which the
mapping from hand to cursor movements was rotated by
180� relative to the other version (i.e., forward-backward
movements of the left hand produced left-right movements
of the cursor while left-right movements of the right hand
produced forward-backward movements of the cursor). We
used these two versions of the mapping to control for any
possible asymmetries in behavior (e.g., due to biomechanics)
that might have biased our results.

Three different groups practiced the bimanual mapping
over 2, 5, or 10 days of training (Fig. 1). Training consisted of
participants making point-to-point reaches toward ran-
domly placed targets (circles with radius of 10 mm) within a
20� 20-cm workspace. Participants were instructed to reach
toward each target as quickly and accurately as possible,
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with each trial consisting of one target location. Once the
cursor was stationary (speed < 0.065 m/s) within the target
for 1 s, the target appeared in a random direction 12 cm
away. To encourage participants to move quickly, we pro-
vided feedback to the participants indicating whether their
peak velocity exceeded 0.39 m/s on that trial. If this thresh-
old was exceeded, the target turned yellow and a pleasant
tone was played once the cursor reached the target, and if
the threshold was not exceeded, the target did not turn yel-
low and no tone was played. The baseline point-to-point
block consisted of 30 trials, and all other point-to-point
blocks consisted of 100 trials.

In between blocks of point-to-point reaching, participants
performed a continuous tracking task. In this task, a target
moved continuously on the screen in a sum-of-sinusoids tra-
jectory. The trajectory was composed of 12 sinusoids, 6 each
in the x- and y-axes, parameterized by amplitude (~a), fre-
quency (~x), and phase (~/) vectors. The target’s position along
a single axis, r, was computed as

r ¼
X6
i¼1

aicos ð2ptxi þ /iÞ: ð1Þ

For the x-axis, ~a = [2.31, 2.31, 2.31, 1.76, 1.30, 0.97] (cm) and
~x = [0.1, 0.25, 0.55, 0.85, 1.15, 1.55] (Hz). For the y-axis, ~a =
[2.31, 2.31, 2.31, 1.58, 1.03, 0.81] (cm) and ~x = [0.15, 0.35,
0.65, 0.95, 1.45, 1.85] (Hz). The values of ~/ were random-
ized between [–p, p). Because movement frequencies were
chosen to be prime multiples of 0.05 Hz, the target
repeated its trajectory every 20 s. However, the trajectory
was pseudorandom (unpredictable) because many sinu-
soids were combined to generate the trajectory, thereby
making it challenging for participants to detect any rhyth-
micity in the task. Each tracking trial lasted 66 s, and dur-
ing the first 5 s of each trial the target’s amplitude ramped
up linearly from 0 to its full value. Each block consisted of

five trials. Periodically, participants performed a tracking
block without visual feedback of their cursor.

To assess the extent to which participants’ control of the
bimanual mapping had become habitual, at the end of each
group’s final day of training we flipped the left hand’s map-
ping to cursor movement (flip block): forward-backward
movements of the left hand now resulted in left-right move-
ments of the cursor instead of right-left (in the case of the
180�-rotated bimanual mapping, right-left movements of the
cursor became left-right). We recruited three different
groups of participants for this experiment rather than
repeatedly assessing habit within the same individuals at dif-
ferent points during learning because we expected that, after
a participant experienced the flipped mapping once, this
might influence any future learning of the original bimanual
mapping as well as future habit assessments using the
flipped mapping. The order of all blocks during the experi-
ment is depicted in Fig. 1.

Data Analysis

Software.
Data analyses were performed in MATLAB R2018b (The
MathWorks, Natick, MA) and R version 4.0.2 (RStudio, Inc.,
Boston, MA; Ref. 35) using the Matrix (36), lme4 (37),
lmerTest (38), and emmeans packages (39). Figures were
generated with Adobe Illustrator (Adobe Inc., San Jose, CA).

Analysis of point-to-point data.
The cursor’s position in each trial was smoothed with a
third-order Savitzky–Golay filter with a window of seven
samples (�50 ms). Path length was defined as the total dis-
tance that the cursor traveled in a single trial. Movement
time was defined as the time between movement initiation
(when the cursor left the start target) and termination (when
the cursor was in the end target with speed < 0.065 m/s).

Days

2-day group

5-day group

10-day group

Point-to-point block
Tracking block

No cursor feedback

Baseline mapping
Bimanual mapping

Flipped mapping

Baseline mapping Bimanual mapping Flipped mapping

First day Final day

Figure 1. Tasks and experiment. Participants learned to control an on-screen cursor using a bimanual hand-to-cursor mapping (orange) over 2 (n = 13;
n represents number of subjects), 5 (n = 14), or 10 (n = 5) days of practice. Half of the participants in each group practiced the depicted bimanual mapping,
whereas the other half practiced an alternate version in which cursor movements were rotated 180� relative to the depicted mapping (this was done to
control for potential asymmetries in behavior due to, for example, biomechanics). On each day, participants performed blocks of point-to-point reaching
(hashed rectangle; 1 block = 100 trials) and continuous tracking (1 block = 5 min) both with (solid rectangle) and without (solid rectangle with dashed out-
line) visual feedback of the cursor. Learning was compared relative to a baseline mapping where the cursor was placed at the average position of the
2 hands (gray). At the end of each group’s final training day, we flipped the left hand’s mapping to cursor movements (blue) and assessed whether partic-
ipants would habitually continue to control the cursor according to the bimanual mapping they originally learned.
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Reaction time was defined as the time between when the tar-
get appeared and the cursor left the starting target. Peak ve-
locity was defined as the cursor’s highest tangential velocity.
We computed the tangential velocity by linearly resampling
the cursor’s position at the times recorded by the Flock of
Birds and computing the distance traversed by the cursor
between two consecutive samples divided by the time
elapsed. Resampling was necessary because, occasionally,
the recorded time at which a sample was collected by the
Flock of Birds did not match the true time at which it was
collected, causing the calculated velocity to be inaccurate.
Velocity profiles were also smoothed with a third-order
Savitzky–Golay filter.

