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Abstract

Geometrically characterizing a set of visible configurations — those for which a suit-
able set of features can be seen by a camera system — and its image under perspective
projection provides an effective means by which to design global visual servoing sys-
tems. This paper presents a simple, globally convergent, binocular image-based visual
servoing algorithm which accounts for the limited field-of-view of a CCD camera sys-
tem. Recourse to Navigation Functions, a refined notion of artificial potential functions,
leads to controllers for first order, quasi-static as well as second order, dynamic plants.
Underlying these constructions is a global account of the transformation between the
task and image space.

1 Introduction

The field of visual servoing, robot control in which a computer vision system serves as the

primary feedback sensor, has enjoyed relatively slow but steady progress over the last fifteen

or so years. Early ideas in vision based robotics and control predate the mid-eighties, of

course, but advances in computing technology and vision equipment during recent years

has lead to an increased interest in visual servoing. Simple visual position regulation, for

which a suitable set of visible features contrast well their surroundings, has more-or-less been

solved: a wide body of literature provides the necessary tools to design high performance,

dynamic (albeit local) vision-based controllers [2]. This complete characterization is owed

primarily to the local nature of such regulation problems. However, the creation of a richer

set of behaviors whose global (and hence highly nonlinear) properties are well characterized

remains a significant challenge to visual servoing.

The classical approach to visual servoing (for a tutorial, see [10]) attempts to impose

straight-line trajectories on image feature points. To illustrate, suppose a camera observes

four feature points affixed to a rigid body moving in space. The configuration space of
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the rigid body may be parameterized locally by six numbers, q ∈ R6. These numbers may

represent, for example, the joint angles of a six DOF robot, or the three translational degrees

of freedom and the three Euler angles. The image space may be defined in terms of the four

image plane pairs, y ∈ R8. Locally, then, the camera’s image may be modeled by a map

c : R6 → R8

y = c(q) =
[
u1 v1 · · · u4 v4

]T
, where

[
ui

vi

]
, i = 1, . . . , 4,

are the image plane feature locations of the four features being observed. The traditional

(kinematic) visual servoing law is then

q̇ = −J†(y − y∗), where J† = (JT J)−1JT ∈ R6×8 (1.1)

is a pseudo inverse of the Jacobian matrix, [J ]i,j = ∂yi

∂qj
.

The classical approach to visual servoing works fine if the initial configuration is sufficiently

close to the goal. However, it is well known that the above approach can lead to local minima

and often exhibits very poor task-space trajectories. A particularly curious such behavior

arises if the body starts ‘upside-down’ relative to its visual goal. In this case, the straight-line

image trajectories force the body out along the camera z-axis to infinity! This observation

was first reported by Chaumette [1], and has since been dubbed the ‘Chaumette Conundrum’

[3]. Indeed such examples are not mysterious at all, but a mere consequence of failing to

characterize the relationship between the domain and range of the camera transformation

from which they arise.

1.1 Three basic challenges to visual servoing

Several challenges inherent to visual servoing are described in this section. These challenges

leave many opportunities to advance the field.

Challenge #1: Global convergence via smooth feedback is technically impossible

Designing feedback systems with large domains of attraction represents a challenge. The

reason for this in the context of visual servoing is that the geometry of rigid motion is

complicated by perspective projection, and many subtle and counter intuitive problems arise.

Recent visual servoing literature, reviewed in Section 1.4, has generated successful servo-

ing strategies which exhibit large domains of attraction, avoid FOV boundaries and confer

robustness to parametric uncertainty. Why have these innovations thus far been few and far

between? What ties together the successful solutions, and how can we extend the construc-

tions to new circumstances? Is there a way to demystify the construction of visual servoing

systems?

Issues of convergence may be greatly illuminated by understanding the geometry of and

transformations between the underlying spaces involved. Consider again the traditional
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visual feedback given by (1.1), and observe that it can be cast into the framework of gradient

decent on the potential function ϕ : SE(3) → R, given by

ϕ(y) =
1

2

4∑
i=1

‖yi − y∗i ‖2, (1.2)

Now, let q̇ = −M∇q(ϕ ◦ c), where M(q) = (JTJ)−1 is presumed to exist and be positive

definite (at least in some neighborhood of the goal). It is a well known fact from Morse theory

that a smooth, scalar valued function on SE(3) must have at least four critical points, hence

it is now clear that global visual servoing based on smooth potential functions is actually

impossible. In fact, any smooth vector field on SE(3) must have extraneous critical points.

These facts hold for first order, kinematic systems and second order Lagrangian systems.

Hence global rigid body control via smooth feedback is not possible! However, we may be able

to insure that almost every initial configuration converges – that is, all but a set of measure

zero.

