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ABSTRACT 54 

It is thought that the brain does not simply react to sensory feedback, but rather uses an 55 

internal model of the body to predict the consequences of motor commands before sensory 56 

feedback arrives. Time-delayed sensory feedback can then be used to correct for the 57 

unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated 58 

in this predictive control process. Here we show that the feedback gain in patients with cerebellar 59 

ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. 60 

This difference is captured by a computational model incorporating a Smith predictor in healthy 61 

subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback 62 

control.  Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) 63 

the visual feedback they receive from their own self movement in a simplified virtual reality 64 

setup. 65 

INTRODUCTION  66 

Humans normally rely on a balance of feedback and predictive control mechanisms to 67 

make smooth and accurate movements. Proprioceptive and visual feedback are necessary for 68 

determining body postures at the beginning and end of a movement and can be used to guide 69 

slow movements accurately. However, feedback is time delayed, and thus it never represents the 70 

current state of the body during movement. Because of this, it is thought that we depend on 71 

internal models of the body that are built based on prior experience. These models can be rapidly 72 

accessed and thus provide a fast internal prediction system to estimate how a movement will 73 

unfold, enabling us to better understand where our limbs are at any given moment. This allows 74 

us to make fast and accurate movements despite long-latency feedback. 75 
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People with cerebellar damage show a characteristic pattern of incoordination during 76 

movement that is referred to as ataxia. When reaching, they make curved movements that miss 77 

intended targets and require multiple corrections. This pattern of over- and undershooting a 78 

target (dysmetria) and oscillatory corrections (intention tremor) are hallmarks of cerebellar 79 

ataxia. One hypothesis that might explain ataxia is that the predictive estimation and control 80 

provided by cerebellar circuits is dysfunctional or lost (Miall et al., 2007; Wolpert et al., 1998).  81 

Normally, the estimation of limb state (e.g., position and velocity) benefits from 82 

integrating proprioceptive measurements with an internal predictive control model during a 83 

movement (Adamovich et al., 1998; Fuentes and Bastian, 2010; Paillard and Brouchon, 1974). 84 

However, patients with cerebellar damage do not seem to receive this benefit (Bhanpuri et al., 85 

2013; Weeks et al., 2017). Worse, it is possible that their predictive model actually conveys 86 

incorrect state information during active movements, which could corrupt rather than enhance 87 

proprioceptive estimation of limb state. This difficulty of predicting the future state of limbs 88 

during active movement leads to movements that are poorly directed and scaled, requiring 89 

ongoing corrections to reach a goal location. 90 

Patients with cerebellar ataxia may rely more heavily on visual feedback to correct 91 

dysmetric movements (Beppu et al., 1987, 1984; Day et al., 1998). A drawback of visual 92 

feedback is that it is slower than proprioception; intention tremor in these patients’ movements is 93 

thought to stem from dependence on time-delayed visual feedback to make corrections (Day et 94 

al. 1998). However, it is not known how well they incorporate this visual feedback into their 95 

movements. Is visual feedback control impaired? Or does the dysmetria stem solely from errors 96 

in predictive (i.e., feedforward) control (Bhanpuri et al., 2014; Manto et al., 1994; Smith and 97 

Shadmehr, 2005)? A gait study by Morton and Bastian suggested that cerebellar patients could 98 
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use feedback information to make reactive corrections during split-belt treadmill walking in 99 

order to maintain stability, but lacked the ability to adapt their predictive motor patterns (Morton 100 

and Bastian, 2006). Other studies have indirectly supported the  notion that patients can 101 

incorporate some level of visual feedback control in reaching (Day et al., 1998; Smith et al., 102 

2000).  103 

In this study, we used behavioral experiments and computational modeling to test for any 104 

impairment in visual feedback control (correction based on measured error) and disambiguate it 105 

from previously described impairments in feedforward control (Bares et al., 2007; Broersen et 106 

al., 2016). Subjects performed a visuomotor task which required them to track an unpredictable 107 

target (Roth et al., 2011). This method allowed us to determine that cerebellar patients can 108 

integrate visual feedback control similarly to healthy, age-matched control subjects. We then 109 

hypothesized that we could exploit intact feedback control to reduce dysmetria. Specifically, we 110 

provided an acceleration-dependent alteration to visual feedback of a hand cursor. This alteration 111 

serves to compensate for the phase lags introduced by time delay, allowing patients to use visual 112 

feedback more effectively. This real time controller successfully reduced patients’ dysmetria. 113 

METHODS 114 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 115 

A total of 17 patients with cerebellar deficits and 14 age-matched controls were tested in 116 

one or more of the following experiments. Patients were excluded if they had any clinical or 117 

MRI evidence of damage to extra-cerebellar brain structures, or clinical evidence of dementia, 118 

aphasia, peripheral vestibular loss, or sensory neuropathy. The age-matched controls were 119 

clinically screened for any neurological impairments. Experiments 1-2 tested 11 cerebellar 120 
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patients (7 male, 4 female) and 11 age-matched controls (4 male, 7 female). Patient and control 121 

ages were within +/-3 years of age. The one exception is a pairing of a 78 year old patient with a 122 

71 year old control. Experiment 3 tested 12 cerebellar patients (8 male, 4 female) and 12 age-123 

matched controls (3 male, 9 female), and all patient and control ages were within +/-3 years of 124 

age. Subjects gave informed consent according to the Declaration of Helsinki. The experimental 125 

protocols were approved by the Institutional Review Board at Johns Hopkins University School 126 

of Medicine. Each subject used his or her dominant arm for all tasks. The only exception was 127 

one unilaterally affected cerebellar patient who was instructed to use her affected, non-dominant, 128 

hand. We quantified each subject’s ataxia using the International Cooperative Ataxia Rating 129 

Scale (ICARS) (Trouillas et al., 1997). Because this study involves upper limb reaching 130 

behavior, we calculated an Upper Limb ICARS sub-score comprising the sum of the upper-limb 131 

kinetic function elements of the test. The results of the ICARS as well as demographic 132 

information for all patients are shown in Table 1.  133 

 134 

EXPERIMENTAL APPARATUS, EXPERIMENTS, AND TASK INSTRUCTIONS 135 

For all experiments, subjects were seated in a KINARM exoskeleton robot (BKIN 136 

Technologies Ltd., Kingston, Ontario, Canada), shown in Figure 1A, which provided 137 

gravitational arm support while allowing movement in the horizontal plane. A black video screen 138 

occluded the subjects’ view of their arm movements. The shoulder position was fixed at a 75 139 

degree angle, as shown in Figure 1C. The wrist joint was also fixed; therefore, the elbow joint 140 

was the only freely mobile joint. Data were recorded at 1 kHz. The KINARM system exhibits a 141 

cursor delay. Using a high-speed camera, we measured this delay (0.0458s) and took the delay 142 

into account in modeling the human control system.  143 
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A 1 cm diameter white dot (cursor) was projected onto the display to indicate the 144 

subject’s index fingertip position. The display was calibrated so that the projected dot position 145 

aligned with the subject’s fingertip position. Subjects performed three experiments:  146 

 Experiment 1: sum-of-sines tracking task. 147 

 Experiment 2: single-sines tracking task. 148 

 Experiment 3: discrete reaches with acceleration-dependent feedback. 149 

 150 

For Experiments 1 and 2 (tracking tasks), subjects were instructed to try to keep the 151 

cursor in the center of the target, a 1.5 cm diameter green dot (Figure 1C). The target angle 152 

followed a pseudorandom sum-of-sines (Figure 1D) or single-sine pattern. Each trial was 100 153 

seconds long. We tested three different Feedback Gain conditions in the sum-of-sines 154 

(Experiment 1) task: 1.35 (cursor moves 35% farther than hand), 0.65 (cursor motion is 155 

attenuated by 35%) and 1.0 (veridical feedback; Figure 1B). Subjects were not informed that 156 

there was a gain change.  157 

 For Experiment 3 (discrete reaches), the robot moved the arm to align the cursor with the 158 

red dot start position (55 degree elbow angle) before each reach. After approximately 2 seconds, 159 

the red dot disappeared, and a green target dot (1.5 cm diameter, at 85 degree elbow angle) 160 

appeared elsewhere on the screen. Subjects were instructed to bring the white cursor dot to the 161 

center of the green target dot (a 30 degree flexion movement) as smoothly and accurately as 162 

possible without over or undershooting the target.  If the fingertip did not reach within 1.75 cm 163 

of the target within 800 ms, the green dot changed to blue and subjects were instructed to 164 

complete the reach (trials were not repeated); the subjects were also asked to try to move faster 165 
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on the next trial. The next trial started after the subject kept the fingertip in the target dot for two 166 

continuous seconds.  167 

Healthy control subjects performed five practice trials and patients performed 10 practice 168 

trials to familiarize themselves with the procedure. If subjects were still confused about the 169 

procedure after the practice trials, they were given more practice trials until they were 170 

comfortable with the procedure. 171 

Some subjects completed only a subset of the experiments due to time constraints (see 172 