Initial reach direction was defined as the direction of the
instantaneous velocity vector 150 ms after movement initia-
tion. Initial reach direction error was computed as the differ-
ence in angle between this instantaneous velocity vector and
the vector pointing from the target on the previous trial to
the target on the current trial. Probability density functions
were estimated for reach direction errors with a kernel-
smoothing function, implemented as the ksdensity func-
tion inMATLAB.
Variance estimation model.Wemeasured the variabili-

ty in participants’ initial reach direction errors (i.e., how con-
sistently straight participants reached toward the target) by
fitting a mixture model to this data. In the model, we
assumed that participants’ reach direction errors, x, were
generated by one of two causes: 1) an error from a goal-
directed reach toward the target (modeled as a vonMises dis-
tribution) or 2) an error from a reach in a random direction
(modeled as a uniform distribution). The probability density
function of the mixture model, mix(·), was defined as

mixðxjl;j;aÞ ¼ a � vmðxjl;jÞ þ ð1� aÞ � unifðxÞ ð2Þ
where a is a parameter valued between 0 and 1 weighting the
probability density functions of the von Mises [vm(·)] and
uniform [unif(·)] distributions. The probability density func-
tions of the individual distributions were defined as

vmðxjl;jÞ ¼ ej cos ðx�lÞ

2pI0ðjÞ ; unifðxÞ ¼ 1
2p

: ð3Þ

Here, μ and κ are the mean and concentration of the von
Mises distribution and In(·) is the modified Bessel function of
the first kind with order n, which in this case was 0.

The parameters μ, κ, and a were fit to the data from single
participants in each block via maximum likelihood estima-
tion. Specifically, we used the MATLAB function fmincon to
determine the values of the parameters that wouldmaximize
the likelihood function below over the n trials within one
block:

l̂; ĵ; â ¼ argmax
l;j;a

Xn
i¼1

log ½mixðxijl; j; aÞ�
( )

: ð4Þ

Then, using the fitted concentration parameter of the von
Mises distribution, ĵ, we computed the circular standard
deviation, r, as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln ðRÞ

q
; R ¼ I1ðĵÞ=I0ðĵÞ: ð5Þ

We used r as our measure of the variability of participants’
reach direction errors.

Habit strength model. To assess whether participants
exhibited habitual behavior during the flip block, we quanti-
fied each participant’s tendency to reach toward the true tar-
get versus a virtual target flipped across the mirroring axis.
More specifically, we assumed that for each trial partici-
pants’ initial reach direction could be explained by at least
one of three causes: 1) a goal-directed reach toward the tar-
get, 2) a habitual reach toward the mirrored target, and 3) a
reach aimed toward neither target (i.e., random movement).
We modeled the first two causes as von Mises distributions
with different means—/a and /m, set by the direction of the
actual and mirrored targets, respectively—but the same con-
centration parameter, κ. We modeled the third cause, ran-
dommovements, as a uniform distribution.

Assuming that each participant’s behavior within one
block could be modeled as a weighted mixture of these three
distributions, mix0(·), we used the MATLAB function fmin-
con to determine the weights, aa and am, that would maxi-
mize the following likelihood function over the n trials
within one block:

âa; âm; ĵ ¼ argmax
aa ;am

Xn
i¼1

log ½mix0ðxj/a;/m;j;aa;amÞ�
( )

ð6Þ

where

mix0ðxj/a;/m; j;aa;amÞ ¼ aa � vmðxj/a; jÞ þ am � vmðxj/m; jÞ
þ ð1� aa � amÞ � unifðxÞ: ð7Þ

Here, x represents participants’ reach directions and aa and
am correspond to the probabilities that a participant reached
toward the actual and mirrored targets, respectively.
Definitions for vm(·) and unif(·) can be found in Eq. 3. We
used âm as our metric for the strength of habitual behavior.
For Fig. 4E, instead of fitting this model to all trials in the
flip block, we fit the model to either the first or second half of
trials in this block.

We used the fitted weights from this approach to classify
each trial as goal directed, habitual, or random. For each
trial, we computed the probability that the reach direction
was generated from each of the three mixture components
under the fitted mixture model’s probability density func-
tion [in essence, computing P(reach directionjgoal directed),
P(reach directionjhabitual), and P(reach directionjrandom)].
Trials were classified as goal directed, habitual, or random
based on which of these three probabilities was the highest.
We used this classification to compute the reaction times of
goal-directed versus habitual reaches in Fig. 4D.