Chaumette Conundrum revisited. The camera transformation, c, can be decomposed into

the rigid kinematics which moves feature points around in the FOV, followed by the per-

spective projection of the feature points onto the compact image. Notice that perspective

projection compactifies the entire FOV: all points along a ray through the camera pinhole are

projected to the same point on the closed and bounded image plane. By moving a rigid body

along one of these rays to infinity, two things happen. First, the feature point projections

converge to a single point. Second, the Jacobian becomes increasingly singular due to the

well known dependence of the Jabobian on inverse depth. The author conjectures that these

two facts lead to a ‘saddle at infinity’ in the cost function (1.2). Empirically, this has been

supported by the literature – only perfectly ‘upside-down’ configurations (a set of measure

zero) diverge to this saddle point – though it remains to be verified analyitically. Initial

conditions that are 179o — i.e. almost upside-down — will converge, though they exhibit

qualitatively bad trajectories, possibly because they begin near the stable manifold of the

saddle point.

Challenge #2: Occlusions are virtual obstacles to visual servoing

The use of cameras for sensing imposes certain physical limitations. For example, off-the-

shelf cameras have a limited field of view (FOV). Occlusions and FOV limitations represent

virtual obstacles which should be accounted for to create successful controllers.

The challenges bestowed upon us due to occlusions and FOV limitations are fairly intu-

itively. The question is, how do we create controllers which help us to deal with them? This

paper, and previous work by the author and colleagues [4, 5, 6, 7], aims to formally define a

set of configurations that are ‘visible’, and then understand how that set projects to image

coordinates so that it can be appropriately navigated.
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Challenge #3: Dynamics limit performance

In real robot control systems, kinematic trajectories must be enforced by robot controllers

that can manage a robot’s kinetic energy. Treating the visual servoing law as a ‘reference

generator’ enables us to separate the planning problem from the control problem, as is

standard in the robotics community. However, sweeping the issue of dynamics under the

carpet requires the use of sophisticated robot control techniques that require precise para-

metric knowledge of the robot’s kinematics and dynamics, such as adaptive inverse dynamics

based control strategies [22]. This extra complexity seems superfluous given the simple end-

point convergence objective of most visual servoing algorithms. In other words, the specific

reference trajectories generated by kinematic controllers are merely a means to achieve an

end-point task; tracking those trajectories exactly may not be necessary. Such heavy reliance

on robot kinematic and dynamic parameters may be undesirable, especially when manipu-

lating objects of imprecisely known size and weight. Can we design dynamical vision-based

controllers that achieve an end-point objective?

1.2 Overcoming the challenges: safe dynamical convergence

Although the geometry may require multiple critical points, we can design our potential

function with only one attracting critical point, thus insuring all initial configurations except

a set of zero measure will converge to the global minimum. Moreover, we can avoid the poor

trajectories that might arise from an incomplete characterization of the critical points as

in Chaumette’s example. Finally, one probably would like to keep configurations within

the FOV, and within a reasonable range of distances to the camera system, cutting out a

significant portion of the configuration space. This may change the topology of our free

configuration space, and thus change the constraints on the number of critical points that

must be present.

By restricting the subset of configurations to a compact subset of the configuration space,

D ⊂ Q, and designing a so-called Navigation Function (NF) ϕ : D → R on this domain,

as the author and collegues have shown [4, 5, 6, 7], essentially global convergence can be

achieved — that is, all initial conditions except a set of measure zero converge. Moreover, the

approach generates controllers capable of extremely high performance, which exhibit dynam-

ical convergence to the end-point goal, without the burden of precisely tracking a (clearly

somewhat arbitrary) kinematic reference trajectory. Without prescribing specific reference

trajectories, the proposed methodology nevertheless affords certain guarantees on the tra-

jectories that result. For example, features are guaranteed to remain visible throughout

transients (even in the presence of Newtonian dynamics).

The prior work thus far applies only to monocular visual servoing systems, yielding feedback

controllers that are

1. dynamic: applicable to second order (Lagrangian) as well as first order (kinematic)

actuation models;
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2. global: guaranteeing a basin of attraction encompassing essentially the entire set of

“safe” initial configurations that maintain feature visibility;

3. visibility-obstacle free: avoiding configurations that lose features due to either self

occlusion or departure from the FOV.

One of the key contributions in the prior work is that visual servoing systems need not appear

mystical: it is possible to model the set of visible configurations of a robot (those for which

a suitable set of features are visible to the camera system) and formally describe how this

visible set is distorted by perspective projection into a subspace of image-feature locations.