Table 1). For every experiment, between trials, subjects were told to relax while the robot moved 173 

the subject's hand to bring the cursor to the start position.  174 

 175 

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 176 

Generating Target Trajectories (Experiments 1 & 2) 177 

The goal of Experiment 1 was to determine how well patients and controls could track an 178 

unpredictable sum-of-sines stimulus and probe their ability to use visual feedback for movement 179 

control.  The target trajectory comprised 15 sine waves whose frequencies were prime multiples 180 

of 0.05 Hz, namely 0.1, 0.15, 0.25, 0.35, 0.55, 0.65, 0.85, 0.95, 1.15, 1.45, 1.55, 1.85, 2.05, 2.15, 181 

and 2.35 Hz. Phases of each sinusoid were randomized. Each trial was 100 s long, comprising 182 

five replicates of the sum-of-sines trajectory. The sinusoids were scaled so that the angular 183 

velocity of each sinusoid never exceeded 720 degrees per second while the positional amplitude 184 

of each sine wave never exceeded 2 degrees. The non-harmonic relation of the component 185 

sinusoids created a temporally complex target motion with 45 degrees of freedom (amplitude, 186 

phase, and frequency for 15 sinusoids) that repeats every 20 s; a portion of the trajectory is 187 

shown in Figure 1D, wherein it can be observed that the signal trajectory includes multiple 188 
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seemingly random turn-arounds within even very short timescales. This complexity, coupled 189 

with the long period, makes this target motion far less predictable than a simple single-sine 190 

motion (Miall and Jackson, 2006; Poulton, 1974; Roth et al., 2011). Lastly, the dramatic increase 191 

in tracking phase lag presented in this paper (see Results) for sum-of-sine responses recapitulates 192 

the main finding of (Roth et al., 2011), confirming that from a practical point of view subjects 193 

were less able to predict the movement trajectories. Nevertheless, this signal design allowed 194 

good signal-to-noise ratio at each frequency while avoiding excessively large or fast motions of 195 

the target, making it well suited as a probe signal for tracking behavior (Roth et al., 2011). The 196 

normalized magnitude of the Fourier spectrum of our input signal is shown in the top half of in 197 

Figure 1E. Five trials were conducted for each condition tested. 198 

In Experiment 2, we wanted to determine how well patients and controls could track a 199 

predictable single sine wave. Every other frequency tested in the sum-of-sines condition was 200 

tested as a single, standalone sine wave: 0.1, 0.25, 0.55, 0.85, 1.15, 1.55, 2.05, and 2.35 Hz. The 201 

amplitude of each sine wave matched (component-wise) the sum-of-sines experiments. Subjects 202 

were once again instructed to keep the cursor in the target dot as much as possible. The order of 203 

presentation of the stimuli was randomized for each subject. 204 

    205 

Estimating Frequency Responses (Experiments 1 & 2) 206 

All analysis was performed using custom scripts (Zimmet, Cao, Bastian, and Cowan 207 

2020) in MATLAB (The Mathworks Inc., Natick, MA, USA). To obtain the steady-state 208 

frequency response of the subject, the first period (20 seconds) was discarded as transient, 209 

leaving four periods per trial. The data were visually inspected for unusual activities that were 210 

not representative of the subject's typical behavior. For example, if the subject turned away from 211 



 
 

8 

the screen to cough or talk, movement would cease for a few seconds and the data from those 212 

few seconds were removed from further analysis. The movement trajectories for a given subject 213 

were then averaged across trials at each time instant, excluding any deleted data.  The averaged 214 

data were linearly detrended and converted to the frequency domain via the discrete Fourier 215 

transform (DFT). An example of the result of this process for a cerebellar patient is shown in 216 

Figure 1F (the frequency domain data is complex valued at each frequency so only the 217 

magnitude is shown).  218 

For Experiment 1 (sum of sines), to estimate a subject's frequency response, we 219 

calculated the ratio of the DFT of the subject's movement to the DFT of the underlying target 220 

trajectory at each of the 15 frequencies in the sum-of-sines. The result of this calculation is 15 221 

complex numbers, called phasors, representing the frequency response estimate for a given 222 

subject. The magnitude of each phasor is the gain and the angle is the phase of the subject's 223 

response at that frequency. 224 

The processing of the data for Experiment 2 (single sines) was identical to the processing 225 

of the sum-of-sines data, except that there was no averaging across trials and no manual 226 

inspection/filtering of the data for unusual activities. This is because we were only looking at one 227 

frequency from each sine wave trial, and any error caused by an unusual, aperiodic activity (such 228 

as pausing) would introduce very little power at any individual frequency. 229 

 230 

Phasor Plot (Experiments 1 & 2) 231 

To visualize the frequency response, we used Phasor Plots as shown in Figure 2A. In 232 

these plots, the gain is the radial distance from the origin, and phase lag is the clockwise angle of 233 

the data with respect to the horizontal axis. Perfect tracking at a given frequency corresponds to 234 
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unity gain and zero phase lag, as illustrated by the large dot in Figure 2B. The distance between 235 

any point on the phasor plot and this dot provides a measure of the amplitude of the (sinusoidal) 236 

error signal at that particular frequency as a proportion of the input signal amplitude.  237 

 238 

Additionally, this visualization can be enhanced with a circle with a 0.5 radius centered at 239 

+0.5 along the horizontal axis as shown in Figure 2B. Points on this circle correspond to the ideal 240 

response gain for minimizing error given a particular phase lag (Roth et al., 2011). Points on this 241 

circle represent the gain values that minimize error assuming the subject cannot further minimize 242 

phase lag. Points outside the circle indicate the subject is moving too much for a given phase lag; 243 

reducing the amplitude of movement would achieve a lower tracking error and would do so with 244 

less effort. Points within the circle may represent striking a balance between effort and error in 245 

that the subject is not moving enough to fully minimize their error given a certain phase lag. 246 

Lastly, points that lie on the unit circle, traced in bold black in Figure 2C, would indicate that the 247 

subject is replicating the sinusoidal component exactly, albeit at a phase shift.  248 

 249 

Phasor Plot Scaling (Experiment 1) 250 

If a subject were to “fully” respond to an applied visual gain, the subject would need to 251 

scale his or her movement so that the visual output appeared the same as it did in the veridical 252 

feedback condition, although there is no constraint (or instruction) to do so. In reality a subject 253 

may scale his or her movements more than this, less than this, or even not at all. To quantify this, 254 

we fit a Scaling Factor that, when multiplied by the frequency response phasors for a given 255 

Feedback Gain condition, best aligned the phasors with those of the veridical condition. We only 256 

included the five lowest frequencies in this calculation because at these frequencies subjects 257 
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generally appeared to have robust responses (based on visual inspection of the data). At high 258 

frequencies, however, response magnitudes were low and therefore fitting the Scaling Factor 259 

could be dominated by noise.  260 

Scaling Factor (dependent measure) was analyzed using a 2-way ANOVA, testing for the 261 

effects of two independent variables, group (patient vs. control) and Feedback Gain (0.65 and 262 

1.35). If a main effect was found to be significant, we calculated an effect measure (ηp
2
) using 263 

the Measures of Effect Size toolbox for Matlab (Hentschke and Stüttgen, 2011). 264 

 265 

Modeling (Using Data from Experiment 1) 266 

To capture the visuomotor tracking response of both cerebellar patients and age-matched 267 

healthy controls, we adapted the classic McRuer gain-crossover model: a delayed, scaled 268 

integrator which specifically assumes that the subject is responding to an unpredictable stimulus 269 

(McRuer and Krendel, 1974). The McRuer gain-crossover model is highly simplified, and in its 270 

original incarnation was meant to capture the sensorimotor frequency response near the gain 271 

crossover frequency (i.e. where the open-loop gain of the combined plant and controller has unit 272 

magnitude). The idea is that near this frequency, closed-loop robustness is governed by the 273 

amount of phase lag; if that phase lag exceeds 180 degrees, the closed-loop system becomes 274 

unstable. In a neighborhood of the gain-crossover frequency, McRuer and Krendel (1974) 275 

recognized that subjects tended to have an open-loop gain whose magnitude dropped off 276 

inversely with frequency (like an integrator, or k/s), and the phase lag was a bit more than 90 277 

degrees (the integrator adds 90 degrees, and a delay in their model increases the phase lag as a 278 

function of frequency). We adopt a version of this simplified model to facilitate the interpretation 279 

of data (Figure 4).  280 
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We hypothesized that the patient and control models would be equivalent except for the 281 

magnitude of the feedback delay (Figure 4A). To test this, we considered a more general class of 282 

models that allows for distinct parameters for the patients and healthy control subjects, and 283 

includes the possibility of distinct delays on the visual measurement of target motion from that of 284 

self-movement feedback (which can incorporate for example, proprioception, which generally 285 

incurs a lower latency than visual). To determine the simplest combined model of patients and 286 

controls which provided both a good and consistent fit without overfitting, we used a model 287 

selection process similar to that described in (Madhav et al., 2013) based on Experiment 1 data 288 

(sum-of-sines). In the most flexible model, all patient and control parameters were allowed to 289 

vary independently with eight free parameters: kpatient, kcontrol, Visual Gainpatient, Visual Gaincontrol, 290 

Visual Delaypatient, Visual Delaycontrol, Feedback Delaypatient, and Feedback Delaycontrol (Figure 291 

4S1). The following model selection procedure aimed to determine which of those eight 292 

parameters should be free and which should be yoked together to most parsimoniously fit the 293 

data. All combinations of yoked parameters were tested, subject to yoking gains with gains, and 294 

delays with delays. We also tested a few degenerate model structures (such as a pure gain or 295 

delay, with no feedback); some of these model structures allowed for the elimination of one or 296 

more of the blocks within the model structure.  297 

 The following procedure was repeated for each possible model (note: here a “model” 298 

includes both patient and control submodels). For each subject, we represented their frequency 299 

response as an array of 15 complex numbers (one for each of the frequencies tested in the sum-300 

of-sines experiment). We began by pulling 10 of the 11 age-matched patient–control pairs from 301 

the full dataset. Then, we took the average of those 10 patients' (and, separately, controls) 302 

frequency responses at each tested frequency. Using the MATLAB function ‘fminsearch,’ we 303 
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used these average frequency response functions to fit the current model parameters to the 304 

average data by minimizing the frequency-domain (FD) error:   305 

 306 

 FD-error = ‖controlavg − controlmodel fit‖
2

 +  ‖patientavg − patientmodel fit‖
2
 (1) 307 

  308 

where control and patient in the above equation were arrays with 15 complex values, 309 

corresponding respectively to frequency responses of healthy control subjects and patients at the 310 

15 frequencies tested. This was repeated 100 times with different initial parameter values 311 

selected for the ‘fminsearch’ function, increasing the likelihood of finding a global minimum. 312 