As an alternative approach to assess whether participants
exhibited habitual behavior without fitting a model to the
data, we assessed whether their horizontal cursor move-
ments were aimed away from the target. Using only the cur-
sor’s x-axis position, for each trial we determined whether
the horizontal component of the cursor’s instantaneous ve-
locity vector was aimed toward or away from the target 150
ms after the horizontal position of the cursor deviated from
the center of the starting target by 1 cm (i.e., the radius of the
target). We classified cursor movements in each trial as mov-
ing away from the target if the velocity vector’s direction was
opposite of the direction of the target relative to the starting
position (e.g., target located to the left but cursor moving
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toward the right). This method was unable to compute an
initial horizontal reach direction on a small minority of trials
(95 out of 3,200 trials) where the target on the current trial
was either directly above or below the target from the previ-
ous trial. This was because either 1) the cursor did not devi-
ate 1 cm horizontally away from the center of the starting
target (i.e., the radius of the target), making it impossible to
detect the time of movement initiation, or 2) the detected
movement initiation time was <150 ms before the end of the
trial, meaning that the trial ended before the time at which

we assessed reach direction. These trials were excluded from
the analysis.
Random reach model. We compared the model in Eq. 7

with an alternative model that was designed to capture behav-
ior where participants wouldmove their right hand (which con-
trolled vertical cursor movement) in the correct direction but
would move their left hand (which controlled horizontal
cursor movement) in a random direction. We modeled par-
ticipants’ reach directions, x, given the target’s direction,
/a, as a mixture of two weighted uniform distributions:

mix	ðxj/a; aÞ ¼
a � unif	ðxÞ; ðsin ðxÞ 
 0& sin ð/aÞ 
 0Þ j ðsin ðxÞ < 0& sin ð/aÞ < 0Þ
ð1� aÞ � unif	ðxÞ; ðsin ðxÞ < 0& sin ð/aÞ 
 0Þ j ðsin ðxÞ 
 0& sin ð/aÞ < 0Þ

(
ð8Þ

where

unif	ðxÞ ¼ 1
p
: ð9Þ

Here, a is the probability that the cursor moved vertically in
the correct direction. We used the MATLAB function fmin-
con to determine the a that maximized the following likeli-
hood function:

â ¼ argmax
a

Xn
i¼1

log ½mix	ðxj/a; aÞ�
( )

: ð10Þ

The fits for the habit strength and random reach models
were compared using the Bayesian information criterion
(BIC). Model recovery analyses were performed by simulat-
ing data from both of these models, fitting both models to
each simulated data set, comparing fits with BIC, and gener-
ating a confusion matrix. To generate data from Eq. 7, we
used values for aa and am that ranged between 0 and 1, and
we fixed κ = 3. Lower κ’s set higher variability for the von
Mises distributions (i.e., harder to distinguish from the
model in Eq. 8), so we fixed κ to be the lowest average κ that
we observed in the late learning data from any group, as esti-
mated in Eq. 4. To generate one confusion matrix, we simu-
lated data from both the habit strength and random reach
models 50 times where each simulation consisted of 100
simulated reach directions, matching the number of trials in
the experimental data. Model recovery across different
choices of parameters were compared by computing the ac-
curacy of the confusionmatrices.

Analysis of tracking data.
Data from two tracking trials (each from different subjects)
were excluded from the analysis because of hardware failure.
Unlike the point-to-point data, the tracking data were not
smoothed with a filter as the noise introduced by our track-
ing hardware did not significantly impact our analyses.
Tracking error was computed as the mean-squared error
between the cursor’s and target’s positions. Time-domain
trajectories of the cursor and target position (the first 60 s of
each trial following the initial 5-s ramp period) were con-
verted to phasors (complex numbers representing sinusoids)
in the frequency domain via the discrete Fourier transform.

An input-output transfer function was computed at every
frequency by dividing the cursor’s phasor by the target’s
phasor. This transfer function described the relationship
between the cursor and target sinusoids in terms of gain (rel-
ative amplitude) and phase (difference in time).

Using these transfer functions, we sought to describe the
direction that participants moved their cursor to track the
target. In this task, participants’ cursor movements would
conventionally be described as phase lagged relative to the
target with a positive gain (i.e., moving in the same direction
as the target with a time delay). However, when a mirror re-
versal has been applied (such as in the flipped mapping),
participants may habitually continue to use their original
control policy, causing their movements to be flipped across
the mirroring axis relative to before. Although the relation-
ship between movements before and after the flip could be
described as movements with positive gain but now in anti-
phase (i.e., moving in the same direction as the target but
with more time delay), a better way to describe them would
be to say that themovements have the same phase but a neg-
ative gain (i.e., moving with the same time delay but in the
opposite direction of the target).

Given that conventional analysis methods always yield a
positive gain to describe frequency-domain data, we used
the method described in Ref. 40 to compute a signed gain, g,
relating cursor and target movements. This was computed as
the dot product between transfer functions:

g ¼ a � b̂ ð11Þ

where a is the transfer function for a given block of interest
and b̂ is a unit vector with the same phase as the transfer
function at baseline. Computing the dot product implicitly
fixes the phase of cursor movements to be the same as base-
line across all blocks, allowing a signed gain to be computed.
This assumption of fixed phase is valid for analyzing data in
late learning as participants’ phase lags under the bimanual
mapping became more similar to baseline through practice.
Different phases were fixed for each participant based on
their individual baseline behavior.

We computed this signed gain between each axis of target
and cursor movement, building a series of 2� 2 matrices, G(x),
relating the transformation between the two trajectories where
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each matrix represented the transformation within a small
bandwidth of frequencies, x:

GðxÞ ¼ gxxðxÞ gxyðxÞ
gyxðxÞ gyyðxÞ

" #
: ð12Þ

Here, the first subscript of g indicates the axis of handmove-
ment and the second subscript indicates the axis of target
movement. These matrices were represented geometrically
by plotting their column vectors in Fig. 3C, where the green
(purple) arrows represent the first (second) column of the
matrices. Figure 3D and Supplemental Fig. S4B (see
ENDNOTE) were generated by plotting the element in the first
row and first column of eachmatrix.

