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SUMMARY
Humans and other animals can readily learn to compensate for changes in the dynamics of movement. Such
changes can result from an injury or changes in the weight of carried objects. These changes in dynamics can
lead not only to reduced performance but also to dramatic instabilities.We evaluated the impacts of compen-
satory changes in control policies in relation to stability and robustness in Eigenmannia virescens, a species
of weakly electric fish. We discovered that these fish retune their sensorimotor control system in response to
experimentally generated destabilizing dynamics. Specifically, we used an augmented reality system to
manipulate sensory feedback during an image stabilization task in which a fish maintained its position within
a refuge. The augmented reality systemmeasured the fish’s movements in real time. These movements were
passed through a high-pass filter and multiplied by a gain factor before being fed back to the refuge motion.
We adjusted the gain factor to gradually destabilize the fish’s sensorimotor loop. The fish retuned their senso-
rimotor control system to compensate for the experimentally induced destabilizing dynamics. This retuning
was partially maintained when the augmented reality feedback was abruptly removed. The compensatory
changes in sensorimotor control improved tracking performance as well as control-theoretic measures of
robustness, including reduced sensitivity to disturbances and improved phase margins.
INTRODUCTION

Animals routinely alter their behavior in response to novel senso-

rimotor dynamics. For example, insects can retune their neural

control systems and maintain function after limb amputation,1–4

antenna trimming,5,6 and wing damage.7–9 Humans and other

animals can routinely learn new motor behaviors and retune ex-

isting ones through practice.10 The mechanisms and strategies

for such motor learning are currently being revealed,10 including

at the circuit level.11–15

As an animal retunes its sensorimotor control system in

response to changes to system dynamics, it must maintain sta-

bility. Although there are many definitions of stability,16 here we

refer to a system’s convergence to a desired goal point or trajec-

tory from a local neighborhood of possible initial system states. A

complementary question is, how does the retuned sensorimotor

loop affect system robustness, i.e., how well does the system

achieve stability and convergence despite external perturba-

tions17 or changes in internal parameters?18

To address these questions, we studied a well-suited model

system, refuge tracking in the weakly electric glass knifefish

Eigenmannia virescens. Eigenmannia has been likened to an

‘‘aquatic hummingbird,’’19 smoothly hovering in place or making

agile movements to track a moving refuge.20 These fish swim

back and forth to sense their position,21–24 while tracking the
2118 Current Biology 34, 2118–2131, May 20, 2024 ª 2024 Elsevier In
movements of a refuge.20,25,26 Fore-aft swimming movements

are produced in Eigenmannia by rostro-caudal adjustments of

the position of the nodal point, where counter-propagating

waves of its ventral ribbon fin meet.18,27

Here, we examined sensorimotor adaptation to experimentally

induced changes in sensorimotor dynamics in this refuge

tracking behavior using an augmented reafferent feedback

loop (Figure 1A). Normally (in the veridical case), fore-aft swim-

ming movements generate one-to-one motion of the refuge

across its visual and electrosensory receptors, but in the oppo-

site direction (corresponding to the negative sign in the veridical

reafferent feedback signal, Figure 1B). Our refuge system

augmented this reafferent feedback by digitizing the fish position

in real time from video camera images, passing the digitized fish

position through a high-pass filter and feeding the resulting

signal back to the refuge position (Figure 1B, augmented reaffer-

ent loop).

A key innovation of the experimental manipulation was to high-

pass filter the augmented reafferent feedback to gracefully

destabilize the closed-loop system. When the fish generated

low-frequency movements (i.e., below the cut-off frequency of

the high-pass filter), reafferent feedback was approximately

veridical—little experimental change in feedback was made. In

contrast, when the fish rapidly changed direction (i.e., high-fre-

quency, back-and-forth movements), such movements were
c. All rights reserved.
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Figure 1. Experimental protocol and stimulus design

(A) Schematic of the augmented, destabilizing feedback system. The longitudinal fish position, yðtÞ, was measured in real time using a custom video tracking

system and processed through a high-pass filter, HðsÞ with gain k and cut-off frequency fc = 0:16 Hz, where s is the complex frequency-domain parameter. The

high-pass-filtered position, yf ðtÞ, was then added to a pseudo-random (sum-of-sines) reference signal rðtÞ, and fed to the refuge, i.e., sðtÞ = yf ðtÞ+ rðtÞ, creating
an augmented reafferent loop.

(B) Block diagram of the closed-loop system depicted in (A). The augmented, high-pass-filtered feedback loop is closed around the fish sensorimotor system

(black dotted box). The fish senses the difference between the longitudinal refuge position sðtÞ, and its own reafferent feedback yðtÞ. This difference eðtÞ (‘‘sensory
slip’’21) is then processed by the nervous system, CðsÞ, and swimming dynamics, PðsÞ.
(C) Protocol: experiments started from an experimental open-loop baseline period (k = 0), followed by a closed-loop period in which we incrementally increased

the gain k of the high-pass-filtered augmented feedback from 0.3 to 1.1 over a period of about 33 min. Finally, we extinguished the augmented feedback (k = 0)

to test for aftereffects. The sensorimotor controller was tested at five time intervals during the aftereffect period: 0 to 5, 5 to 10, 10 to 15, and 15 to 21min, and the

next day.
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amplified and fed back to the refuge. Importantly, the gain of this

high-pass-filtered feedbackwas gradually increased (Figure 1C),

incrementally driving the closed-loop control system toward

instability, providing ample opportunity for the fish to learn to

compensate for the manipulation while successfully performing

the refuge tracking behavior. This manipulation was ‘‘graceful’’

in comparison with standard paradigms that use abrupt and cat-

egorical (broad-band) gain reversals to destabilize closed-loop

dynamics.28–32

Previous efforts to destabilize a feedback loop typically involve

inverting the feedback gain28,29 (e.g., a mirror reversal in visuo-

motor tasks). Inversion of feedback gain instantaneously and

abruptly destabilizes system dynamics. This destabilization

is not graceful—the animal’s performance is dramatically

degraded by the experimental change in feedback.28 Animals

can, over extended periods of time, learn to compensate for

these changes in feedback: humans can take many days to

learn to compensate for mirror-reversal manipulations.30 The

approach we used here, increasing the gain of the high-pass fil-

ter, slowly leads to a gain reversal for high-frequency move-

ments, while leaving low-frequency movements veridical. In

this way, the animal can continuously perform the taskwhile it re-

tunes its sensorimotor control system in response to increasingly

strong destabilizing dynamics. Unlike classic mirror reversals,
we found that this retuning under high-pass-filtered feedback

can occur within a single experimental session of about 33 min

in duration.

As we increased the gain of the high-pass filter in the

augmented reafferent feedback loop, we simultaneously in-

jected pseudo-random motions of the refuge, allowing us to

determine the sensorimotor dynamics of each fish using a tech-

nique known as system identification (i.e., stimulus-response

modeling).19,33 We then removed the augmented reafferent

feedback (returning to the veridical condition) to assess any

retention in the sensorimotor controller, using the aftereffect as

an indicator of learning. Finally, we performed control-theoretic

analyses as a normative framework to interpret the benefits of

the learned controller. Using this framework, we discovered

that the nervous system maintained robustness to both low-fre-

quency disturbances and uncertain phase lags.