The model parameters that generated the lowest overall error were kept (as well as the magnitude 313 

of the error). This was repeated for each patient–control pair, yielding 11 sets of model 314 

parameters and 11 leave one out error (loo-error) values, defined as:  315 

 316 

 loo-error = ‖controlleft out − controlmodel fit‖
2  +  ‖patientleft out − patientmodel fit‖

2 (2)  317 

 318 

The leave one out error values were averaged together to create the overall leave one out 319 

error for that model structure. This was our gauge for the ability of the model to capture the 320 

responses. Using the 11 sets of the model parameters for that particular model (i.e. one set of 321 

parameters for each subject pair that was left out), we created an 11 x 8 matrix, each row of 322 

which corresponding to the parameters for a given leave-one-out fit. The elements of the matrix 323 

were the residuals between each of the 8 parameters and their average value. We calculated the 324 

maximum singular value of this matrix as a gauge for model consistency. This was repeated for 325 

all potential models. Finally, by modifying our fitting procedure above, we used bootstrapping to 326 

generate confidence intervals for the parameter values in our best model. Specifically, we 327 
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randomly sampled eleven times with replacement from the eleven subjects. This was repeated 328 

1000 times to generate 1000 sets of parameter values. From these values, we found the 95% 329 

confidence intervals.  330 

“Essentially all models are wrong, but some are useful” (Box and Draper, 1987) so rather 331 

than choosing a single “correct” model, we scrutinized all models that exhibit a good tradeoff of 332 

model fit and model consistency. We also considered the number of free parameters 333 

(parsimony). Lastly, we examined whether a given model produced physiologically realistic 334 

parameters; models with nonphysiological parameters would suggest inadequate model structure 335 

leading to parameter bias. We determined the common features and subtle differences between 336 

these good models and the outcome of these meta analyses are described in Results. 337 

We converted each frequency-domain model (which includes patient and control 338 

submodels) to state space in Matlab, and simulated the model pair using the lsim command 339 

(Figure 4S1D). The input was the sum-of-sines target angle trajectory used in experiments. The 340 

model output produced a distinct prediction for the elbow-angle trajectory for each group 341 

(patients and controls; Figure 4C). These simulated elbow-angle responses were compared to 342 

subject responses as follows. We averaged across trials for each subject to compute a single 343 

time-domain response for each patient and each age-matched control; we then averaged across 344 

subjects in each group to compute a mean elbow-angle response for patients and a mean elbow-345 

angle response for controls. Given the simulated model responses and actual patient and control 346 

mean responses, the time-domain (TD) error was calculated as follows: 347 

 TD-error = √
1

𝑇
∫ (control(𝑡)mean − control(𝑡)model)

2𝑑𝑡
𝑇

0
 + √

1

𝑇
∫ (patient(𝑡)mean − patient(𝑡)model)

2𝑇

0
𝑑𝑡 (3) 348 
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where the integration is computed as a Riemann sum over the last 𝑇 = 80 seconds of the 349 

100s trial period, with a sampling time of 1ms. The TD-error was normalized so that the 350 

maximum error was 1 for visualization purposes. 351 

Comparing Phase Lags across Cohorts and Conditions (Experiments 1 & 2) 352 

We tested whether the cerebellar group showed a different pattern of phase lag across 353 

frequencies compared to controls. Specifically, we compared the phase lag for the lowest 354 

common frequencies (0.10, 0.25, 0.55, 0.85, 1.15) in the sum-of-sines and single-sine conditions 355 

across the two groups. We hypothesized that the control group would be able to use prediction 356 

and follow the single sine wave with little phase lag compared to the cerebellar patients. We 357 

expected that there would be less of a difference between groups when they followed the sum-of-358 

sines. We used a parametric two-way ANOVA for circular data called the Harrison-Kanji test for 359 

this analysis (Berens, 2009). 360 

 361 

Acceleration-Dependent Feedback (Experiment 3) 362 

To examine the effect of modified visual cursor feedback in VR, we implemented Acceleration-363 

Dependent Feedback, where the cursor angle was set to follow the elbow angle plus an 364 

acceleration-dependent term:  365 

 CursorAngle(t) =  ElbowAngle(t) + 𝑘𝑎  
𝑑2

𝑑𝑡2 ElbowAngle(t) (4) 366 

To implement this acceleration-dependent feedback, we used the KINARM’s real-time computer 367 

to calculate the average of the previous 100 elbow angular acceleration values as an 368 

approximation of the instantaneous acceleration (at 1 kHz sampling, this resulted in a ∼ 50 ms 369 

delay). This acceleration estimate was multiplied by the Acceleration-Dependent Feedback Gain 370 

(𝑘𝑎), added to the real elbow angle, and the position of the cursor was displayed on the Kinarm 371 
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screen at this new, slightly shifted angle. In practical terms, this moving-average-filtered 372 

acceleration-dependent feedback amounts to a high-pass filter, providing anticipatory (i.e. phase-373 

leading) feedback to the user when 𝑘𝑎 > 0, and providing phase-lagging feedback when 𝑘𝑎 < 0. 374 

To find a patient-specific feedback gain 𝑘𝑎, cerebellar patients performed blocks of 10 375 

reaches where this gain was held constant. Each patient started with 𝑘𝑎 = 0 (veridical feedback) 376 

for their first block of reaches. Individual reaches were categorized as hypometric, on-target, or 377 

hypermetric. Based on the mode of this categorization for the 10 reaches, the gain was increased, 378 

remained the same, or decreased, as determined by the Parameter Estimation by Sequential 379 

Testing (PEST) algorithm (see Implementation of the PEST Algorithm (Experiment 3), below) 380 

(Taylor and Creelman, 1967).  381 

In addition, control and patient participants performed blocks of 5 reaches at 9 specific 382 

gains in this order: 𝑘𝑎 = 0 (veridical), 0.005, 0.010, 0.015, 0.020, −0.005, −0.010, −0.015, and 383 

−0.020. Participants were given five trials of one Feedback Gain before being exposed to the 384 

next Feedback Gain on the list. Note that only six of the twelve patients completed this 385 

experiment due to time constraints. 386 

  387 

Quantifying Dysmetria for Discrete Reaches (Experiment 3) 388 

We quantified dysmetria in this single-joint task by measuring the elbow angle at which 389 

the subject made his or her first correction. We determined the angle of the first correction by 390 

finding when the velocity crossed zero after the initiation of the reach. The angle of the elbow at 391 

this time point is the angle of the first correction. This angle was divided by the goal angle of 30 392 

degrees. In a smooth and accurate reach, no correction would be needed and the “angle of first 393 

correction” would be the target angle; in this scenario the ratio between the “angle of first 394 
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correction” and the goal angle would be 1. If the result was greater than 1.03, the reach was 395 

categorized as hypermetric, and likewise, if the result was less than 0.97, the reach would be 396 

categorized as hypometric. Results between 0.97 and 1.03 were classified as “on target” reaches.  397 

 398 

Implementation of the PEST Algorithm (Experiment 3) 399 

The Parameter Estimation by Sequential Testing (PEST) algorithm was used to 400 

iteratively determine the best Acceleration-Dependent Feedback Gain values to apply in 401 

Experiment 3 by analyzing the history of the responses to different applied values (Taylor and 402 

Creelman, 1967). If the mode of the initial set of reaches was hypermetric, the Acceleration-403 

Dependent Feedback Gain would be decreased. Likewise, it would be increased if the mode of 404 

the set was hypometric. The initial step size used for the PEST algorithm was 0.01. The 405 

maximum step size for the PEST algorithm was limited to 0.01 and the minimum step size was 406 

0.0035. The maximum Acceleration-Dependent Feedback Gain was set to +/-0.02. The PEST 407 

algorithm was terminated when two blocks of the same Acceleration-Dependent Feedback Gain 408 

yielded a mode of reaches classified as “on target.” Alternatively, if this portion of the 409 

experiment took longer than approximately 20 minutes or the subject was experiencing fatigue, 410 

the most successful Acceleration-Dependent Feedback Gain was selected based on those which 411 

had already been tested.  412 

 413 
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RESULTS 414 

Experiment 1: Cerebellar Patients and Age-Matched Controls Respond Similarly to 415 

Rescaling of Visual Self-Motion Feedback 416 

 To probe participants' ability to use visual feedback, we challenged cerebellar patients 417 

and age-matched controls to keep a cursor within a target dot that was following an 418 

unpredictable trajectory. The normalized Fourier spectrum (magnitude only) of the target 419 

trajectory is shown in Figure 1E and the spectrum of a single subject’s response is shown in 420 

Figure 1F. Note that this subject had clear peaks at all of the frequencies of target movement in 421 

the veridical condition (1x).  422 

 423 

 Subjects also were exposed to two Feedback Gain conditions where the cursor was 424 

presented at 0.65x or 1.35x. A phasor plot for each Feedback Gain condition is shown for a 425 

single cerebellar patient in Figure 3A. Points with the smallest phase lag (~30) are responses 426 

from the lowest frequencies (0.1 Hz). Responses at the five lowest frequencies are marked with 427 

solid dots. As a function of increasing input frequency, the phase lag increases and the plotted 428 

points move progressively clockwise around the origin. Note in Figure 3A that the example 429 

subject scales his movement, especially at the lowest frequencies, in response to the Feedback 430 

Gain applied. For the 0.65 Feedback Gain condition, he increases the scaling of his movement in 431 

comparison to the veridical condition, as expected. Similarly, in the 1.35 Feedback Gain 432 

condition, he decreases the scaling of his movement in comparison to the veridical condition.   433 

 434 

For each patient, we computed a Scaling Factor that best scaled responses at the lowest 5 435 

frequencies (Methods); to visualize how well this Scaling Factor represents our data, the phasor 436 
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data from an example cerebellar patient in the 1.35 Feedback Gain condition shown in Figure 3A 437 

is multiplied by its scaling factor to yield the corresponding line in Figure 3B. If the scaling 438 

factor is a good fit for the data, the data should rest on top of the veridical line. Note that the 439 

phase is not modified by this scaling computation, so we should not expect to see an 440 

improvement in phase alignment in this second plot. 441 

 442 

Figure 3C shows the Scaling Factors for all subjects for each Feedback Gain condition. 443 