To quantify the strength of habitual behavior in Fig. 5A,
we reanalyzed the gain between x-axis target and x-axis
cursor movements from the flip blocks by fixing their
phases to be the same as late learning. We did this because
we expected any habitual behavior to maintain the same
phase as at late learning, which might have differed
slightly from the phase of behavior under the baseline
mapping and thus provided a more accurate estimate of
habitual behavior. We also calculated the normalized gain
by dividing the amplitude of the tracking response by that

from late learning. When analyzing these normalized
gains at the group level, we excluded one outlier partici-
pant in the 10-day group who exhibited dramatically more
negative gains than any other participants within any
group (bottom left participant in Supplemental Fig. S3A).
To compare the habitual behavior we observed between
the point-to-point and tracking tasks, we correlated each
participant’s am from Eq. 6 with their normalized gains
(averaged over the highest 3 frequencies) from Fig. 5B via
linear regression.

Statistics.
Because the 10-day group had only five subjects and was
therefore underpowered, we only performed statistical anal-
yses for the 2-day and 5-day groups. All results from the 10-
day group are reported qualitatively. Most primary statistical
analyses were performed by fitting linear mixed effects mod-
els to the data. For all analyses in Fig. 2, the models used
group (2-day or 5-day) and block (2-day: day 1 vs. day 2; 5-
day: day 2 vs. day 5) as fixed effects and subject as a random
effect. For Fig. 4, C and E, models used the same group and
subject effects but with a different set of blocks being com-
pared [(late learning vs. flip block) and (first half of flip block

Baseline Early Late (2-day)

12 cm

Late (5-day) Late (10-day)
Target
Cursor

A

2-day
5-day
10-day

D E

-90 0 90
0

0.03

0.06
Baseline

-90 0 90
Reach direction error (degrees)

Early

-90 0 90

Late

P
ro

ba
bi

lit
y 

de
ns

ity

1 2 5 10
Day

0

15

30

45

60
C

irc
ul

ar
 s

t d
ev

F G

B C

12 5 10
Day

0.1

0.3

0.5

P
ea

k 
ve

lo
ci

ty
 (m

/s
)

12 5 10
Day

10

20

30

40

P
at

h 
le

ng
th

 (c
m

)

12 5 10
Day

0

2

4

6

M
ov

em
en

t t
im

e 
(s

)

12 5 10
Day

0.5

1

1.5

2

R
ea

ct
io

n 
tim

e 
(s

)

Figure 2. Performance in the point-to-point task under the bimanual mapping. A: examples of raw cursor trajectories (black line) from baseline, early
learning, and late learning (last block before flip block). Targets are displayed as red circles. Data from 10 trials are shown for each block. B: kernel-
smoothed probability density of reach-direction errors pooled over all subjects and trials for a given block. All blocks are the same as those shown in A.
C: circular standard deviation of reach direction errors, computed by fitting a mixture model to the data in B (see Analysis of point-to-point data for more
details). Each point corresponds to data from a single block, and error bars indicate SE across participants. Standard deviations under the baseline map-
ping for each group are shown as horizontal lines. Days are demarcated by gray vertical lines. Data from the flip block are not shown because a separate
model was fit to this data, shown in Fig. 4. D–G: peak velocity (D), path length (E), movement time (F), and reaction time (G) of point-to-point movements
throughout learning. Data were averaged across bins of 5 trials, and error bars indicate SE across participants. Values for each group under the baseline
mapping are shown as horizontal lines. Different days are demarcated by gray vertical lines. Shaded areas indicate data from the flip block for each
group.
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vs. second half of flip block), respectively]. For Fig. 4D, mod-
els used the same group and subject effects but with reach
type as an additional fixed effect (goal directed vs. habitual).
Post hoc pairwise comparisons were performed with the
Tukey test.

For data from the tracking task, mixed effects models were
fit using the same effects as Fig. 2 but with an additional fixed
effect of frequency. We also fit separate models to data from
each frequency because behavior varied dramatically as a
function of frequency. Post hoc pairwise comparisons were
performed with the Tukey test. An additional Bonferroni cor-
rection factor of 6 was applied to the P values for pairwise
comparisons to account for the separate models fits for each
frequency. Additionally, to determine whether participants
exhibited significantly negative gains in the tracking task, for
each frequency we performed a series of one-sample t tests
and corrected for multiple (6) comparisons with a Holm–

Bonferroni correction at a = 0.05.

RESULTS

Participants’ Control of the Bimanual Mapping
Improved with Practice in the Point-to-Point Task

Figure 2A shows representative raw cursor trajectories at
baseline, early learning, and late learning for each group in
the point-to-point task. As previously found (30), partici-
pants initially experienced great difficulty in coordinating
their two hands together to move the cursor straight toward
each target. But they gradually improved their performance
with practice, eventually moving between targets in a
straight line, similar to their performance when using an
easy mapping in which the cursor appeared exactly halfway
between the left and right hand (“baseline”; Fig. 1).

As our primary measure of task performance under the
bimanual mapping, we quantified how precisely they aimed
the cursor’s initial movement toward the target (Fig. 2, B and
C). Precision improved with practice, improving significantly
between 2 and 5 days of practice [linear mixed effects model
with post hoc Tukey test (see MATERIALS AND METHODS for
details about statistical analyses): t = �7.35, P < 0.0001].
Although there were improvements in performance from
day 5 to day 10 in the 10-day group, these improvements
were relatively small. Other metrics of performance includ-
ing peak velocity, path length, movement time, and reaction
time also improved over multiple days of practice (Fig. 2, D–
G). These data collectively suggest that participants became
more skilled in performing point-to-point reaches under the
bimanual mapping, with the bulk of this improvement
occurring over the first 5 days of practice.