RESULTS

We designed an augmented reafferent feedback loop to alter the

closed-loop dynamics that fish experienced during refuge

tracking (Figures 1A and 1B). Specifically, we fed fish position

back through a high-pass filter in real time and added it to a pre-

defined pseudo-random sum-of-sines input (Figure S1A).26,30 To
Current Biology 34, 2118–2131, May 20, 2024 2119
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drive the closed-loop system toward instability, we incrementally

increased the augmented feedback gain, k, of the high-pass-

filtered feedback (Figure 1C). The experiments started from

open loop, the baseline veridical condition. This was followed by

a closed-loop period in which the gain of the high-pass-filtered

feedback was gradually increased. This feedback was designed

based on preliminary analysis34 to destabilize the behavioral sys-

tem and elicit learning. Finally, we removed the augmented feed-

back to assess aftereffects.

Fish retuned their controller dynamics in response to
destabilizing feedback
We observed that the increase in the augmented feedback

gain k caused a commensurate increase in the refuge and

fish velocities (Figures 2A–2C). To understand how the

augmented feedback changed the fish’s tracking response,

we performed frequency-domain system identification from

time-domain position data (sampled data shown in Figures

S1B–S1D) of seven individual fish. These experiments allowed

us to estimate the empirical frequency response functions

(FRFs) of individual fish. The empirical frequency response es-

timates, which compare the Fourier spectra of the fish move-

ment with that of the refuge, are completely data driven (see

STAR Methods). The FRFs comprised the entire sensorimotor

transform, including the fish’s veridical reafferent feedback

(see black dotted box in Figure 1B), but excluded the

augmented feedback. Using this method, we assessed how

changes to the augmented feedback (via the gain k) led to

changes in the fish’s control system (as measured through

its frequency response).

We found that fish systematically retuned their controllers

under augmented feedback. Fish increased sensorimotor

gain, especially at higher frequencies (above 1 Hz) and added

phase leads at intermediate frequencies (around 0.65 Hz) in

response to the increasing augmented feedback gain k (Fig-

ure 2D). This trend of increased gain and phase at the fre-

quencies 1.15 Hz (gain) and 0.65 Hz (phase) was observed

in each of seven fish (Figures 2E and 2F). These frequencies

were selected post hoc based on visual inspection of the fre-

quency responses.

Fish temporarily retained their learned controller,
exhibiting a clear aftereffect
We examined the performance of fish immediately after the

closed-loop feedbackwas abruptly removed: the presence of af-

tereffects may suggest the involvement of a plasticity-based

mechanism such as cerebellar learning.30,35,36

If the control system of a fish was retuned by tracking under

augmented feedback, evidence of that retuning should emerge

when it is removed. In other words, we expected to measure

an aftereffect—a residual change in behavioral performance

compared with baseline performance—immediately after the

augmented feedback was extinguished. To assess aftereffects

in the fish’s controller, we averaged the frequency responses

in blocks of three or five trials during the aftereffect period (see

Figure 1C) and compared the result with the baseline frequency

response. Figures 3A and S2A show the mean fish frequency

response gain and phase during the aftereffect period, as well

as the baseline period, from a representative fish. Note that in
2120 Current Biology 34, 2118–2131, May 20, 2024
both baseline and aftereffect periods, the fish was under verid-

ical feedback with no augmented high-pass filter in the feedback

loop.

Immediately after the augmented feedback was removed,

both the gain and phase of this fish remained elevated (Figures

3A and S2A), revealing that the retuned controller persisted.

This is similar to the persistent retuning of reach direction in vi-

suomotor learning experiments in humans.10 The sensorimotor

gain washed out over a period of about 10 min, as indicated by

the frequency response gain returning to baseline (Figure 3A).

The elevated phase appeared to persist for longer, returning to

baseline on the next day (Figure S2A).

This result generalized across fish. We compared mean fish

frequency response gain and phase at 1.15 and 0.65 Hz during

the aftereffect periods for six fish. As before, these frequencies

were selected post hoc because they showed clear changes in

gain and phase during retuning to augmented feedback (see

Figures 2D–2F). As shown in Figure 3B, fish partially retained

their gain at 1.15 Hz after the augmented reafferent feedback

was extinguished: in the first 5 min in the aftereffect period, the

gain was significantly greater than baseline (p< 0:01, paired-

sample t test in dB; Table S2). Similarly, as seen in Figure S2B,

the phase at 0.65 Hz was also partially retained after learning:

the phase at 0.65Hz during the first 5min of the aftereffect period

was significantly greater than baseline (p< 0:05, paired-sample

t test; Table S3).

Interestingly, we observed that gain and phase washed out

over different time courses. The fish gain at 1.15 Hz washed

out relatively quickly. The gain after the augmented feedback

was extinguished was significantly lower in the second 5-min

period than in the first 5-min period (p< 0:05, two-sided sign

test; Figure 3B). Moreover, the gain was statistically indistin-

guishable from baseline for all subsequent test periods

(p> 0:1, paired-sample t test in dB; Figure 3B; Table S2). In

contrast, the phase at 0.65 Hz washed out more slowly, as

fish frequency response phases were significantly greater

than baseline phase for multiple consecutive 5-min internals

(p< 0:05, paired-sample t test; Table S3), returning to baseline

by the next day (p> 0:2, paired-sample t test; Figure S2B;

Table S3).

The significant aftereffect quantified using frequency

response methods was also apparent in the time-domain

data. Figure 3C shows the aftereffect in the time domain,

comparing the velocity tracking error _eðtÞ, i.e., _eðtÞ = _sðtÞ �
_yðtÞ, in the baseline period with the first 8 s of the aftereffect

period from an example fish. The velocity tracking error _eðtÞ in
the first 8 s of the aftereffect period was markedly different

from mean ± standard deviation of baseline. To better highlight

the behavioral differences, we filtered velocity tracking errors in

baseline and the first 8 s of aftereffect with a second-order

bandpass Butterworth zero-phase distortion filter. The lower

and higher cut-off frequencies were chosen to be 0.7 and

1.3 Hz, as we found that fish showed most noticeable changes

of their frequency responses in that frequency band in Figure 2D.

The time-domain data in this frequency band highlights the

higher amplitudes and a clear phase lead (earlier peaks and

troughs) of the velocity error for the retuned and partially re-

tained sensorimotor system compared with the (untuned) base-

line performance (Figure 3D).
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Figure 2. Fish retuned their controller dynamics in response to destabilizing feedback
(A–C) From top row to bottom row: fish velocity _yðtÞ, refuge velocity _sðtÞ, and reference velocity _rðtÞ in time domain in (A) veridical baseline, (B) closed-loop k =

0:8, and (C) closed-loop k = 1:1. The thick lines are the mean and thin lines are individual trials. We observed that, as the gain in augmented high-pass feedback

increased, both fish and refuge had higher velocity magnitude (see Figure S1 for position data).

(D) Frequency response of a representative fish. As the feedback gain was increased, the gain of the frequency response function also increased (especially

around 1.15 Hz) and the phase lag decreased (most strikingly at frequencies around 0.65 Hz).