We conducted a one-sided t-test to determine whether patients scaled their gain in the 444 

hypothesized direction against the null hypothesis that patients’ scaling factors would be 1 (i.e., 445 

they would not respond to the applied feedback gain). Both groups scaled up (patients: p=0.03, 446 

t=-2.1, DOF=10; controls: p=4x10
-6

, t=-8.3, DOF=10) or scaled down (patients: p=0.005, t=3.23, 447 

DOF=10; controls p=0.0002, t=5.3, DOF=10) their movement, commensurate with the 448 

respective decrease or increase of the cursor Feedback Gain. We performed a two-way ANOVA, 449 

confirming that the effect of Feedback Gain (0.65 vs. 1.35) on Scaling Factor was significant 450 

(F(1,40)=59.7, p=2x10
-9

, ηp
2
=0.7), whereas the effect of group (patient vs. control) on Scaling 451 

Factor was not significant (F(1,40)=0.05, p=0.83), with no significant interaction between group 452 

and gain (F(1,40)=3.57, p=0.07). We accounted for the samples being dependent on one another 453 

because each subject was exposed to both the 0.65 and 1.35 gain conditions. The effect size was 454 

computed using the Hentschke and Stüttgen toolbox (Hentschke and Stüttgen, 2011). 455 

 456 

Note that the subjects typically exhibited a Scaling Factor of around 1.2 in the 1.35 457 

Feedback Gain condition. Intuitively, this indicates that subjects rescaled their movements as if 458 

to compensate perfectly for an experimentally applied Feedback Gain of 1.2; had they 459 
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compensated perfectly, their scaling factor would have been 1.35. Likewise, for a Feedback Gain 460 

of 0.65, the Scaling Factor was typically approximately 0.8, again implying that subjects 461 

compensated, albeit not fully, for the visual rescaling (Figure 3). Critically, the patients’ 462 

responses to the feedback scaling were comparable to that of age-matched controls, suggesting 463 

that they were able to use visual feedback in a substantively similar manner.   464 

 465 

Cerebellar Patient Performance Best Captured by Long Latency Closed-Loop Model 466 

In computational terms, one can interpret the data from Experiment 1 to mean that 467 

cerebellar patients had a functional feedback loop in their control system. Here we asked if they 468 

are using the same “control structure” (i.e., a model of the interplay between sensory feedback, 469 

external sensory input, and motor output) as age-matched controls. Because the cerebellar and 470 

age-matched control groups scaled their movements similarly in Experiment 1, one might 471 

hypothesize that they were using a similar control structure. However, the scaling was measured 472 

relative to each subject’s baseline movement in the veridical condition and was not a measure of 473 

their overall error performance on the task; for example, issues of phase lag would not be 474 

captured by the scaling analysis. Thus, here we use our findings from Experiment 1 along with 475 

the model selection procedure described by Madhav et al. (2013) to determine any differences in 476 

control structures used by patients and age-matched controls.  477 

 478 

Consider the hypothesized model depicted in Figure 4A. In this model, the brain 479 

calculates the error between perceived elbow angle and target angle, as shown in the subtraction 480 

calculation in the feedback diagram. The model merges the cascade of the subject's internal 481 

controller and mechanical plant (arm and robot dynamics); the combined plant and controller is 482 
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treated as a classic McRuer gain-crossover model—a scaled integrator—a model based on the 483 

assumption that the subject is responding to an unpredictable stimulus (McRuer and Krendel, 484 

1974). Our hypothesis is that all model parameters would be equivalent between patients and 485 

age-matched controls, except that patients would have a feedback delay commensurate with their 486 

visual processing time and controls would have a lower-latency feedback delay commensurate 487 

with their proprioceptive feedback processing time (Bhanpuri et al., 2013; Cameron et al., 2014; 488 

Crevecoeur and Scott, 2013; Izawa and Shadmehr, 2008). This is because we expect that patients 489 

would rely more on (slower) visual feedback to compensate for their deficient estimation of limb 490 

state. Visuomotor delay during smooth pursuit tracking is generally much faster than the time 491 

required for movement initiation, and estimates for such visuomotor tracking delay vary, but 492 

would be expected in the range of 110 to 160ms (Brenner and Smeets, 1997; Day and Lyon, 493 

2000; Franklin and Wolpert, 2008; Haith et al., 2016; Pruszynski et al., 2016; Saunders and 494 

Knill, 2003). 495 

  496 

To test this hypothesized model, we performed model fitting and model selection on all 497 

possible model configurations (Figure 4S1A, B). Our hypothesized model was just one 498 

possibility and the parameter values of the models were not constrained a priori. The models 499 

were compared based on joint consideration of model consistency and model fit. Model fitting 500 

and selection produced five models, called Best 4 (Lowest Variance), Best 4 (Lowest Error), 501 

Best 5 (Lowest Variance), Best 5 (Lowest Error), and Best 6, that were nearly equivalent in their 502 

trade-off between model inconsistency and model fitting error (Figure 4S1C). Model Best 6 503 

added one more free parameter compared to Best 5 (Lowest Variance) and was the only one of 504 

the top 5 models that allowed for variation in the feedback delay for controls; this addition 505 
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yielded a small delay (~39ms) and while only providing a small enhancement in model fit-error, 506 

shown in both frequency domain plot and time domain validation (Figure 4S1C and Figure 507 

4S1D). Thus, out of parsimony, we eliminated model Best 6 considered both Best 4 and both 508 

Best 5 models as the top models. These top models were extremely similar in their structure and 509 

parameters (Figure 4S1B and Table 2). Indeed, in all four top models, the feedback delay was 510 

zero for control subjects, substantially shorter than cerebellar patients. This suggests that controls 511 

can rely on an internal model of their hand position and/or proprioceptive feedback to make 512 

corrections for their future movements while cerebellar patients must rely on delayed visual 513 

feedback (see Discussion).  514 

Rather than picking up a single best model, we drew the following general conclusions 515 

from the modeling.  The Final Model (Figure 4B) was distilled from the top four models to show 516 

the general features among them, together with the range of parameters derived from these 517 

models.  In addition to the parameter values having consistent values across the top four models, 518 

they also have intuitively plausible values (Table 2). While the true parameters have biological 519 

limitations, we did not restrict their values during the fitting procedure. This provides a useful 520 

diagnostic tool, since unrealistic parameter fits would indicate inadequate model structure: 521 

parameter bias is a hallmark of model deficiency. In the four top models, Visual Delays for 522 

controls were found to be 141-147 ms, which is physiologically plausible. Interestingly, this 523 

delay was much shorter than for patients, whose Visual Delays were 181-211 ms. Critically, 524 

patients exhibited longer response delay both on the visual measurement of target motion and 525 

that of self-movement feedback, compared to controls. The top models also suggest that 526 

Feedback Delay is shorter than Visual Delay for both patients and controls, although for two of 527 

top models, the patients exhibited equivalent Visual and Feedback Delays. Visual Gain values 528 
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are all approximately 0.40 which also seems reasonable given a visual inspection of the data: 529 

subjects do not appear to be attempting to replicate the full magnitude of the signal, but some 530 

smaller portion of the signal. We further examined the frequency responses of patients and 531 

controls (Figure 4S2A). Patients exhibited substantially greater phase lag at high frequencies 532 

than controls; at low frequencies, both populations exhibited very little phase lag, but, 533 

surprisingly, controls exhibited slightly more phase lag than patients in this frequency range. 534 

Thus, there was a phase “cross over” frequency between patients and controls, which was also 535 

captured by our top models (Figure 4S2B). 536 

     537 

As a final test of our modeling approach, we examined how our Best 4 (Lowest Err) 538 

Model's parameters changed when we applied variations in Feedback Gain as shown in Table 3. 539 

Recall that in the 1.35 Feedback Gain condition, the dot moves more than the person's hand 540 

position; therefore, we expect the subject to move slightly less than they do in the veridical 541 

feedback condition because they do not need to move as much to get the same visual output (i.e., 542 

we expect k to decrease). Similarly, we expect the subject to attempt to replicate a greater portion 543 

of the signal because it is easier to do so. Thus, we expect the Visual Gain (the amount of the 544 

input signal that the subject is trying to reproduce) to be greater in the 1.35 Feedback Gain 545 

Condition than in the veridical condition. Recall that the Visual Gain affects the input to the 546 

visual error computation. We expect the opposite trend for the 0.65 Feedback Gain condition, as 547 

is detailed in Table 3. Given that we believe the delays are biologically limited based on 548 

transmission time of visual information, we expect the delay magnitudes to stay the same 549 

between Feedback Gain conditions. Indeed, the model parameters change in the hypothesized 550 

manner when different Feedback Gains were applied. The results from fitting the Best 4 (Lowest 551 
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Err) Model to the data from each of the different Feedback Gains yields the parameter values 552 

shown in Table 4. The visual feedback delays are nearly identical between Feedback Gain 553 

conditions, and the k and Visual Gain values increase and decrease as hypothesized in Table 3. 554 

The one difference between the hypothesis and these model values is in the lack of a feedback 555 

delay for the control subjects. This discrepancy is addressed in the Discussion section.  556 

 557 

Lastly, we used bootstrapping to generate confidence intervals for the parameter values in 558 

our Best 4 (Lowest Err) Model. Confidence intervals (see Methods) for our best model to be: 559 

2.1-3.4 for kpatient and kcontrol; 0.32-0.46 for Visual Gainpatient and Visual Gaincontrol; 174-261 ms 560 

for Visual Delaypatient; and 122-161 ms for Visual Delaycontrol, and Feedback Delaypatient. 561 

 562 

Experiment 2: Poor Tracking of Simple Oscillatory Trajectories Highlights Cerebellar 563 