Participants’ Control of the Bimanual Mapping
Improved with Practice in the Tracking Task

Participants also performed a second task under the bima-
nual mapping in which they tracked a target moving in a
pseudorandom trajectory (sum of sinusoids ranging in fre-
quency from 0.1 to 1.85 Hz; Fig. 3A). Unlike the point-to-
point task, where participants had an unlimited amount of
time to plan their movements at the start of each trial, in the
tracking task the target moved quickly and unpredictably,
limiting the amount of time participants had to plan their
movements; any movements planned at one moment would
become outdated within tens of milliseconds as the target
would move to a new, unpredictable location. We had partic-
ipants perform this task because previous studies of habit
formation have suggested that the expression of habits may
be masked by deliberative, goal-directed processes that
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might override habitual responses during the reaction time
before movement, particularly if participants are allowed
ample time to prepare their movements (41). In the tracking
task, the amount of time participants had to prepare their
movements depended on the frequency at which the target
moved. At low frequencies the target oscillated slowly, pro-
viding people ample time to prepare their movements, but at
high frequencies the target oscillated quickly, forcing people
to respond quickly.

With practice, participants learned to reduce the posi-
tional error between the target and cursor (Fig. 3B). We
examined participants’ tracking performance at different
frequencies of movement with a system identification
approach (40, 42–45), which allowed us to separately exam-
ine the behavioral responses to target movements at differ-
ent frequencies even though they occurred concurrently in
the task. Specifically, we computed the gain and direction of
cursor movement relative to target movement at each fre-
quency, i.e., similar to reach direction in the point-to-point
task (see MATERIALS AND METHODS for more details). Each
arrow in Fig. 3C shows the gain and direction of cursormove-
ments in response to target movement at a particular fre-
quency. Ideally, participants would track the target by
moving their cursor in the same direction as the target.
Thus, cursor responses to positive x-axis target movement
(green) should be pointed rightward whereas responses to
positive y-axis target movement (purple) should be pointed
upward, which indeed was the case at baseline. By late learn-
ing, all groups exhibitedmovement gains and directions that
approached those of baseline performance.

To statistically compare each group’s performance, we
computed the gain of horizontal cursor movements at the
frequencies of x-axis target movement (x-component of
green arrows in Fig. 3C). Gains improved from day 1 to day 2
in the 2-day group (Fig. 3D; linear mixed effects model with
post hoc Tukey test; P< 0.05 for 5 of 6 frequencies) and from
day 2 to day 5 in the 5-day group (P < 0.05 for 3 of 6 frequen-
cies). However, gains did not appear to improve past day 5 in
the 10-day group. These data demonstrate that, with prac-
tice, participants became able to successfully move their
hands in the appropriate direction to track the target and, as
in the point-to-point task, the bulk of this improvement
occurred in the first 5 days.

Participants’ Behavior in the Point-to-Point Task Was
Habitual after Only Two Days of Practice

Having examined participants’ improvement in task per-
formance through practice, we next asked whether and
when their behavior became habitual. Might participants’
behavior become habitual around the same time that their
task performance plateaued (i.e., by day 5), early in learning
(i.e., by day 2), or only after their task performance had pla-
teaued (i.e., by day 10)? Or, finally, might participants’
behavior never have become habitual? To determine this, at
the end of each group’s final day of practice we had partici-
pants control the cursor under a new flipped mapping in
which the mapping between the left hand and the cursor
movement was reversed relative to what they had originally
practiced (“flip” block), effectively amounting to a left-right
mirror reversal applied on top of the originally practiced

bimanual mapping. Participants were explicitly informed
about the reversal of their left hand’s mapping, and we
tested whether participants would habitually continue to
control the cursor according to the originally learned bima-
nual mapping or successfully alter their behavior according
to the flippedmapping.

First, we assessed whether participants exhibited habit-
ual behavior in the point-to-point task. On a given trial, if
participants could successfully control the cursor under
the flipped mapping, then we would expect their cursor’s
initial movement to be aimed toward the true target (i.e.,
goal directed). But if participants habitually controlled the
cursor according to the original bimanual mapping, then
we would expect their cursor’s initial movement to be
aimed toward a virtual target reflected directly across a
vertical mirroring axis. We found that participants in all
three groups exhibited both goal-directed and habitual
behavior during the flip block (Fig. 4A) on different trials.
We visualized how often participants’ movements were
aimed toward the virtual mirrored target as a heat map
plotting the cursor’s initial movement directions as a func-
tion of the target’s direction (Fig. 4B). If participants
reached toward the virtual mirrored target, their initial
cursor directions would lie along the y = �x line. Although
none of the groups exhibited initial cursor directions along
this line at late learning, all groups did exhibit such behav-
ior during the flip block.

We estimated the proportion of trials in which partici-
pants initially reached toward the mirrored target by fitting
a mixture model to the reach direction data (see Analysis of
point-to-point data for more details; see Supplemental Fig.
S1 for a model comparison and model recovery analysis),
using this as a metric for how strongly participants exhibited
habitual behavior. We found that the proportion of habitual
movements was significantly higher in the flip block com-
pared with late learning for the 2-day and 5-day groups
(Fig. 4C; linear mixed effects model with post hoc Tukey test;
2-day: t = 5.78, P < 0.0001; 5-day: t = 9.03, P < 0.0001), and
the 10-day group exhibited a similar trend. These data dem-
onstrate that all groups exhibited habitual behavior in the
point-to-point task.