(E and F) (E) Gain of fish frequency response functions at 1.15 Hz and (F) phase at 0.65 Hz as a function of feedback gain k (seven fish for most points, except for

k = 1:1where two fishwere excluded due to poor data quality). Linear functions (blue lines) were fitted to themean gains (pink dots) in logarithmic scale at 1.15Hz,

andmean phases (pink dots) in linear scale at 0.65 Hz across all individual fish (gray curve). Six out of seven fish exhibited significant (p< 0:05) positive correlations

between high-pass gain k and common logarithm (log10) of gain at 1.15 Hz (rð3Þ = 0:93 for one fish, rð4Þ> 0:91 for the other five fish) or phase at 0.65 Hz (rð3Þ =
0:92 for one fish, rð4Þ> 0:86 for the other five fish); one fish (red line) exhibited positive, but non-significant correlations for both gain (rð3Þ = 0:76, p> 0:1) and

phase (rð3Þ = 0:80, p>0:1). Statistical details are in Table S1.

See also Figure S1 and Table S1.
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Advantage (1): Retuned controller improved tracking
performance
Fish retuned their controllers under the augmented, destabilizing

feedback. To understand the possible benefits of this adaptive

control process, we examined how the retuned controllers
impacted fish tracking performance. We computed the fish’s ve-

locity tracking error _eðtÞ in each experiment by taking the back-

ward differences of fish position data. We used the baseline

empirical FRF for each fish to simulate that fish’s velocity

tracking error in each augmented feedback period. This
Current Biology 34, 2118–2131, May 20, 2024 2121
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Figure 3. Fish temporarily retained learned controller during an aftereffect period

(A) Mean frequency response gain from an example fish for the baseline (pre-learning) and five time periods after the augmented feedback was removed

(aftereffect). The gain of the frequency response remained elevated immediately after the augmented feedback was removed (0 to 5 min), washing out within

about 10min. Changes in the phase of the frequency response during the aftereffect period are in Figure S2 and statistical details related to phase are in Table S3.

(B) Gain ratio for six fish (black) and their mean (pink dots). Gain ratio was calculated as the mean fish frequency response gain divided by baseline mean fre-

quency response gain at 1.15 Hz. Time windows include the augmented feedback k = 1:1 period, four non-overlapping windows after the augmented feedback

was removed, and the next day. The gain in the first 5 min after the removal of the augmented feedback was significantly lower than that in k = 1:1 (p< 0:05, two-

sided sign test) but remained higher than baseline (p< 0:01, paired-sample t test in dB; Table S2), indicating retention of the learned controller. The gain in the

subsequent periods was not significantly higher than baseline (p> 0:1, paired-sample t test in dB; Table S2).

(legend continued on next page)

ll

2122 Current Biology 34, 2118–2131, May 20, 2024

Article



ll
Article
simulation used phasor analysis based on the raw FRF (without

any model fitting) at each stimulus frequency to predict what

would have happened in the theoretical case that the fish had

not retuned its controller under destabilizing augmented feed-

back (Figure 4A); see STAR Methods and Roth et al.37

To compare the observed and simulated tracking perfor-

mances, we computed the root-mean-square (RMS) velocity

tracking error: lower RMS velocity tracking errors correspond

to better tracking performance. We compared observed (re-

tuned) RMS velocity tracking error with the corresponding simu-

lated (no retuning) error. Across all seven fish and nearly all gains

(29 of 33), the observed RMS velocity tracking error for the re-

tuned controller was significantly less than that of the simulations

with no retuning (p< 0:001, two-tailed Mann-Whitney-Wilcoxon

test; Figure 4B).

To corroborate the time-domain error velocity analysis, we

examined the normalized error jEðjuÞ =RðjuÞj in the frequency

domain for all five feedback gains (Figure 4C). Similar to the

time-domain analysis, we used the individual baseline controller

for each fish to predict what would have happened were the fish

not to have retuned its controller when we introduced the desta-

bilizing augmented feedback. We integrated (area under the

curve in the frequency domain) the normalized observed and

predicted tracking error for all seven fish. We found that across

all fish and 32 of 33 gains, the observed frequency-domain error

for the retuned controller was significantly less than that

predicted when assuming no retuning (p< 0:001, two-tailed

Mann-Whitney-Wilcoxon test; Figure 4D). In sum, the retuned

controllers decreased both the RMS velocity tracking error and

the normalized error compared with the prediction assuming

no retuning.

Advantage (2): Retuned controller reduced sensitivity to
disturbance
The sensitivity function SðjuÞ (see STAR Methods) reflects how

well a feedback system suppresses disturbances at each radian

frequency u.38 Disturbances comprise perturbations to the mo-

tor plant, such as neuromuscular noise39 and turbulence.40 At

frequencies u for which jSðjuÞj< 1 (indicating robustness), a sys-

tem attenuates disturbances. Conversely, a system amplifies

disturbances when jSðjuÞj> 1 (indicating fragility).38,41 Critically,

for many systems, there is a trade-off between robustness and

fragility because of a general result known as the ‘‘waterbed ef-

fect’’38: the integral of the natural log of the sensitivity function

magnitude—i.e., the Bode sensitivity integral—is 0:

Z N

0

lnðjSðjuÞjÞdu = 0: (Equation 1)

This integral constraint implies that suppressing disturbances

(lnjSj< 0, indicating robustness) at some frequencies requires

amplifying disturbances (lnjSj> 0, indicating fragility) at other
(C) Comparison of velocity tracking error _eðtÞ = _sðtÞ � _yðtÞ in baseline (pink, veridi
fish. Shaded region indicates standard deviation. During the first 8 s after the rem

error was greater than that in baseline most of the time, reflecting the temporary

(D) Filtered velocity tracking errors in baseline and first 8 s of aftereffect from the fi

distortion filter (pass band: 0.7 to 1.3 Hz, gray shaded region in A). Filtering to th

exhibited higher amplitude velocity tracking errors and substantial phase lead co

See also Figure S2 and Tables S2 and S3.
frequencies. This result depends on certain technical require-

ments of the system dynamics38 that we believe to be satisfied

(see STAR Methods for details).

We computed the predicted sensitivity function for each

augmented feedback gain, k, based on each fish’s baseline

controller (estimated in the veridical condition—no augmented

feedback). These calculations were based on the empirical fre-

quency response data without analytical modeling; see STAR

Methods for details. This predicted sensitivity was compared

with the sensitivity function that each fish achieved when the

augmented feedback was applied. If the fish had not changed

their controller, then the predicted and observed sensitivity func-

tions would have been identical.

For both the predicted and observed sensitivity functions, we

approximated the Bode sensitivity integral over the experimental

bandwidth of 0:1 � 2:05 Hz (0:63 � 12:9 rad/s) using trape-

zoidal integration (with respect to u rad/s). Figure 5A shows

the natural logarithm of sensitivity function magnitude (predicted

and observed) at k = 1:1 from one representative fish over this

bandwidth. As the augmented feedback gain k was increased,

the sensitivity integral became increasingly negative compared

with the predicted integral (p< 0:05 for k = 0:3, p< 0:01 for

each k > 0:3, paired-sample t test) (Figure 5B; Table S4). This in-

dicates that the retuned fish controller improved the overall

robustness with respect to disturbances.

We also computed ‘‘sensitivity crossover frequency’’ for each

feedback gain for all seven fish, i.e., the frequency at which the

natural logarithm of sensitivity function magnitude lnjSðjuÞj
crossed 0 for the first time. A total of 28 of 32 points are located

below the identity line, showing that the retuned controller

increased the sensitivity crossover frequency compared with

the predicted crossover frequency across all seven fish and for

nearly all gains (28 of 32) (pz0:001, two-tailed Mann-Whitney-

Wilcoxon test, Figure 5C). Thus, the retuned controller attenu-

ated disturbances over a wider bandwidth than if it had not

been retuned.