Patients’ Predictive Deficit 564 

We validated the sinusoidal tracking paradigm by quantifying a known behavioral deficit 565 

in cerebellar visuomotor control. In this predictable task, we expected healthy participants would 566 

be efficient, exerting less than or equal to the amount of effort required to minimize error for a 567 

given phase lag. Where subjects lie relative to this tradeoff can be visualized on a phasor plot; 568 

efficient tracking would yield points on or inside the effort/error tradeoff circle (Figure 2B, 569 

Methods). We hypothesized that patients with impaired prediction may in some cases exert more 570 

effort than needed to minimize error, resulting in phasor points outside the effort/error tradeoff 571 

circle. We also hypothesized that patients would generate larger tracking errors. 572 

 573 
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At the five lowest frequencies tested, all of the control responses landed in/on the circle, 574 

whereas only 31% of patient responses landed in/on the circle (Figure 5). Additionally, patients 575 

generated larger tracking errors: 70% of patient responses exhibited larger error magnitude than 576 

the respective age-matched control responses. Furthermore, we created an aggregate tracking 577 

error for the single-sines experiment by calculating the sum of the tracking errors for the lowest 578 

five frequencies. We compared the aggregate tracking error between patients and age-matched 579 

controls by calculating the difference for each pair and testing those differences against 0 using a 580 

two-sided sign test. The null hypothesis for a two-sided sign test is that there was no difference 581 

between patients and their age-matched controls. The alternative hypothesis is that the controls 582 

may be either better or worse than patients. When we compared the difference between the 583 

aggregate tracking errors for each patient/control pair to 0, controls were significantly better than 584 

patients at single-sines tracking with 10 out of 11 controls performing better than their age-585 

matched counterpart (p=0.012). These results illustrate cerebellar patients’ poor predictive 586 

ability. Importantly, note that this analysis does not distinguish what portion of their errors 587 

stemmed from poor prediction of the stimulus trajectory versus poor control of the arm. 588 

 589 

For comparison, we also included the results from the task where the stimulus was 590 

unpredictable (sum-of-sines from Experiment 1) in Figure 5. For this experiment, because 591 

neither group would be able to predict the target trajectory, we expected that patients would be 592 

less impaired relative to controls. Indeed, patient and control behaviors were more similar in this 593 

condition: for the five lowest frequencies tested in the sum-of-sines condition, 72% of control 594 

responses and 64% of patient responses were in/on the circle. Note, however, that there is an 595 

increased phase lag of the cerebellar patients (relative to controls), particularly as the frequency 596 
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of the stimulus increases, which would be expected if the patients were dependent primarily on 597 

time-delayed visual feedback (a pure feedback delay introduces greater phase lag at higher 598 

frequencies). Specifically, 73% of individual patient frequency responses were more phase 599 

lagged than the responses of the age-matched control (as computed on an individual frequency 600 

basis). 601 

 602 

As expected, we also observed a reduction in tracking error from the sum-of-sines task to 603 

the single-sines task. We calculated the magnitude of the tracking error for each subject for each 604 

frequency (i.e., for the frequencies that were tested in both conditions) and then compared the 605 

errors between the conditions. 93% of controls’ and 75% of patients’ tracking errors were 606 

reduced in the single-sine task in comparison to his or her performance in the sum-of-sines task. 607 

Again, we computed the aggregate tracking error for the sum-of-sines task, as described earlier, 608 

using the same five frequencies used in the single-sines aggregate tracking error calculation. We 609 

then used a two-sided sign test to determine that patients (p=9x10
-4

) and controls (p=9x10
-4

) 610 

were better at tracking single-sines than sum-of-sines, with all patients and all controls having 611 

less tracking error for single-sines than sum-of-sines.  612 

To specifically look at phase lag between groups (patients vs. controls) and conditions 613 

(single- vs. sum-of-sines), we used a circular statistical approach. Figure 6 shows polar 614 

representations of the phase lags from the single-sine and sum-of-sines conditions (Figures 6A, 615 

C) and an example time series from a control and cerebellar subject tracking the 0.85 Hz sine 616 

wave (Figures 6B, D).  The example control subject showed little phase lag suggesting that this 617 

individual could make use of an internal prediction of the dot movement and their arm 618 

movement. In contrast, the example cerebellar subject showed a systematic phase lag suggesting 619 
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that their ability to use prediction is impaired. The pattern of lag can be visualized across 620 

frequencies in the polar plots. As a group, controls show a small increase in lag as the frequency 621 

increases in the single-sine condition, whereas the cerebellar group shows large lags (Figures 6A 622 

and C, compare purple vectors). Circular ANOVA for the single-sine condition showed that the 623 

cerebellar group had greater lags compared to controls (Group effect, p=1x10
-8

), that the lags 624 

increased with frequency (Frequency effect, p=7x10
-11

) and an interaction such that the 625 

cerebellar group lags increased more than controls across frequency (Interaction effect, p=2x10
-

626 

6
). In the sum-of-sines condition, the difference in lags across frequency was qualitatively greater 627 

when comparing cerebellar and control groups (Figures 6A and C, compare black vectors).  628 

Overall the cerebellar group showed greater phase lags compared to controls (Group effect, 629 

p=0.02), and there was a statistically significant effect of Frequency (Frequency effect, p=7x10
-

630 

30
). Group x Frequency interaction (Interaction effect, p=0.03), was less significant than that seen 631 

in the single-sine condition. 632 

Experiment 3: Virtual Reality Feedback Can Reduce Dysmetria  633 

The results from Experiment 1 indicated that cerebellar patients’ feedback control may be 634 

largely intact. In Experiment 3, we leveraged this intact element of their control system to reduce 635 

dysmetria. Our goal was to provide each cerebellar patient with customized visual position 636 

feedback information that took into account their controller’s mismatched feedforward model.  637 

This altered visual feedback would help them generate the correct motor command for a simple 638 

elbow movement (30 degrees flexion) by accounting for their actual arm dynamics.  639 

 640 

Here we used a motor task that requires subjects make a discrete movement to a target 641 

that is stepped to a new position. This was chosen so that we could compare our data to 642 
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previously published results using the same task with cerebellar patients. Subjects were asked to 643 

make a 30 degree elbow flexion movement from a home target to a stepped target. The task was 644 

completed with both veridical visual feedback and with altered visual feedback that was 645 

designed to reduce their dysmetria.  646 

 647 

Bhanpuri et al. theorized that cerebellar patients have a static mismatch between their 648 

controller’s internal model of their limb inertia and the actual limb inertia for elbow flexion 649 

movements (Bhanpuri et al., 2014). Critically, for single-joint elbow flexion or extension, an 650 

inertial mismatch causes an acceleration-dependent error in the internal dynamic model because 651 

inertia and acceleration are kinematically yoked. Thus, we predicted that an Acceleration-652 

Dependent Feedback Gain, 𝑘𝑎 (block diagram inset in Figure 7A) could provide corrective 653 

feedback to enhance reaching performance of cerebellar patients. Specifically, we took a 654 

subject’s estimated acceleration (see Methods), multiplied this by the Feedback Gain, and then 655 

added it to the position of the subject’s cursor: 656 

Shown Elbow Angle = (Actual Elbow Angle) +  𝑘𝑎 ∙ (Elbow Angular Velocity) 

 We predicted that positive value for 𝑘𝑎 would make a subject more hypermetric and 657 

negative value would make a subject more hypometric. Thus, we expected hypometric patients 658 

would experience a reduction in dysmetria with a positive gain. Similarly, we expected 659 

hypermetric patients would experience a reduction in dysmetria when a negative gain was 660 

applied. For a given value for the gain for 𝑘𝑎, subjects completed 30 degree elbow flexion 661 

reaching movements in the Kinarm exoskeleton robot. Reaches were categorized as hypometric, 662 

hypermetric, or on-target based on the angle where they made their first correction to their 663 

movement. The Acceleration-Dependent Feedback Gain 𝑘𝑎 was applied to the visual feedback 664 
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provided on the Kinarm screen. For more details on the implementation and instructions of this 665 

task, see Methods. 666 

 667 

When an appropriate Acceleration-Dependent Feedback Gain 𝑘𝑎 was applied, dysmetria 668 

was reduced. The effect of this gain on the displayed trajectory is shown in Figure 7A, where the 669 

dashed green line shows the altered visual feedback given to the subject and the solid green line 670 

shows the subject’s actual reach to the target for a single Feedback Gain condition. Increasing 671 

the magnitude of 𝑘𝑎 had a graded effect on the trajectory profile, as shown by the decreasing 672 

amplitude of the solid traces in Figure 7A. To find the “best” 𝑘𝑎 we applied the PEST algorithm 673 

(see methods). Applying this gain shifted the angle of first correction in the way we predicted, as 674 

shown in both Figure 7B. Figure 7C shows all of the data collected during the implementation of 675 

PEST as well as additional trials across a range of gains 𝑘𝑎 (see Methods) that were collected for 676 

a subset of patients (and all control subjects; see Figure 8). Critically, positive Acceleration-677 

Dependent Feedback Gain made patients more hypermetric and negative Acceleration-678 

Dependent Feedback Gain made patients more hypometric; likewise for control subjects. Thus, 679 

subject-specific Acceleration-Dependent Feedback Gain was needed to best reduce dysmetria. In 680 

general, increased Acceleration-Dependent Feedback Gain magnitude was needed to ameliorate 681 

greater dysmetria. 682 

 683 

DISCUSSION 684 

We found that cerebellar patients can use visual feedback control in a manner similar to 685 

control subjects. This was assessed during a sum-of-sines visuomotor tracking task by subtly 686 

changing the gain of the visual cursor feedback (i.e. hand) and measuring the degree to which an 687 
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individual subject could modulate the gain of his or her corrective movements. Our modeling 688 

corroborated this finding: the structure and parameters between patients and controls were 689 

generally the same, except that the patient and control models differed substantively in their 690 

feedback delay. The patients relied on time delayed cursor feedback of their hand position, 691 

whereas controls appeared to be able to generate predictions of their hand position.  692 