Perhaps surprisingly, the proportion of reaches toward the
mirrored target was not significantly different between the
2-day and 5-day groups (Fig. 4C; linear mixed effects model
with post hoc Tukey test; 2-day vs. 5-day: t = �2.56, P =
0.0635), and the 10-day group did not appear to exhibit more
habitual reaches than either of these groups. In other words,
despite the fact that the 5-day group practiced using the orig-
inal bimanual mapping for more than twice as long as the 2-
day group, they did not exhibit more strongly habitual
behavior in the point-to-point task. Moreover, the reaction
times for goal-directed reaches were not significantly differ-
ent from habitual reaches {Fig. 4D; linear mixed effects
model; no main effect of group [F(1,25) = 0.05, P = 0.8261] or
reach [F(1,25) = 0.16, P = 0.6954]}, suggesting that the lack of
differences across groups in Fig. 4C could not be explained
by differences in the amount of time participants had to
plan their movements.

In the flip block, we noted that participants occasionally
adopted a strategy of initially moving the cursor vertically
(the axis along which the mapping had not changed)
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before initiating the horizontal component of their move-
ment (Supplemental Fig. S2A). Therefore, as an alternative
assay for habitual behavior, we computed the proportion
of trials in which the horizontal component of the cursor’s
movement was initially directed away from the target.
This analysis yielded qualitatively similar results, with
behavior in the 2-day and 5-day groups being habitual
(Supplemental Fig. S2B; linear mixed effects model with
post hoc Tukey test; 2-day: t = 8.54, P < 0.0001; 5-day: t =
11.00, P < 0.0001) and no significant difference in the
strength of habit between groups (2-day vs. 5-day: t =
�0.76, P = 0.8735). The 10-day group also exhibited the
same trend. Collectively, these results suggest that in the
point-to-point task participants exhibited similarly strong
habitual behavior regardless of whether they had prac-
ticed using the bimanual mapping for 2, 5, or 10 days.

Behavior in the Tracking Task Also Became Habitual
after Only Two Days of Practice

We next examined participants’ behavior in the tracking
task to see whether they would exhibit similar habitual
behavior under the flipped mapping, or whether habit

effects might even be exacerbated given the imperative to
generate movements rapidly while tracking the target. We
compared the direction of participants’ responses (i.e., cur-
sor movement) to movements of the target between late
learning and the flip block (Fig. 5A). During the flip block, if
participants habitually behaved according to the original
bimanual mapping, then their hand movement in response
to horizontal targetmovement would be similar to late learn-
ing, and the horizontal movement of the cursor would there-
fore be directed opposite to the movement of the target. We
expected that the extent of this effect might vary according
to the frequency of target motion, with high frequencies
being more likely to appear habitual owing to the need to
respond more rapidly. We defined frequencies 
0.85 Hz as
“high frequency” as we have previously found that, above
this frequency, participants habitually express baseline
behavior when performing manual tracking under mirror re-
versal (40). We normalized the cursor’s horizontal move-
ment gain from the flip block by the gain from late learning
such that normalized gains of �1 would indicate habitual
behavior (Supplemental Fig. S3). [In subsequent analyses, we
removed data from 1 outlier participant in the 10-day group
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Figure 4. Analysis of habit in the point-to-point task. A: cursor trajectories (black line) from single trials in the flip block. The trajectories show trials in
which the cursor’s movement was initially aimed straight toward the target (top) or aimed toward a virtual target (bottom) mirrored across the vertical
axis (dashed line). B: heat map of cursor’s initial movement direction as a function of target directions. Data were pooled from all subjects and grouped
into bins of 30� on both axes. We defined 0� as the positive y-axis (i.e., the mirroring axis). Within each target direction bin, we computed the fraction of
trials that fell in a particular reach direction bin, plotting this fraction as color intensity in the heat map. To measure the proportion of trials in which partici-
pants exhibited habitual behavior, we fit a mixture model composed of 2 weighted von Mises distributions centered on either the y = x (goal-directed
behavior) or y = �x (habitual behavior) line. C: fitted weights for the goal-directed (left) and habitual (right) components of the mixture model depicted in
B. Fits for individual participants shown as small circles and group means shown as large circles. D: reaction time for reaches toward the actual target
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(bottom left participant in Supplemental Fig. S3), who exhib-
ited dramatically more negative gains than we would expect
if they exhibited habitual behavior.]

In the first flip block, the 2-day and 5-day groups exhibited
negative gains (Fig. 5B; 1-sample t test with Holm–

Bonferroni correction at a = 0.05; 2-day: 2 of 6 frequencies, 5-
day: 3 of 6 frequencies), particularly at higher frequencies, as
we expected. The 10-day group also appeared to exhibit neg-
ative gains at similar frequencies. However, we did not find
any evidence that the 5-day group exhibited significantly
more negative gains than the 2-day group (linear mixed
effects model with post hoc Tukey test: P > 0.05 for all com-
parisons of gains within frequencies). Although the 10-day
group’s movement at 0.85 Hz appeared to exhibit slightly
more negative gains than the other groups, this effect was
not consistent across frequencies.

Although the above analysis considers differences in
behavior across groups, in previous work we have found
that habitual behavior can vary greatly across individuals
(41). We therefore also examined whether or not behavior
was habitual at an individual participant level. We calcu-
lated the proportion of participants who exhibited signifi-
cantly negative gains during the flip block. We found a
mixture of habitual and nonhabitual participants in the 2-
day and 5-day groups (Supplemental Fig. S3; 1-sample t
test with Holm–Bonferroni correction at a = 0.05; 2-day: 5
of 13 participants, 5-day: 7 of 14 participants). Although
there was a slight increase in the proportion of partici-
pants who exhibited habitual behavior, it is difficult to
conclude whether or not this trend was meaningful.
Collectively, these data suggest that all three groups exhib-
ited habitual behavior but groups with more practice were
not more habitual than groups with less practice.