Thesefindings indicate that the retuningoffishcontrollers signif-

icantly reduced sensitivity to disturbances. This enhancement

becamemore pronouncedwith ever-increasing augmented feed-

backgains, as thedifferencebetween theobservedandsimulated

Bode integral decreased with increased gain k (p< 0:05, correla-

tion coefficient rð3Þ = � 0:94 for the mean across seven fish in

five feedback periods).
Advantage (3): Retuned controller improved PM
We examined how changes in the fish’s sensorimotor controller

affected closed-loop stability robustness, i.e., the ability of a

system to maintain stability despite changes in internal system

parameters. Similar to our previous analyses, we used the

fish’s baseline frequency response—before the destabilizing

augmented feedback was introduced—tomathematically predict
cal) and first 8 s of aftereffect (blue, also veridical but after learning) from a single

oval of the augmented reafferent feedback, the amplitude of velocity tracking

retention of the controller obtained during learning.

sh in (C). The filter used was a second-order bandpass Butterworth zero-phase

is frequency band clearly illustrates that during the first 8 s of aftereffect, fish

mpared with baseline.
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Figure 4. Retuned controller improved tracking performance

(A) Simulated velocity tracking error (prediction, purple) during the k = 1:1 period using the baseline controller of one fish and the observed velocity tracking error

from the same fish during that period (observed, pink). The observed tracking error was generally lower in amplitude than the prediction made using the baseline

controller, most notably as a result of large spikes in the predicted error.

(B) Scatterplot showing the simulated and observed root-mean-square (RMS) velocity tracking error for each feedback gain, for seven fish. A total of 29 of

33 points from all seven fish are located above the identity line, showing that the retuned controller decreased RMS velocity tracking error (p< 0:001, two-tailed

Mann-Whitney-Wilcoxon test).

(C) The predicted normalized error jEðjuÞ =RðjuÞj was computed by assuming that the fish did not retune their baseline controller as the feedback gain was

increased; RðjuÞ and EðjuÞ are the frequency-domain reference signal rðtÞ and sensory slip eðtÞ, respectively. As can be seen for a representative fish (top), when

the high-pass gain k increased, the predicted normalized error increased substantially below about 0.6 Hz, and decreased slightly for higher frequencies. In

contrast, the observed error below about 0.6 Hz measured for the same fish (bottom) was substantially lower than the predicted error in that frequency range, as

the retuned controller largely mitigated the effects of the destabilizing feedback.

(D) Scatterplot showing the predicted and observed averaged frequency response error, integrated across the frequency range of 0:1 � 2:05 Hz, for each

feedback gain, for seven fish. Fish index and feedback gain color scale same as (B). A total of 32 of 33 points from across all fish are located above the identity line,

showing that the retuned controller decreased normalized tracking error over predicted normalized tracking error (p<0:001, two-tailed Mann-Whitney-Wilcoxon

test).
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Article
closed-loop performance and compared this baseline prediction

to the observed retuned control system. We observed that fish

maintained or improved measures of stability robustness

comparedwithwhatwould be expected if the fish had not retuned

their controller.

To quantify stability robustness, we used two concepts from

control theory, namely the gain margin (GM) and phase margin
2124 Current Biology 34, 2118–2131, May 20, 2024
(PM), which provide measures of how much a system can be

perturbed before it becomes unstable. Under technical assump-

tions (see STAR Methods), the GMmeasures how close the gain

of the loop function is to unity gain (0 dB) at the frequency where

the phase of the loop function crosses � 180+. Likewise, the PM

measures how much the phase of the loop function is above

� 180+ at the frequencies where the gain crosses 0 dB (see
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Figure 5. Tuned controller reduced sensitivity to disturbance

(A) Predicted (based on baseline controller) and observed (based on fish’s retuned controller) Bode sensitivity functions for k = 1:1, from one representative fish.

The natural logarithmicmagnitude of the observed Bode sensitivity function has a larger negative region than predicted (see Figure S3 for larger frequency range).

(B) For each individual fish, and at each gain k, we computed the difference between the observed and predicted Bode sensitivity integrals over the frequency

range 0:1 � 2:05 Hz (0:2p–4:1p rad/s). Box andWhisker plots of these values are shown for all seven fish for k = 0:3 � 1:0, five fish for k = 1:1. The mean value

across all fish was < 0 for each gain (p< 0:05 for k = 0:3, p<0:01 for the remaining gains, paired-sample t test for observed versus predicted Bode sensitivity

integral). Statistical details are in Table S4.

(C) Scatterplot showing the predicted and observed sensitivity crossover frequency for each feedback gain, for seven fish. Note that here we report only the

frequency at which natural logarithm of sensitivity function magnitude lnjSðjuÞj crosses 0 for the first time. A total of 28 of 32 points are located below the identity

line, showing that the retuned controller increased sensitivity crossover frequency over predicted sensitivity crossover frequency for all seven fish, and for nearly

all gains (28 of 32) (pz0:001, two-tailed Mann-Whitney-Wilcoxon test).

See also Figure S3 and Table S4.
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Figure 6A). Here, the loop function L = CPð1 � DHÞ includes the
fish’s own controller and plant, CðsÞ and PðsÞ, the setup delay in

the forward loop DðsÞ, as well as the augmented high-pass filter

feedback, HðsÞ.
For the sensorimotor dynamics considered here, these mea-

sures of robustness are simple and intuitive: if at any frequency

the loop function L reaches the � 1 point, then at that frequency

the sensory slip eðtÞ experiences positive feedback due to the

negative sign in the reafferent loop (Figure 1B), rendering the sys-

tem unstable. Further, the � 1 point has unity gain (0 dB) and

� 180+ phase. Therefore, when L gets close to the � 1 point,

small changes in the sensorimotor dynamics could push the sys-

tem into instability. In this way, the GM and PM are measures of
stability robustness, i.e., measures of the safety margin between

the observed loop function and the � 1 point.

If the fish were to have maintained its baseline performance,

the PM would have decreased substantially as we increased

the augmented feedback gain k (Figure 6B). Note that this pre-

dicted PM demonstrates that the augmented feedback

achieved the goal of destabilizing the system, i.e., driving

down the PM. The difference between observed PM and

predicted PM was significantly above 0+ for all augmented

feedback gains (p< 0:05, paired-sample t test; Figure 6C;

Table S5). Moreover, as the augmented feedback gain k

increased, the difference between observed PM and predicted

PM increased (p< 0:01, correlation coefficient rð3Þ = 0:97 for
Current Biology 34, 2118–2131, May 20, 2024 2125



-20

0

20

40

60

80

100

0 0.3 0.6 0.8 1.11.0
40

70

100

130

-60

-40

-20

0

20

G
ai

n
(d

B
)

10-1 100

Fish Index 1 2 3 4 5 6 7

-300

-180

-100

0

P
ha

se
(d

eg
)

0.3 0.6 0.8 1.0 1.1

∞

Feedback Gain k

O
bs

er
ve

d
P

M
–

P
re

di
ct

ed
P

M
(d

eg
)

Feedback Gain k

A

C D

B

P
re

di
ct

ed
P

M
(d

eg
)

Phase Margin (PM)

Frequency (Hz)

Gain Margin (GM)

Raw Data
Fitted Model

-8

-4

0

4

8

O
bs

er
ve

d
G

M
–

P
re

di
ct

ed
G

M
(d

B
)

0.3 0.6 0.8 1.0 1.1
Feedback Gain k

Figure 6. Tuned controller improved phase margin and maintained gain margin, measures of stability robustness

(A) Illustration of the gain margin (GM) and phase margin (PM) with raw data (black circles) and fitted model (green line) from one fish in k = 0:8 period. We used

fitted models (see STAR Methods) when computing the GM and PM because the exact gain and phase crossover frequencies must be interpolated or

extrapolated from the raw data, as shown.