We also saw increases in phase lag for patients versus controls when following 693 

predictable sine waves. While patients showed large phase lags that increased with frequency in 694 

both conditions, controls only showed large phase lags in the sum-of-sines condition when the 695 

stimulus was unpredictable. We interpret this to mean that the control subjects could predict the 696 

movement of both the hand and stimulus in the single-sine condition, but the cerebellar patients 697 

could not predict either as reliably as controls, relying more heavily on visual, moment-to-698 

moment feedback for tracking. 699 

The above results are significant as it has previously been difficult to assess visual 700 

feedback control in these patients due to their clear impairments in feedforward control of 701 

movement. In Experiment 3, we tested whether patients’ largely intact visual feedback could be 702 

exploited to benefit their targeting performance in a reaching task. Indeed, we found that 703 

cerebellar patients could leverage their intact, albeit delayed, feedback control ability to improve 704 

their movement when we manipulate their visual feedback to assist them.  705 

  706 

Delay in Patients but not in Healthy Controls 707 

Cerebellar patients are thought to make faulty state estimates of arm motion due to a 708 

damaged internal model, which adversely affects their proprioceptive estimates during active 709 

movement (Bhanpuri et al., 2013). Thus, we expect them to increase their reliance on visual 710 
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feedback, which is time delayed compared to proprioceptive feedback. Here we hypothesized 711 

that our patients’ feedback control system would have an increased delay in comparison to 712 

controls. This hypothesis is supported by work that showed that healthy subjects normally rely 713 

more on proprioception than vision for feedback control (Crevecoeur et al., 2016). Based on the 714 

Crevecoeur et al. (2016) model, increased variability of the proprioceptive information would 715 

lead to increased weighting of visual feedback (Crevecoeur et al., 2016; Weeks et al., 2017), 716 

which comes at the cost of increased delay for patients compared to controls.  717 

 718 

Our modeling results reveal that patients have a delay in their feedback loop that 719 

approximates what one would expect from visual feedback, while controls appear to have 720 

negligible feedback delay. One interpretation of the control data is that controls are relying on a 721 

predictive internal model of their arm dynamics. This would allow them to make corrections 722 

even faster than they could using purely proprioceptive feedback. In other words, healthy 723 

controls can make corrections for current target movements based on a prediction of the present 724 

limb state from outdated measurements and known motor commands, rather than waiting on 725 

delayed sensory feedback.  726 

 727 

We think that the cerebellar patients’ deficits are best explained by their dependence on 728 

time-delayed visual feedback, though it is theoretically possible that delays in motor execution 729 

could contribute. Previous studies have shown that some patients with cerebellar damage exhibit 730 

longer than usual reaction time delays when asked to make discrete, rapid movements (Beppu et 731 

al., 1987, 1984; Day et al., 1998; Holmes, 1917; Vilis and Hore, 1980). These reaction time 732 

studies aimed to quantify a movement initiation delay as opposed to a feedback delay. Here, we 733 
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specifically assessed the timing of the in-flight trajectory alterations made while tracking an 734 

unpredictable stimulus. While our feedback delay is a type of “reaction time” because this task 735 

requires making corrections on the fly, the neural mechanisms underlying these corrections may 736 

differ from those responsible for planning and initiation of a rapid movement.  737 

Cerebellar patients can also show a reduced feedback gain in situations where responses 738 

are driven by proprioception more than vision. Kurtzer et al. (Kurtzer et al., 2013) studied 739 

cerebellar patients’ ability to modulate long latency stretch responses (i.e. EMG responses within 740 

45-100 ms of a muscle stretch) that depend on knowledge of intersegmental dynamics of the 741 

arm. This was assessed by mechanically perturbing the elbow joint and measuring long latency 742 

responses from elbow muscles and from shoulder muscles in anticipation of the passive shoulder 743 

motion induced by elbow movement. Cerebellar patient responses were found to have a lower 744 

gain and a slight delay in timing compared with controls. We interpret this in the context of the 745 

different task demands between studies-- in that study, proprioception drove the response; here 746 

vision appears to be more important to patients. These results combined suggest that cerebellar 747 

subjects can reweight which feedback modality to rely on (proprioception versus vision) 748 

depending on task demands, consistent with Block et al. (Block and Bastian, 2012), and may 749 

reduce the sensorimotor gain on either modality to minimize the negative effects of delay. 750 

Lastly, while the confluence of data and modeling presented here seems to indicate that 751 

patients rely disproportionately on delayed feedback from vision for this visuomotor tracking 752 

task, two of our top models (Model Best 5, Lowest Err and Best 4, Lowest Err; see Table 2) 753 

actually exhibited shorter feedback delays than visual delays for patients. This suggests that the 754 

patients’ control systems in this task may include some reliance, albeit weaker, on prediction and 755 

proprioception. 756 
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 757 

Modeling Results Support the Cerebellum as a Smith Predictor 758 

Sensorimotor tasks are naturally analyzed using control systems theory and system 759 

identification (Roth et al., 2014), and because cerebellar patients’ dysmetria resembles a poorly 760 

tuned control system, many researchers have analyzed cerebellar behavior using control theory 761 

(Luque et al., 2011; Manto, 2009; Miall et al., 1993; Porrill et al., 2013).  762 

 763 

Our modeling results indicate that control subjects make corrections based on prediction 764 

of a future limb state measurement. While there is some controversy on this (Pelisson et al., 765 

1986; Wolpert et al., 1998), previous work has proposed that the cerebellum might function in a 766 

manner consistent with a Smith Predictor (Miall et al., 1993). Essentially, a Smith Predictor is a 767 

control architecture that compensates for self-movement feedback delay. To achieve this requires 768 

a simulation of the plant in order to predict sensory consequences of motor output, and a 769 

simulated delay that “stores” the plant simulation for comparison with delayed feedback. In order 770 

to understand the consequences of incorporating a Smith Predictor, consider the generic 771 

feedback block diagram of sensorimotor control depicted in Figure 9 (top) and model the brain 772 

as either a controller with (Figure 9, left) or without (Figure 9, right) a Smith Predictor. 773 

Interestingly, upon simplification, we find the exact structures yielded by two of the top models 774 

(Best 5 Lowest Var and Best 4 Lowest Var): the patient model matches the simplified block 775 

diagram without a Smith Predictor and the age-matched control model matches the simplified 776 

block diagram which one. This suggests that an intact cerebellum may act in a manner 777 

qualitatively similar to a Smith Predictor and that patients ability to perform such prediction is 778 

impaired. 779 
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 780 

Perhaps the increased feedback delay in the cerebellar patients is unavoidable if one 781 

assumes the patients' control systems lack the essential capabilities of a Smith Predictor (making 782 

and storing predictive plant simulations). Thus, the apparent increased reliance on visual 783 

feedback seen in cerebellar patients may not be a compensatory mechanism at all—perhaps all 784 

subjects rely on delayed visual feedback, but healthy subjects disguise the delay using 785 

predictions of future measurements of limb state. Patients may simply lack this capability and it 786 

is not that they compensate for their deficit by relying more on visual feedback but instead that 787 

the loss of the sensory prediction and storage reveals the visual feedback delay inescapably 788 

present in both groups. This would provide some clarity on how cerebellar patients could “learn” 789 

to “compensate” in this way even when their cerebellum was damaged.  790 

 791 

At its core, the Smith Predictor has to do with simulating the mechanical plant (and 792 

appropriate delay) in order to mitigate the effect of feedback delay. But notice that in our model 793 

there is a large visuomotor delay on the reference input even with the Smith Predictor in place. In 794 

order to compensate for the delayed visual measurement of the stimulus, the brain would need to 795 

be able to predict reference motions. To avoid this confound of stimulus prediction, and focus on 796 

feedback delay compensation, we fit our models using responses to unpredictable (sum-of-sine) 797 

target motions.  798 

 799 

But, what if the target motion were predictable? Previously, it was shown in another 800 

species (weakly electric fish) that target predictability can indeed improve tracking performance, 801 

and it was hypothesized that this was based on an internal model of predictable reference motion 802 
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(Roth et al., 2011).  Here, we extend this to healthy human subjects who show marked 803 

improvement in the single-sine (predictable) tracking task. Cerebellar patients exhibit much more 804 

modest improvement in tracking predictable stimuli, suggesting that they may have impairment 805 

in both their own plant model predictions and predictions of external sensory references (see 806 

Results, Experiment 2). Further data and experiments would be needed to better isolate the 807 

effects of cerebellar damage on these potentially disparate functions of the cerebellum.  808 

 809 

Lastly, even if a healthy cerebellum helps “cancel” expected cursor feedback, this does 810 

not imply that visual cursor feedback goes unused: any errors in visual feedback, i.e., cursor self-811 

motion feedback that is not precisely anticipated by the cerebellum, could be highly informative, 812 

and recent evidence (Yon et al., 2018) suggests that a predictive model of action–perception 813 

could heighten perceptual sensitivity, making self-motion (in this case, cursor) feedback more 814 

nuanced and precise.  815 

 816 

There are potential alterative modeling interpretations of the data presented in this paper. 817 

For example, a state predictor with optimal state feedback (Crevecoeur and Gevers, 2019) is 818 

consistent with our observation that healthy subjects compensate for delay and is an avenue for 819 

further investigation.  Also, our observation that visual target delay was longer in the patient 820 

model than the control-subject could conceivably be due to a different source of phase lag that 821 

our simplified modeling structure was not able to capture. Future experiments and analysis will 822 

investigate this further.  823 

 824 

 825 
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Potential for Real-World Application 826 