The Strength of Habitual Behavior Was Correlated
between the Point-to-Point and Tracking Tasks

Might there be any relationship between the habitual
behavior we observed in the point-to-point and tracking
tasks? To examine this, we compared how strongly partici-
pants exhibited habitual behavior between the two tasks.
First, we averaged the gains of each participant’s tracking
behavior at the highest three frequencies, given that we
expected habitual behavior to be strongest at these frequen-
cies (40). We then correlated each subject’s average gain
with the proportion of habitual reaches they made in the
point-to-point task, as in Fig. 4C. Indeed, we found a correla-
tion between tasks (Fig. 5C; slope = �0.34, Pearson’s r = 0.49,
P = 0.0052), suggesting that the tasks may have indeed
assessed the same underlying habit (with the outlier
included, slope =�0.12, Pearson’s r = 0.17, P = 0.2483).

All Groups’ Habits Were Similarly Resistant to Extinction

The preceding analysis quantifies the strength of habitual
behavior either in terms of the probability that habitual
behavior is expressed or in terms of the magnitude of the ha-
bitual response. However, an alternative way in which the
“strength” of habitual behavior might vary with practice is
by becoming more persistent, i.e., resistant to extinction. In
other words, with increasing practice, the habits one forms
may persist for longer. To assess whether habitual behavior
would becamemore persistent withmore training, we exam-
ined how participants’ performance varied over the course
of practicing the flippedmapping.

We first examined the persistence of participants’ habits
in the point-to-point task by fitting the mixture model from
Fig. 4C to the first and last 50 reaches in the block instead of
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all 100 reaches. However, we found no evidence for any dif-
ference in the strength of habitual behavior between the first
and last half of the block for all three groups (Fig. 4E; linear
mixed effects model with post hoc Tukey test; 2-day: t =
�0.46, P = 0.9667; 5-day: t = 1.05, P = 0.7207), suggesting that
this aspect of habitual behavior did not extinguish over this
period.

We then examined whether habitual behavior in the track-
ing task persisted when compared between the initial track-
ing block under the flipped mapping and a second tracking
block performed after having practiced the flipped mapping
in a point-to-point block (Fig. 1). At the group level, the 2-day
and 5-day groups no longer exhibited significantly negative
gains at any frequency in the second flip mapping (Fig. 5B; 1-
sample t test with Holm–Bonferroni correction at a = 0.05),
and the 10-day group exhibited a similar trend, suggesting
that the habits had been largely extinguished in all groups.
However, at the level of individual participants, all the par-
ticipants in the 10-day group who exhibited negative gains in
the first tracking block still appeared to still do so in the sec-
ond tracking block. Meanwhile, only one of five participants
in the 2-day group and two of seven participants in the 5-day
group still exhibited significantly negative gains. Although
these data suggest that habitual behavior may have been
more persistent in the 10-day group, they must be inter-
preted with caution given the small number of participants
in this group.

DISCUSSION
In the present study, we examined the time course over

which habitual behavior emerged as participants learned a
new continuousmotor skill, controlling a cursor under a novel
bimanual hand-to-cursor mapping. Participants becamemore
proficient in using this mapping by practicing with a combi-
nation of point-to-point reaches and continuous tracking, and
their task performance plateaued after �5 days of practice.
After 2, 5, or 10 days, we flipped the left hand’s control of the
cursor and tested whether participants would habitually con-
tinue to control the cursor according to the original mapping
they had learned. We found that habitual behavior emerged
after only 2 days of practice, which we observed in both the
point-to-point and tracking tasks. We did not find compelling
evidence, however, that habitual behavior became stronger
withmore practice.

An important caveat to our approach is that our analy-
ses for the two different tasks (point to point and track-
ing) were not equally sensitive in detecting habitual
behavior. In the point-to-point task, habitual behavior
manifested as occasional trials in which participants
acted habitually, and we were therefore able to detect the
presence of even weak habitual behavior, which would
have manifested as a very small proportion of trials being
habitual. In the tracking task, however, we assessed habit
based on the horizontal gain of the response to target
movement. This gain likely reflected a mixture of goal-
directed and habitual response components, either due to
dual controllers operating in tandem or due to partici-
pants switching between goal-directed and habitual con-
trol at different moments, and would only be strictly
negative if the habitual component of the response was

strictly greater than the goal-directed component. A hori-
zontal gain that was either zero or weakly positive could
still be consistent with habitual control being present but
dominated by goal-directed control. This may explain the
apparent lack of habitual behavior at low frequencies
(where goal-directed contributions to control were likely
stronger) and in the second flip block. Importantly, how-
ever, only a strictly negative gain could be taken as unam-
biguous evidence of habitual behavior, since zero gain or
weakly positive gain might have simply been due to con-
trol along that axis reverting to a more naive state.

Although we mainly focused on assessing how strong ha-
bitual behavior became during learning, to a limited extent
we also assessed how persistent habits became, examining
whether habits were extinguished while participants contin-
ued to practice the flipped mapping. Whereas a relatively
short period of practice seemed to be sufficient to extinguish
the habit in the tracking task, we did not observe extinction
in the point-to-point task. It is possible that this discrepancy
was attributable to the difference in sensitivity in detecting
habitual behavior in these two tasks. It is also possible, how-
ever, that this difference was due to the order in which the
tasks were performed; all of the point-to-point trials under
the flipped mapping occurred between two blocks of track-
ing. Participants therefore had more experience with the
new mapping by the time they performed the second track-
ing block than when they performed the second point-to-
point block. Regardless of any possible differences in persist-
ence across tasks, we emphasize that we did not find strong
evidence to suggest that the persistence of habitual behavior
within task depended on how long participants practiced the
bimanual mapping.