(B) Predicted PM in k = 0 (baseline) and all five closed-loop periods from seven fish, computed from the model. As feedback gain increased, the predicted PM

dropped, showing that the experimental design destabilized the closed-loop system as expected.

(C) Boxplot of the difference between observed and predicted PM as a function of feedback gain k for seven fish (computed from model). The difference is

significantly greater than 0+ in all feedback periods (p< 0:05, paired-sample t test; Table S5), indicating that the retuned controller enhanced PM. Note that two

data points (fish 1, k = 0:8 and fish 4, k = 1:0) were excluded from the statistical analysis because they had infinite observed PM (loop function gain never

crossed 0 dB) despite a finite predicted PM.

(D) Boxplot of the difference between observed and predicted GMas a function of feedback gain k for seven fish (computed frommodel); a value > 0 dB (or < 0 dB)

implies that the retuned controller increased (or decreased, respectively) GM. The difference is not consistently above or below 0 dB as a function of feedback gain

k (Table S6), and there is no significant correlation (p> 0:1) between high-pass gain k and the differencebetweenobserved and predictedGMaveraged across seven

fish. Therefore, the retuned controller did not significantly enhance GM.

See also Tables S5 and S6.
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the mean across seven fish in five feedback periods). Notably,

the improvement in PM for k = 1:1 was around 50+, indicating

that the retuning seen in Figures 2D–2F led to a substantial
2126 Current Biology 34, 2118–2131, May 20, 2024
improvement in PM. Note that the statistical results for PM

did not include data from one fish in feedback period k = 0:8

and a different fish in period k = 1:0 because both of their
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observed loop functions did not cross 0 dB. Nevertheless,

these excluded data also support our finding (i.e., infinite

observed PM versus finite predicted PM). In summary, fish

improved their PM compared with prediction.

For the GM, as the augmented high-pass feedback gain kwas

increased, themean difference between observed and predicted

GM across seven fish remained near 0 dB (Figure 6D). At two

gains (0.3 and 0.6), the retuned controller decreased GM when

outliers were removed (before removing outliers: p< 0:01 for

k = 0:3, p> 0:2 for remaining periods, paired-sample t test; after

removing outliers: p< 0:01 for k = 0:3, p< 0:001 for k = 0:6,

p> 0:2 for remaining periods, paired-sample t test; Table S6).

There was no significant trend as a function of k (p = 0:583,

rð3Þ = � 0:33 before removing outliers and p = 0:818, rð3Þ =
� 0:14 after removing outliers).

In sum, the fish’s retuned closed-loop system was robust with

respect to augmented feedback, which was designed to drive

the closed-loop system toward instability. These results indicate

that the retuned controller maintained GM and substantially

improved PM, two common measures of stability robustness.

DISCUSSION

We examined how weakly electric fish changed their refuge

tracking behavior in response to an innovative experimental

paradigm—the gradual introduction of destabilizing dynamics

via the application of high-pass-filtered augmented feedback.

The changes in behavior reflected a retuning of the control

system for refuge tracking. We discovered that this retuning

improved tracking performance, reduced sensitivity to distur-

bances, and improved PM. The effects of the retuning of the con-

trol system persisted after the destabilizing dynamics were

removed, returning to baseline during a washout period. Inter-

estingly, the time course of the return to baseline performance

differed between the gain and phase of the sensorimotor

transform.

This difference in the time course of return of gain and phase to

baseline may be related to stability. To understand the effects of

the different rates of return to baseline of gain (faster) and phase

(slower) on closed-loop performance during the aftereffect

period, it is helpful to consider the following counterfactual:

what if the return to baseline did not occur? In other words,

what if the controller that had been retuned in response to expo-

sure to the augmented feedback at k = 1:1 did not return to

baseline after the experiment? In this case, our calculations

(not presented) indicate that the increased gain that resulted

from retuning would have had substantial impacts on stability

margins via a reduction in both the GMs and PMs during the

aftereffect period compared with the baseline controller. In other

words, the retuned controller was not well suited for the veridical

condition.

This potentially destabilizing effect may be the reason for the

relatively short timescale for the return of sensorimotor gain

back to baseline. However, based on our calculations for this

counterfactual exercise, the decreased phase lag that resulted

from retuning would not have had a substantial impact on stabil-

ity margins, creating less impetus for rapid de-adaptation of

phase back to baseline. This finding is reminiscent of sensory re-

weighting in human postural control. Postural response gain
decreases as stimulus switched to a higher amplitude, but phase

of the response remained roughly constant.42

Neural substrates for retuning feedback control
systems
The retuning of the controller for refuge tracking in Eigenmannia

may be mediated, at least in part, by plasticity in cerebellum-like

circuits.43–46 Pairing of stimuli such as tail bending and electro-

sensory signals results in compensatory retuning of neurophys-

iological activity.45 If pairing initially leads to an increase in firing,

that firing may decrease as the pairing is repeated over periods

of tens of seconds to minutes. Release of the pairing, in this

example, results in a reduction in firing, known as a ‘‘negative im-

age.’’45 This negative image washes out over roughly the same

time course as the initial retuning.

Such retuning has also been observed in cerebellar neurons

that respond to moving objects.43 These cerebellar neurons

and other midbrain neurons exhibit direction-selective re-

sponses to moving objects.45,47–52 Such direction-selective

and other movement-sensitive neurons53 may contribute to lo-

comotor control used in the refuge tracking task and may be

functionally linked to cerebellar retuning via the pretectum.54

Interestingly, experimental manipulation of the spectrum of

background electrosensory noise results in a retuning of cere-

bellum-like55 neurons in the electrosensory lateral line lobe

(ELL), a hindbrain electrosensory nucleus in Gymnotiform

fishes.46 Specifically, the frequency tuning curves of neurons

shift to maintain a ‘‘whitened’’ neurophysiological encoding

across the behaviorally relevant spectrum.56 These changes

are mediated by a feedback pathway that also contributes to

the perception of moving electrosensory stimuli.57 Although

speculative, the mechanisms underlying such retuning of the

frequency responses of individual neurons may contribute to

the frequency shift in the sensorimotor transform caused by

the high-pass-filtered augmented feedback in this study.

In larval zebrafish (Danio rerio), several neural populations

may contribute to the adaptation of motor systems to experi-

mental manipulations of reafferent signals.58–60 Zebrafish

have an internal representation of the anticipated visual feed-

back for a given motor output—differences between the antic-

ipated and actual feedback are error signals.59 Zebrafish can

use these error signals to adapt motor responses to changes

in visual feedback. The activity of neurons recorded using

two-photon calcium imaging in immobilized larval zebrafish

suggests that retuning occurs in widespread neural popula-

tions, including populations in the inferior olive and cere-

bellum.58 Lesions of the inferior olive reduced the ability of

zebrafish to adapt their motor output to experimentally induced

changes in feedback gain.58

The retuning of sensorimotor control circuits is also found in

humans. Retuning can be seen, for example, in visuomotor tasks

where participants reach toward a target.10 Experimental rota-

tions of visual feedback lead to a retuning of reaching dynamics.