In Experiment 3, we were successfully able to reduce the dysmetria of both the 827 

hypermetric and hypometric cerebellar patients in an elbow flexion task. Our visual feedback-828 

control-based intervention was developed based on a control model which represented dysmetria 829 

as a mismatch between the patient’s internal model of their limb inertia and the actual limb 830 

inertia (Bhanpuri et al., 2014). Thus, the success of our intervention provides support to this 831 

inertial mismatch theory. However, recent evidence based on the application of limb weights 832 

suggest that the inertial mismatch theory may be insufficient to explain dysmetria in multi-joint 833 

movements (Zimmet et al., 2018). Thus, feedback enhancement of multi-joint movements will 834 

likely require modifications of the simple acceleration-based controller tested in this paper. 835 

Moreover, the “best” acceleration-dependent feedback gain was patient specific even for the 836 

single-degree-of-freedom reaches tested for this study, suggesting that idiosyncrasies in each 837 

patient’s motor control system (Kuling et al., 2017; Rincon-Gonzalez et al., 2011) may mandate 838 

patient-specific tuning. Such tuning will be made more complex for 2D and 3D arm movements. 839 

 840 

 Though our intervention successfully reduces the initial over or undershooting 841 

component of the reach, our method does not attempt to correct all aspects of dysmetria. Patients 842 

with cerebellar ataxia also typically exhibit increased movement variability. Application of this 843 

visual feedback gain does not attempt to reduce the variability of patient reaches. Secondly, our 844 

intervention does not completely eliminate the oscillations experienced by the subject after this 845 

first correction is made. Moreover, our modeling work does not characterize or explain this 846 

increased variability directly. Mild oscillations after the first correction can be seen in Figure 7A. 847 
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It is possible that adding a damping term to the feedback intervention might be able to address 848 

this oscillatory behavior. 849 

 850 

Our results provide an encouraging foundation for future studies because they show that 851 

cerebellar patients are capable of using their own intact visual feedback control system to make 852 

accurate reaches. Further study is needed to determine whether this intact feedback control 853 

system could be leveraged therapeutically to reduce dysmetria without need for a virtual reality 854 

system. Alternatively, it is possible that wearable sensory augmentation (for example, tendon 855 

vibration or skin stretch) could be used as a surrogate for the vision-based sensory shift provided 856 

here. These alternatives are especially important because drug therapy for cerebellar ataxia is not 857 

currently viable, leaving rehabilitative and assistive therapies alone as the primary means of 858 

treatment for these patients. In any case, we hope that by identifying these intact movement 859 

control mechanisms we might help move treatment possibilities forward. 860 

  861 
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FIGURES 1013 

Figure 1 – Experimental Setup 1014 

 1015 

Figure 1 The experimental paradigm. A The Kinarm Exoskeleton robot system (BKIN Technologies Ltd.) where all tasks are 1016 
executed. Image is taken from (Tyryshkin et al., 2014). B This block diagram shows our experimental paradigm for experiment 1. 1017 
The actual elbow angle (orange in C) is multiplied by a feedback gain to compute the shown elbow angle (white dot in C). C A 1018 
schematic view of the Kinarm screen in the 0.65 Feedback Gain condition. The subject's shoulder is locked at a 75 angle. The 1019 
green dot is the target dot. The green dot oscillates according to the sum-of-sines pattern along an arc with a radius equivalent 1020 
to the forearm + hand + finger length. The sum-of-sines pattern is centered about the 0 angle. This 0 centerline is at a 65 1021 
angle from the subject's straight arm position. The subject could not see their fingertip (orange dot) or arm position. The angle 1022 
of the white dot (visible to the subject) is equal to 0.65 times the actual fingertip angle in orange (0.65  30 = 19.5). D Sample 1023 
data (20 s) for a single cerebellar patient showing the angles traversed by the target dot during the sum-of-sines task (green) 1024 
and by the fingertip (orange, averaged over 5 trials). E The normalized Fourier spectrum of the input sum-of-sines signal (green 1025 
trace in D). F The spectrum of the response by a single cerebellar patient over five trials (orange trace in D).  1026 
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Figure 2 – Interpreting Phasor Plots 1027 

 1028 
Figure 2 Interpreting Phasor Plots. A-C Brief explanation of phasor plots, which are explained in depth in Methods in “Phasor 1029 
Plot.” A Illustration of the relationship between the real and imaginary components of the complex numbers and the gain and 1030 
phase lag. B The bold black circle illustrates the gains that minimize error given a particular phase lag (veridical feedback 1031 
condition only). C Points on the bold black circle illustrate a different control strategy than what was asked of our subjects. 1032 
Points on this circle replicate the input signal without minimizing error between the input and output signals (veridical feedback 1033 
condition only) due to the phase lag.   1034 
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Figure 3 – Motion Rescaling under Different Feedback Gains  1035 

 1036 

Figure 3 Motion Rescaling under Different Feedback Gains. A Sample phasor plot data from a single cerebellar patient under all 1037 
three feedback gain conditions. The dots represent the frequency response at the lowest five frequencies. The solid line traces 1038 
through the responses at all tested frequencies. The dimmed lines show the frequency responses at the other frequencies 1039 
tested beyond the five lowest frequencies. B Scaled phasor plot data from the same single cerebellar patient. The gain value 1040 
from D has been multiplied by the scaling factor shown in the legend here to create an overlaid phasor plot. The higher the 1041 
Scaling Factor, the less effort (in terms of movement magnitude) the subject expended in that condition. C Patients and 1042 
controls respond similarly to the applied Feedback Gain, indicating that they incorporate visual feedback similarly. The higher 1043 
the Scaling Factor, the less effort (in terms of movement magnitude) the subject expended in that condition. Outliers are 1044 
marked with an x. The outlier subject with the highest Scaling Factor in the 0.65 condition was from the same subject who had 1045 
the lowest Scaling Factor in the 1.35 condition.   1046 
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Figure 4 – Modeling  1047 

 1048 

Figure 4 Modeling. A Our modeling framework was based on the McRuer Crossover model (McRuer and Krendel, 1974). This 1049 
simple model structure lumps the controller and plant as a scaled integrator, and assigns different delays to the measurement 1050 
of the target from that of self-movement feedback. We hypothesized that the patient and control models would be equivalent 1051 
except for the magnitude of the feedback delay. The Visual Gain is necessary because, given the complexity and speed of the 1052 
signal, participants were unable to match the full magnitude of the signal. B After our model selection procedure, the Final 1053 
Model structure was distilled from the top models to capture the general features shared among them. It is similar to our 1054 
hypothetical model, but with subtle differences: the feedback delay for the controls was determined to be zero instead of 1055 
equivalent to the proprioceptive delay, the feedback delay for patients was shorter than or equal to the visual delay, and the 1056 
visual delay for patients was slightly longer than healthy controls.  C Time domain visualization of subject and model responses 1057 
for a typical 15 second time window of our experiments. The same visual target trajectory (green) was played to all patients and 1058 
controls, and was used in simulation. Individual time-domain elbow-angle responses (light gray) are shown for the 11 control 1059 
subjects (top plot) and 11 patients (bottom plot). The average subject responses (orange, solid) match with reasonable accuracy 1060 
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the simulated model responses (orange, dashed). The simulated model structure used here is the modeled named “Best 4 1061 
(Lowest Err)” in Figure 4S1B.  1062 
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Figure 4 Supplemental 1 – Model Fitting and Model Selection  1063 

 1064 

Figure 4S1 Model Fitting and Model Selection. We used sum-of-sine data to fit the parameters of a modified McRuer Crossover 1065 
model (McRuer and Krendel, 1974). A In the most flexible setting, there are a total of eight free parameters, allowing for 1066 
patients and controls to have completely independent model parameters. B In the model fitting and model selection process, 1067 
we tested all possible variations of the model structure, for a total of 2667 model configurations. For example, some model 1068 
structures yoke parameters together or eliminate parameters, and some yoke variables together across patient and control 1069 
models. Each row illustrates an individual model configuration. Variables with the same color within that row are yoked 1070 
together for that model configuration and white indicates that the specified variable was removed from the model. The table 1071 
includes the following: the best model structures for all possible numbers of free parameters (Best 1-8); the hypothesized 1072 
model structure (Hypothesis, grey asterisk shown in C & D); two special pure delay (D1-2) model structures. Best 1 is a pure gain 1073 
model structure. Best 2 is a pure delay (D3) model structure. The model names are shown in the left column. Lowest Err means 1074 
lowest Leave-One-Out error. Lowest Var means lowest model inconsistency. C Results of model selection procedure in 1075 
frequency domain for the models in B. The models in red dots and blue asterisk, highlighted in the red circle, provide the best 1076 
trade-off between minimizing model inconsistency (i.e., minimizing parameter variability and over-fitting) and minimizing error 1077 
(improving model fit). The top four models are labeled 4 Lowest Err, 4 Lowest Var, 5 Lowest Err and 5 Lowest Var. These top 1078 
models had nearly equivalent performance according to the model selection criteria. D Time domain validation. As in Figure 1079 
4S1C, we plotted error versus model inconsistency, but here we used the time-domain error (see Methods). Critically, the time-1080 
domain data were not used directly for model fitting, and yet the top models in left bottom corner of the frequency domain are 1081 
also the top models in the time domain, validating that our frequency-domain model selection process selected the models that 1082 
were also best in the best time-domain.  1083 
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Figure 4 Supplemental 2 –Frequency Responses 1085 

 1086 
Figure 4S2 Frequency Responses. A Individual frequency responses for the 11 control subjects (black) and 11 patients (red). It 1087 
also shows the average responses for controls (black bolded) and patients (red bolded). B Mean responses with standard 1088 
deviation for controls (black bold line with grey shaded region) and patients (red bold line with red shaded region). The 1089 
simulated model frequency responses (dashed lines) match the actual mean responses well. The frequency responses of the 1090 
simulated models capture qualitative features, such as the crossing of the response curves between patients and controls both 1091 
in the magnitude and phase. The simulated model here is Best 4 (Lowest Err). 1092 
  1093 
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Figure 5 –Single-Sine and Sum-of-Sines Phasor Plots 1094 