One additional aspect of our experiment that we did not
report in the results (since it was not directly relevant to our
primary question of when control became habitual) was that
at the end of each day participants performed an additional
tracking block without visual feedback of the cursor’s posi-
tion. We used this block to examine the extent to which par-
ticipants’ learning could be attributed to improvements in
feedforward control. However, we found that for all groups
there was negligible improvement in mean-squared tracking
error throughout learning and movement gains remained
low (Supplemental Fig. S4), indicating that participants were
not capable of expressing their learned behavior without vis-
ual feedback of the cursor.

It is often supposed that a newly learned behavior will
become habitual only after it has been fully learned and then
extensively repeated. Our findings clearly show that this is
not the case. Instead, we found that behavior was habitual
even relatively early in learning. Our findings parallel that of
Hardwick et al. (41), who demonstrated that participants
who learned a discrete arbitrary visuomotor association task
exhibited improvements in their speed-accuracy trade-off
(i.e., improved skill) over 20 days of practice, even though
their behavior had become habitual after 4 days of practice.
They further found that the habits could be explained as an
all-or-none phenomenon (i.e., one either is or is not habit-
ual), consistent with our observation that habitual behavior
did not become stronger with more practice. The skill in Ref.
41 is quite rudimentary in that performance improvements
amount only to speeding up action selection by tens of
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milliseconds, which might potentially have occurred via a
specialized mechanism, perhaps associated with processing
speed. In the present study, however, the improvements in
skill after becoming habitual were more pronounced and
unlikely to be explained by improvements in processing
speed alone. The similarity of the results between the two
studies suggests a potential common principle of habit for-
mation in the process of learning new skill across both dis-
crete and continuous domains.

Our findings have important implications for theoretical
accounts of habits. A wide variety of theories have been
proposed to explain the computational basis of habit for-
mation, such as forming stimulus-response associations
(21–24), caching expected future rewards (46–48), and
caching computations/policies (9, 49). Central to these
theories is the idea that habitual behavior is inflexible to
change. Although behavioral inflexibility is (rightly) cen-
tral to the definition of habits, our findings suggest that
one may not need to break a habit to alter habitual behav-
ior. To account for this, theoretical accounts of habits
should allow scope for habitual behaviors to remain flexi-
ble to some degree. Learning rules that might accomplish
this are incorporated into reinforcement learning-based
frameworks, where habitual (model-free) behavior can be
updated from experience (46–48, 50). Our results under-
score that habitual behavior is not set in stone but can con-
tinue to evolve with experience, in this case over multiple
days of practice. A similar computational principle is seen
in studies of value-based decision-making, where model-
based and model-free reinforcement learning occur in par-
allel. However, we emphasize that although model-free
learning is often equated with habit (46–48), the type of
learning in value-based decision is likely quite different
from our task, since the learning here occurs gradually
over multiple days whereas learning in value-based deci-
sion-making tasks can be observed in single trials (51).
Furthermore, whereas prior theories have suggested that
habitual control might only come to dominate goal-
directed control after extensive repetition of the same task
(46), we find that habitual control is prominent early in
learning.

Conversely, our findings also have important implica-
tions for theories of motor control and motor learning.
Most existing computational theories of motor learning
apply only in very narrow settings and are devised to
account for phenomena such as motor adaptation (52) or
use-dependent learning (53, 54). These existing theories
do not provide plausible models of de novo learning of the
kind exhibited in our task. Although findings from visuo-
motor adaptation might suggest that cognitive strategies
could play an important role in motor learning (55), our
previous work examining learning in a mirror reversal task
called into question the extent of explicit reaiming strat-
egies in de novo learning (40). Our present results are
broadly consistent with this point of view; one would
expect cognitive strategies to be goal directed rather than
habitual, but we, on the contrary, found that participants’
behavior was habitual from early stages of learning. We
therefore expect that new theories of motor learning will
be required to account for de novo learning and the role
that habits play in it.

One idea that could potentially be important in tying to-
gether skilled motor performance and habits is the concept
of bounded rationality, which asserts that the brain has only
limited resources at its disposal to solve problems, particu-
larly cognitive resources. Rendering control habitual pro-
vides a means to reduce the cognitive load of a task. This is
particularly important for complex skills that involve many
component computations, in which case it would not be pos-
sible to perform the entire task deliberatively and instead
most or all of these computations must be habitual (or,
equivalently, automatized) (5). Recent theoretical work has
characterized habits in the cognitive domain as a default be-
havioral policy that can be deviated from at the cost of cogni-
tive effort (and, presumably, time) (50). We suggest that this
framework could be fruitfully applied to motor behavior and
is broadly consistent with our observations.

To conclude, a behavior becoming habitual is often
viewed as the final step in learning: learned behavior must
be repeated to render it habitual, at which point it becomes a
persistent and dependable component of skilled perform-
ance. Although this idea may seem intuitively true, it has
not previously been empirically tested. Our results challenge
this view, suggesting that behaviors become habitual early
in learning but maintain some flexibility to change with ex-
perience. We conclude that habits play an integral role in the
learning and performance of motor skills from even the early
stages of acquiring a new skill.

SUPPLEMENTAL MATERIAL
Data, code, and supplemental figures are available at https://
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