This retuning persists after the removal of the experimental

manipulation,10 which we also observed in Eigenmannia. A

similar effect can be seen in experiments in which feedback dur-

ing walking was manipulated using a split-belt treadmill.61 In

both of these examples, the time course of retuning is consistent

with measures of cerebellar mechanisms. The effects of lesions
Current Biology 34, 2118–2131, May 20, 2024 2127
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to cerebellar circuits in humans provides further evidence of the

cerebellum’s role in sensorimotor retuning, as such lesions result

in impaired sensorimotor control adaptation.62,63

These neurophysiological and behavioral reports across spe-

cies suggest that the sensorimotor retuning we observed in

response to destabilizing reafferent dynamics are mediated, at

least inpart, bycerebellarorcerebellum-likecircuits. Futureneuro-

physiological and lesion studies of the ELL, cerebellum, and

midbrain inEigenmanniamay reveal how retuning of sensorimotor

gains in neural circuits leads to improvements in robustness.

Species differences in adaptation to altered feedback
In contrast to our findings in electric fish, fruit flies Drosophila

melanogaster do not appear to adapt their optomotor response

to changes in augmented feedback gain of wide-field stimuli.29 A

possiblemechanism for this difference is that smooth pursuit ob-

ject tracking (as in our study) and wide-field optic flow stabiliza-

tion aremediated by fundamentally different learning and control

mechanisms.64–66 However, Drosophilamay be able to adapt to

gain reversals during object fixation.28

In humans and other vertebrates, visuomotor behavior readily

adapts to a changing gain applied to wide-field optic flow stimuli,

such as the gain adaptation and recalibration of the vestibulo-

ocular reflex (VOR).67–70 Moreover, it has been shown that modi-

fying the gain between self-motion and optic flow cues induces

plasticity in path integration.71,72 Such wide-field gain adapta-

tion, readily elicited in vertebrate species but not in Drosophila,

may be related to adaptive control mechanisms in vertebrate

nervous systems manifest in the cerebellum or cerebellum-like

structures.10

Neural and mechanical contributions to robust
performance
Robustness describes how well a system achieves stability and

convergence despite external perturbations17 or changes in in-

ternal parameters.18 Retuning of control in response to novel dy-

namics is one mechanism to achieve such robust performance.

We showed that Eigenmannia retune their control systems and,

in so doing, increase PM and reduce sensitivity to low-frequency

disturbances under augmented feedback. The maintenance of a

robust PM, as we show here, is ecologically relevant because

phase lag in sensory systems can depend greatly on environ-

mental features, such as illumination73 or conductivity,22,74

which can affect sensorimotor delay.73 Likewise, maintenance

of robustness to mechanical disturbances enables hawkmoths

to readily track moving flowers during feeding, despite experi-

encing perturbations in the form of vortices shed from flowers,75

and humans to robustly reject mechanical disturbances during

reaching.76

However, in closed-loop neuromechanical systems, robust-

ness is not solely the purview of the nervous system. Indeed, fail-

ure to account for the dynamics of the musculoskeletal plant can

lead to erroneous conclusions about neural control.18,77,78 Sta-

bility and robust performance18,20,79–82 result from the interplay

between the mechanical and neural systems.77 For example,

mutually opposing forces produced by the ribbon fin of Eigen-

mannia enhance both stability and maneuverability, simplifying

neural control.27 Similarly, flies with damaged wings increase

their damping coefficients to maintain stability during yaw gaze
2128 Current Biology 34, 2118–2131, May 20, 2024
stabilization.9 The flies achieve this through a decrease of

closed-loop gain in the coupled system comprising body dy-

namics and neural control.
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Data and code availability
The archived version of the datasets and the analysis code supporting this article are available through the Johns Hopkins University

Data Repository with the following DOI: https://doi.org/10.7281/T1/F5PD42.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Adult weakly electric glass knifefish Eigenmannia virescens (length: 10–15 cm) were obtained from commercial vendors and housed

following published guidelines.83 Temperature and conductivity of the water in the experimental aquarium were kept at 76+ F–80+ F

and 10 mS/cm–150 mS/cm, respectively. All fish were transferred to the experimental aquarium 12–24 hours before the start of the

experiments. The experiments were conducted under an illuminance level of approximately 80 lux. Experimental procedures were

approved by the Johns Hopkins Animal Care and Use Committee and followed guidelines established by the National Research

Council and the Society for Neuroscience.

METHOD DETAILS

Experimental apparatus
The experimental apparatus was similar to that used by Biswas et al.21 This systemmeasured the position of the fish within a moving

refuge in real-time. Themeasurement of fish position was available for the control of themovement of the refuge, allowing adjustment

of refuge movement in relation to fish behavior. The movement of the shuttle was determined by two signals: (i) a high-pass filtered

measurement of the velocity of the fish, and (ii) a static sum-of-sines velocity signal.34 We refer to this high-pass-filtered feedback as

‘‘augmented reafferent feedback.’’

Innovations in augmented reafferent feedback
To facilitate the experimental investigation of the learning process, we used a high-pass filter for the augmented feedback. The high-

pass filtered feedback, unlike a simple static gain, enables the graceful, parametric destabilization of the closed-loop system. To un-

derstand this distinction, consider the k = 1:0 case. For static feedback (i.e., a pure gain with no high-pass filter), k = 1:0 cancels the
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veridical reafferent feedback leading to a singularity: the refuge would track the fish in 1-to-1 fashion, making it impossible for the fish

to volitionally swim to a desired location within the refuge and therefore making it physically impossible for any retuning of the

controller to stabilize the system.

In this augmented environment, a static gain of k > 1 is analogous to a mirror reversal in virtual visuomotor tasks, since, as the fish

swims forward relative to the tank, the refuge moves forward even more, so that the sign of the error signal is reversed (i.e. the fish

ends up further back within the refuge, even though it swam forward in this hypothetical scenario). Thus, experimentally transitioning

from stable augmented feedback k < 1 to destabilizing mirror reversal k > 1 would require discretely jumping over the inescapable

singularity at k = 1, thereby introducing dramatic and abrupt changes in stability.

The key innovation of the high-pass filter approach is that it does not alter the low-frequency dynamics (i.e., below the filter cut-off

frequency), yet still can reverse the sign of the high-frequency feedback (i.e., above the filter cut-off frequency), destabilizing the sys-

tem as the gain increases—but with no singularity. This is seen in our experiments in which we gracefully transition to high-frequency

mirror reversal, incrementally increasing the gain from k = 0 to k = 1:1, gradually reversing the sign of high-frequency error feedback

while leaving low-frequency feedback unchanged.

Experimental protocol
Our intention was to drive the entire closed-loop system toward instability by increasing the gain of the augmented feedback. We

examined the sensorimotor transform that fish used to maintain their position with the refuge before (‘‘baseline’’), during the

augmented feedback period of increasing gain (‘‘closed-loop’’), and after the augmented feedback period (‘‘aftereffect’’). Both

‘‘baseline’’ and ‘‘aftereffect’’ periods were open-loop (no high-pass-filter feedback); the ‘‘closed-loop’’ period had the high-pass-filter

feedback.