 1095 
Figure 5 Patients and controls have categorically different responses to single-sine and sum-of-sine stimuli. Each data point is 1096 
the response at a single frequency (magnitude and phase) of a single subject. The patient data in both the single and sum-of-1097 
sines conditions are more variable than that of the control subjects. In the single-sines condition, control subjects are able to 1098 
consistently remain inside the effort/error circle at low frequencies, balancing the tradeoff between effort and error, while 1099 
patients are not. This result is consistent with previous studies that show patients have impaired prediction. 1100 

1101 
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Figure 6 – Comparison of Phase Lags 1102 

 1103 

  1104 
Figure 6 Phase lags show different patterns between groups. Polar plot representations showing phase lag for the 5 lowest 1105 
frequencies common to the single-sine and sum-of-sines conditions. A. Control group phase lags. Individual subjects are 1106 
represented as lighter colored unit vectors and the group mean vector is plotted in bold. Purple indicates the single-sine 1107 
condition and black represents the sum-of-sines condition. Note that only phase lag is represented on the polar plot (gain is not 1108 
represented). The Control group is able to track the single-sine stimuli with little or no phase lag, but shows phase lags that 1109 
increase with frequency in the sum-of-sines condition. B. Example response from a control subject tracking a 0.85 Hz single-sine 1110 
stimuli. The target sine wave is represented in green and the subject performance in orange. Note that this control could 1111 
predict the single-sine and track it with little or no phase lag. C. Cerebellar group phase lags plotted as in A. The Cerebellar 1112 
patients were able to track the two slowest single-sine stimuli with little phase lag (purple, 0.10 and 0.25 Hz) but then shows 1113 
increasing phase lags as a function of frequency. Note that 0.10 and 0.25 Hz are extremely slow frequencies that could be 1114 
followed using only visual feedback control. In the sum-of-sines condition, the cerebellar group shows phase lags that increase 1115 
with frequency. D. Example response from a cerebellar subject tracking a 0.85 Hz single-sine stimuli. In contrast to the control 1116 
subject, this cerebellar patient shows phase lags relative to the target.  1117 
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Figure 7 – Acceleration-Dependent Feedback Reduces Dysmetria  1119 

 1120 

Figure 7 Acceleration-dependent feedback reduces dysmetria. A The trajectories from a single cerebellar patient, moving to the 1121 
grey target zone. Overshooting or undershooting the grey region is categorized as hypermetric or hypometric, respectively. The 1122 
solid lines are average trajectories (across trials for a single subject) at a given Acceleration-Dependent Feedback Gain value. A 1123 
decrease in the angle of first correction (i.e., the peak of the first peak of the elbow angle) is apparent as the Acceleration-1124 
Dependent Feedback Gain decreases. The best Acceleration-Dependent Feedback Gain for this subject was determined to be -1125 
0.0025, and the resulting movement trajectory is shown as a solid green line. The dashed green line illustrates the trajectory 1126 
that is displayed to the subject on the screen for the -0.0025 condition. This example also shows that oscillation around the 1127 
target remains with Acceleration-Dependent Feedback Gain. The block diagram in the lower right shows how the Acceleration-1128 
Dependent Feedback Gain was applied to the visual representation of the fingertip position. B The reduction in dysmetria 1129 
exhibited by patients when the best Acceleration-Dependent Feedback Gain was applied. Each line represents a single 1130 
cerebellar patient. Lines are color coded to indicate the best Acceleration-Dependent Feedback Gain for that subject. C 1131 
Increasing Acceleration-Dependent Feedback Gain causes increased hypermetria. Again, each line represents a single cerebellar 1132 
patient. At the highest gain values, the visual feedback diverged enough from the fingertip position so that some subjects 1133 
paused mid-reach, presumably due to the conflicting visual feedback. This yielded the observed drop in median angle of first 1134 
correction seen in some subjects in the higher gain conditions. This figure shows only the cerebellar patients. Control subject 1135 
data is shown in Figure 8.  1136 
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Figure 8 – Acceleration-Dependent Feedback: Control Subjects 1137 

 1138 

Figure 8 Acceleration-dependent feedback also affects single reaches in control subjects. Control subjects’ median angle of first 1139 
correction when completing thirty-degree flexion movements. The expected upward trend in median angle of first correction is 1140 
visible across subjects. At the largest Acceleration-Dependent Feedback Gains, there is a slight drop off in median angle of first 1141 
correction. At high gain values, the discrepancy between the cursor and the fingertip became more apparent, causing some 1142 
subjects to pause mid-reach, resulting in a lower median angle of first correction for these high gain conditions.  1143 
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Figure 9– Smith Predictor 1144 

 1145 

Figure 9 Our modeling results agree with the theory of the cerebellum as a Smith Predictor. A basic model for the control system 1146 
is shown in the top panel. In our experiment, the plant, P, represents the entire mechanical arm system, including the robot 1147 
exoskeleton arm. A single visual delay block delays the input from both the reference signal and the feedback information. A 1148 
visual gain scales the amount of the input the subject will attempt to replicate. The brain, illustrated by a dashed box, can be 1149 
modeled as containing just a controller, C, as shown on the right side. Or, the brain can be modeled as a controller with an 1150 
accompanying Smith Predictor, as shown on the left side. When these two alternate structures are simplified, we are left with 1151 
the exact model structures yielded by our previous modeling results.  1152 
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TABLES 1153 

Subject 

No. 

Patient 

Age 

Sex Pathology ICARS Upper Limb 

ICARS 

Experiments 

P1 44 M SCA8 62 17 1,2,3 

P2 52 M ADCAIII 28 8 3 

P3 53 M Sporadic 59 19 1,2,3 

P4 55 F SCA8 41 17 3 

P5 55 M OPCA 46 14 1,2 

P6 60 M MSA-C 63 14 1,2,3 

P7 62 F Sporadic 36 16 1,2 

P8 62 M SCA6/8 62 19 1,2,3 

P9 63 M SCA6 41 10 3 

P10 64 F SCA6 58 13 1,2 

P11 64 M ADCAIII 11 3 1,2,3 

P12 65 M Idiopathic 34 10 3 

P13 66 F SCA6 41 11 1,2 

P14 67 F Left Cerebellar Stroke 27 10 1,2,3 

P15 69 F ADCAIII 52 13 3 

P16 72 F SCA6 49 18 3 

P17 78 M Sporadic (Vermis Degen.) 39 6 1,2 
Table 1 The cerebellar patient population that was tested. Not all subjects completed all experiments. Some subjects completed 1154 
the experiments over two visits. Upper Limb ICARS contains the sum of the upper-limb kinetic function elements of the test 1155 
(ICARS subsections 10-14, out of 20). 1156 

Model kpatient kcontrol Visual 

Gainpatient 

Visual 

Gaincontrol 

Visual 

Delaypatient 

(ms) 

Visual 

Delaycontrol 

(ms) 

Feedback 

Delaypatient 

(ms) 

Feedback 

Delaycontrol 

(ms) 

Best 5 

(Lowest Err) 

2.8 

(0.09) 

2.8 

(0.09) 

0.38 

(0.01) 

0.41 

(0.02) 

211 

(0.008) 

143 

(0.003) 

143 

(0.003) 

0 

Best 5 

(Lowest Var) 

2.6 

(0.08) 

2.6 

(0.08) 

0.37 

(0.01) 

0.42 

(0.02) 

183 

(0.005) 

147 

(0.003) 

183 

(0.005) 

0 

Best 4 

(Lowest Err) 

2.7 

(0.10) 

2.7 

(0.10) 

0.39 

(0.01) 

0.39 

(0.01) 

210 

(0.007) 

141 

(0.003) 

141 

(0.003) 

0 

Best 4 

(Lowest Var) 

2.5 

(0.09) 

2.5 

(0.09) 

0.40 

(0.01) 

0.40 

(0.01) 

181 

(0.005) 

145 

(0.003) 

181 

(0.005) 

0 

Table 2 Model parameters with standard deviation for the top models (Best 5 and Best 4). Variables with the same color within 1157 
a row are yoked together for that model configuration. Top models are similar; the feedback delay was smaller than or equal to 1158 
the visual delay for the patients, and zero for controls, and the patient visual delay was longer than that of the healthy controls.  1159 

Feedback 

Gain 

k Visual 

Gain 

Visual Delay 

(s) 

Feedback Delaypatient 

(s) 

Feedback Delaycontrol 

(s) 

1.0  <1 Visual Delay Visual Delay Proprioceptive Delay 

1.35 Decrease Increase Unchanged Unchanged Unchanged 

0.65 Increase Decrease Unchanged Unchanged Unchanged  
Table 3 This is our hypothesis of how we expect the model parameter values indicated in the bottom two rows (1.35 and 0.65 1160 
Feedback Gain)  will change (with respect to the value obtained in the veridical Feedback Gain condition, Feedback Gain=1.0) 1161 
with changing Feedback Gains. We expect Visual Delay of approximately 140 to 250 ms, and Proprioceptive Delay 1162 
approximately 110 to 150 ms (Cameron et al., 2014). We also expect Visual Gain to be less than one in the veridical feedback 1163 
condition because we do not expect the subjects to attempt to replicate the full magnitude of the signal, given that it is a 1164 
challenging, fast, and unpredictable task.  1165 
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 1166 

Feedback  

Gain 

kpatient kcontrol Visual 

Gainpatient 

Visual 

Gaincontrol 

Visual 

Delaypatient 

(ms) 

Visual 

Delaycontrol 

(ms) 

Feedback 

Delaypatient 

(ms) 

Feedback 

Delaycontrol 

(ms) 

1 2.7 2.7 0.39 0.39 210 141 141 0 

1.35 2.2 2.2 0.44 0.44 209 140 140 0 

0.65 3.6 3.6 0.33 0.33 210 144 144 0 
Table 4 The model (Best 4 Lowest Err) parameters changed with different applied Feedback Gains in a manner consistent with 1167 
our prediction. 1168 
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