During the baseline period, we conducted five 60 sec stimulus–response trials, with a 20 sec ‘‘rest’’ period between each trial. The

input stimulus during each trial comprised a 10 sec ramp-up, 40 sec of sum-of-sines inputs, and 10 sec ramp-down (see Figure S1A),

described in detail below in relation to Equation 2. Rest periods had zero movement instead of the sum-of-sines stimulus (rðtÞ = 0).

In the closed-loop period, there was a first order high-pass filter in the augmented feedback loop. The high-pass filter gain k was

increased incrementally: from 0.3, 0.6, 0.8, and 1.0, to 1.1 (Figure 1C). The upper limit of k = 1:1 was chosen based on preliminary

analysis34 that indicated gains above approximately 1.3 would completely destabilize the baseline controller. Preliminary attempts to

approach this gain led to frequent transient movements of the refuge that hit travel limits of the apparatus.34 For this reason, we set

the upper limit to k = 1:1 as a balance between driving the system toward instability while respecting the practical constraints of the

experimental apparatus.

In each feedback period (k = 0:3;0:6;0:8;1:0;1:1), there were five trials (60 sec each) with four rest periods (20 sec each, rðtÞ = 0)

in between. Critically, the augmented feedback remained enabled during these rest periods. There were also 20 sec rest periods

connecting the last trial of each feedback period to the first trial in the next feedback period. During these inter-trial rest periods,

the feedback gain was linearly increased as a function of time from the last value of k to the next value (so that the gain changed

gradually, rather than abruptly). During all rest periods, no pre-defined reference inputs were used, i.e., rðtÞ = 0.

At the start of the aftereffect period, the augmented feedback was abruptly extinguished (k = 0). Aftereffects were measured dur-

ing five non-overlapping time intervals after the closed-loop augmented feedback was extinguished: ‘‘0 to 5 min,’’ ‘‘5 to 10 min,’’

‘‘10 to 15min,’’ ‘‘15 to 21min,’’ and ‘‘next day.’’ The input stimulus and the duration of rest periods were the same as those in baseline

period. Three trials were conducted for each subsequent 5min period and five trials were conducted for the 15 to 21min and next day

after periods.

The pre-designed reference stimulus signal had three periods: ‘‘ramp-up,’’ ‘‘sum-of-sines,’’ and ‘‘ramp-down,’’ as illustrated in Fig-

ure S1A. In ramp-up and ramp-down periods, the designed signal oscillated at 0.45 Hz with modulated amplitude, and was added to

the modulated sum-of-sines signal (Figure S1A). The sum of 12 single sinusoidal functions, r1ðtÞ, is given (in centimeters) as follows:

r1ðtÞ = 0:8
X12
i = 1

1

2p0:05ki
$cosð2p0:05kit + FiÞ: (Equation 2)

Here, ki = 2;3;5; 7; 11;13;19; 23;29;31; 37;41 are prime numbers and the phase of each single sine componentFi is randomized.

This function creates a pseudo-random, unpredictable stimulus, suitable for system identification.26

Online and offline tracking
The refuge position and fish position were both measured in real time by a template matching tracker in LabVIEW,21 with a sampling

rate of 25 frames per sec. We also performed offline tracking of fish and refuge motion using the tracking software DeepLabCut.84

System identification
After obtaining the refuge and fish position in the time domain, we performed system identification with seven fish. The system iden-

tification procedure was similar to Yang.85 For each of the three experimental periods (baseline, closed-loop, and aftereffect), we

processed the middle 40 sec sum-of-sines part of each trial and divided it into two halves to double the replicates of data (since

the stimulus was designed to repeat every 20 sec). We then took the mean of each batch of 20 sec input and output position

data in each period (baseline, five feedback periods in closed-loop period, and five time intervals in aftereffect period) and
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transformed the mean positon data into the frequency domain using discrete Fourier transform (DFT). We then used an empirical

transfer function estimate (ETFE) to estimate the Frequency Response Function (FRF) for each period.

Note that for two fish (fish 1 and 4), due to data quality of baseline trials and the similarity of trials in baseline and next day after, we

combined the time domain data in these periods to estimate the baseline FRF. Trials with tracking losswere discarded. Data from two

fish (fish 2 and 3) were excluded for k = 1:1 due to tracking loss by the control system during the experiment.

Observed and simulated velocity tracking error
The velocity tracking error _eðtÞ is defined as the difference of refuge velocity _sðtÞ and fish velocity _yðtÞ, i.e., _eðtÞ = _sðtÞ � _yðtÞ. The
refuge and fish velocities were computed using the backward difference of the position time series data and filtered through a sec-

ond-order Butterworth zero-phase distortion filter using the MATLAB filtfilt command with 5 Hz cutoff. To examine how the retuned

controllers affected fish tracking performance, we simulated the velocity tracking error in each augmented feedback period using

each fish’s baseline controller under the assumption that fish did not retune their controllers under augmented feedback, and

compared the simulated velocity tracking error with experimental data.

We followed the following steps to simulate the velocity tracking error in each augmented feedback period.

Step 1

We computed the FRFs from the reference sum-of-sines signal rðtÞ to the sensory slip eðtÞ in each augmented feedback period from

control theory:

EðjuÞ
RðjuÞ =

DðjuÞ
1+CðjuÞPðjuÞ � CðjuÞPðjuÞDðjuÞHðjuÞ ; (Equation 3)

where j =
ffiffiffiffiffiffiffiffi� 1

p
, u is the frequency in rad/sec,

HðjuÞ =
kju

ju+1
(Equation 4)

is a first order high-pass filter in augmented reafferent feedback, DðjuÞ is a delay caused by experimental apparatus latencies (Fig-

ure S4), andCðjuÞ and PðjuÞ are the FRF of the fish controller and plant, respectively (Figures 1B and S4). All terms on right hand side

of Equation 3 were either known or could be estimated: we knew the designed augmented reafferent feedback HðjuÞ; we estimated

DðjuÞ from online to offline refuge position via ETFE; the multiplication of FRF of CðjuÞ and PðjuÞ was computed from the estimated

fish’s FRFs by opening the fish’s veridical reafferent feedback loop.

Step 2

We reconstructed the simulated sensory slip esimðtÞ by following equation:

esimðtÞ = 0:8
X12
i = 1

����EðjuiÞ
RðjuiÞ

���� $ 1

ui

$ cos

�
ui t + Fi + :

EðjuiÞ
RðjuiÞ

�
: (Equation 5)

where, ui = 2p3 0:053 ½2;3;5;7;11;13;19;23;29;31;37;41�,Fi is the randomized phase of each single sine component in the refer-

ence signal rðtÞ, jEðjuiÞ =RðjuiÞj and :EðjuiÞ=RðjuiÞ are the amplitude and phase of the complex number EðjuiÞ=RðjuiÞ.
Step 3

Finally, to mimic the way we processed position real data to obtain velocity data, we computed the simulated velocity tracking error
_esimðtÞ using backward differences of esimðtÞ, filtered through a second-order Butterworth zero-phase distortion filter using MATLAB

filtfilt command with 5 Hz cutoff frequency.

Normalized error and averaged frequency response error
To evaluate fish tracking performance, the normalized frequency domain error was computed in each augmented feedback period by

taking the magnitude of the ratio of the mean sensory slip EðjuÞ to reference signal RðjuÞ (at frequency components contained by the

reference signal). The frequency domain sensory slip EðjuÞ and the reference signalRðjuÞwere computed using the DFT. The sensory

slip was calculated (in the time domain) as eðtÞ = sðtÞ � yðtÞ.
From each fish’s baseline controller, we predicted the normalized error that would have occurred during a feedback period

(assuming the fish had not retuned its controller), and compared that predicted error with the normalized error measured from exper-

imental data (where the fish had ample opportunity to retune its controller). To quantify the impacts of the retuned controller on

tracking error across the frequency range 0:1 � 2:05 Hz, we estimated the integral of the normalized error using trapezoidal integra-

tion, and divided this integral by the frequency range to obtain the averaged frequency response error. Note that although in Figure 4C

the x and y axes are both shown using a logarithmic scale, we computed the intergal of the normalized error using a linear scale.

Stability robustness analysis
The two margins of stability, gain margin (GM) and phase margin (PM), reflect the stability robustness of the closed-loop system.

When the margins of stability decrease, the system becomes less robust. To compute stability margin, one must compute the

loop function

LðsÞ = CðsÞPðsÞ � CðsÞPðsÞDðsÞHðsÞ; (Equation 6)
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where s = ju, j =
ffiffiffiffiffiffiffiffi� 1

p
, HðsÞ is the first order high-pass filter in augmented reafferent feedback, and DðsÞ is the setup delay in the

forward loop. The multiplication of transfer function of controller, i.e., CðsÞ, and that of plant, i.e., PðsÞ, could be computed from the

estimated fish’s FRFs by opening the fish’s reafferent feedback loop. The transfer function in the augmented feedbackwas known, so

the loop function was then computed, and another array of complex numbers was obtained.

The system becomes unstable if LðjuÞ = � 1 (i.e., 0 dB with phase � 180+). So, the GMwas computed as 0 minus the gain (in dB)

at the phase cross-over frequency (the frequency at which the phase of LðjuÞ crosses � 180+). Likewise, the PM was calculated by

computing the phase at the gain cross-over frequency (the frequency at which jLðjuÞj crosses 0 dB), and subtracting � 180+. These

computations make certain technical assumptions on L that are satisfied by a wide range of systems. For example, we must assume

that the Nyquist stability criterion for L requires that LðjuÞ must have no encirclements of the � 1 point on the complex plane, an

assumption that is consistent with our fitted models.

A key question was to determine how the modified controller during closed-loop experiments impacted the stability robustness of

the closed-loop system. To address this, we compared the observed GMs and PMs from the fish loop function at each feedback

period with predicted GMs and PMs.

Bode sensitivity integral
The sensitivity function is defined as follows:

SðsÞ =
1

1+LðsÞ ; (Equation 7)

where s = ju, j =
ffiffiffiffiffiffiffiffi� 1

p
and LðsÞ is the loop function defined above. Thus, we could directly compute the sensitivity function from the

loop function. Plugging in (Equation 6) to (Equation 7) yields S = 1=ð1 +CP � CPDHÞ.
To calculate the Bode sensitivity integral over the frequency range 0:2p � 4:1p rad/sec, we used trapezoidal integration of Equa-

tion 1 (Figure 5A).

The Bode integral condition in Equation 1 assumes that the loop function L satisfies two conditions: 1) has no unstable poles (a pole

at s = 0 is allowed), and 2) has at least two more poles than zeros. The electric fish plant dynamics PðsÞ have been modeled using

physics27 and system identification18 as a relative-degree 2, second-order transfer function with no zeros, a pole at 0, and a pole in

the open left-half-plane. Assuming the fish controller CðsÞ is causal and stable, and thus is proper, then one can show that the loop

function L = CP � CPDH satisfies the two conditions above for the Bode sensitivity integral to be 0.

Model fitting
The calculation of PM and GM is the only analysis in the paper that involved model fitting. This is because the exact gain and phase

cross-over frequencies must be interpolated or extrapolated from the data, and we used fitted models. We fitted the fish controller

and plant cascade, CðsÞPðsÞ, with a second order model (relative degree one: 2 poles, 1 zero with delay):

CðsÞPðsÞ
model1

=
k1s+k2

s2+k3s+k4
e� tds; (Equation 8)

and a third order model (relative degree two: three poles, 1 zero with delay)

CðsÞPðsÞ
model2

=
k1s+k2

s3+k3s2+k4s+k5
e� tds: (Equation 9)

Note that parameters of these two models were fitted independently. Both models fitted the CðsÞPðsÞ data well. The third order

model fitted the data slightly better than the second order model as expected (because the former contained one additional param-

eter); however, the third order model was prone to overfitting. Therefore, for the purpose of analysis, we used the simpler second

order model in Equation 8.

To select the best fit model, we followed three steps.

Step 1: Define the fitting error

The frequency response of each feedback period was represented as a vector of 12 complex numbers:

Graw = ½m1 + jn1;m2 + jn2;.;m12 + jn12�; (Equation 10)

one for each frequencies that was contained in the reference sum-of-sines stimulus,26,86 where j =
ffiffiffiffiffiffiffiffi� 1

p
.

Similarly, we obtained frequency response functions at these 12 frequencies directly from the fitted model with s = ju, noted as:

Gmodeled = ½p1 + jq1;p2 + jq2;/;p12 + jq12�: (Equation 11)

The fitting error is defined as the mean-squared error between Graw and Gmodeled, i.e.,

Fitting Error =
1

12
kGraw � Gmodeledk2; (Equation 12)

where k $ k is the 2-norm of vector.
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Step 2: Use MATLAB function to obtain sets of optimal parameters in candidate model that minimize the fitting error

corresponding to different initial conditions

As an example, the second order model (relative degree one: 2 poles, 1 zero with delay) has five parameters: k1, k2, k3, k4, and td. We

randomly generated 500 sets of initial values for each of those five parameters. Then we used MATLAB function fminsearch to find

500 sets of optimal parameters [k1, k2, k3, k4, td] that made the fitting error reach the local minimum from each initial condition.

Step 3: Select the least fitting error among sets of optimal parameters

Finally, we selected a set of parameters, among all 500 sets of optimal parameters corresponding to each initial condition, that gave

the least fitting error.

Setup delay analysis
The latencies in the experimental setup can impact the accuracy of estimated fish’s FRF in system identification, and this needs to be

taken into consideration when analyzing our data. In our system, the delay was mainly the latencies between reading the reference

files from the PC and trigger of the linear actuator to control the refuge movement. There were only negligible delays caused by other

factors such as asynchronously saving the videos and tracking files, and the augmented feedback processing delay from FPGA.

Delay ismodeledby the transfer functione� ts,where t is thedelay.Herewedenote the systemdelay asDðsÞ (FigureS4). Togenerate
the offline refuge movement data, we processed recorded experimental videos with the tracking software DeepLabCut,84 and esti-

mated the delay in the frequency domain by taking the ratio of the Fourier domain offline refuge trajectories, to the Fourier domain on-

line refuge trajectories saved from the experimental setup.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical analysis was performed in MATLAB (Mathworks, Natick, Massachusetts, USA). Specifically, we used function corr-

coef to test correlation coefficients of data points. We used function ttest to perform paired-sample t test, used function signtest to

perform two-sided sign test, and used function mwwtest87 for the two tailed Mann-Whitney-Wilcoxon (MWW) test. For all tests, the

significance level was 0.05.
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