Then, a set of obstacles and goals can be designed that, in a sense, respect the transformation

between task and image coordinates. It is then our challenge to define controllers stay within

the free space while converging to the image-encoded goal location.

1.3 Contribution and Organization

This paper adheres to the same general design philosophy of the prior work: by characterizing

the space of visible configurations, and its image on a camera system, one can create a

navigation function (NF) based controller that ensures that a visual goal is achieved while

maintaining feature visibility. (The method of NFs is very briefly sketched in Appendix 4.)

The present paper seeks to extend the methodology of earlier work to address binocular

servoing. In particular, Section 2 presents the construction of NF’s for two very specific

and simple examples of binocular systems in a 2D world: simple “base-line disparity” (Sec-

tion 2.1) and a case in which the optical axes are mutually orthogonal (Section 2.2). In

Section 2.3 we discuss how to generalize these special cases to more general camera place-

ment. First, we review prior contributions to the field of global visual servoing.

1.4 Relation to existing literature

A first step in visual servoing is understanding what can be verified with a camera system,

i.e. what tasks can be encoded in image coordinates? In the context of binocular vision, this

problem has largely been answered [9]. In the present paper, the task is geometrically trivial

— move a point to a desired position in image coordinates — and hence encoding the task

in image coordinates is trival. The present challenge lies in achieving dynamical convergence

while avoiding visibility obstacles, which we achieve by recourse to NF’s. It is worth noting

that an NF is a functional that encodes the task. Of course, simpler functionals could be

designed to encode the task, but the NF is employed explicitly to create a global, dynamical

controller.

Zhang and Ostrowski [23] developed a controller for an Unpiloted Aerial Vehicle (UAV)

equipped with a camera for which they exhibit a diffeomorphism between the centroid and

radius of a circle in the image plane and the position and orientation of the UAV relative to a
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sphere in the work space. Formulating the dynamics in generalized image-plane coordinates

leads to a feedback linearized controller that accounts for the mechanical system dynamics.

In addition to our preliminary results [4, 5, 6, 7], there have been some recent efforts to

address the problems of convergence and feature visibility, albeit in a quasi-static setting. For

6DOF visual servoing, Malis et. al. [16] guarantee that a single base point remains within the

FOV while, as noted above, guaranteeing convergence for a large basin of attraction. Morel

et. al. [18] extend this idea by decoupling the image-plane motion of a cleverly chosen feature

vector – a circle containing all the feature points – from the rotational motion of the camera;

by keeping this conservative feature vector within the image plane, one is guaranteed that all

feature points remain within the FOV (though self-occlusion avoidance was not guaranteed).

Corke and Hutchinson [3] have designed a clever “partitioned” kinematic visual servo strategy

for which simulations suggest a large basin of attraction while maintaining all features within

the FOV boundary. Mezouar et. al. [17] have adopted the approach of image-based path

planning and local visual servoing along those paths to avoid mechanical limits and visibility

obstacles.

Potential field methods have been employed for a wide variety of robot navigation problems

(for a survey, see [15], Chapter 7). Traditionally, gradient fields have been used to generate

reference trajectories which are then tracked by a lower-level robot controller. Potential func-

tions often encode obstacles as local maxima, or at least ensure that the gradient flow does

not intersect obstacles. The refinement to NF’s, first articulated by Koditschek and Rimon

[13, 14, 20], provides machinery to “lift” potential functions to second order plants, while

still ensuring obstacle avoidance with convergence guarantees, and no need for intermediate

trajectories.

“Natural” coordinates for visual servoing have not yet emerged in any generality. In the

example applications to follow, we identify in each case a model space for the unoccluded

configurations, construct a solution for the model, and furnish a change of coordinates that

pulls the model solution back into terms of the physically measured features. However, we

are not yet able to characterize the general properties of the features that would make such

constructions possible. A promising approach relies on projective kinematics [21], although

it has not been validated empirically and currently lacks the machinery required to lift it to

the second order setting or maintain feature visiblity.

2 Planar Binocular Visual Servoing

The world is taken to be two dimensional Euclidean space, E2, and the cameras are repre-

sented by pinhole projection, π : {x ∈ E2 : x2 > 0} → R,

π(x) =
1

λ

[
x1

x2

]
, where x =

x1

x2

1

 and 0 =

0

0

1

 . (2.3)
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We assume for convenience that the focal length, λ = 1, for the remainder of the paper. The

1D camera model (2.3) is applicable, for example, to mobile robots translating and rotating

in the horizontal plane in an indoor structured environment for which the horizontal location

of vertical edge features is taken as the image measurement from a standard 2D CCD camera.

Points in the base coordinate system are transformed into the right and left camera frames

by

LH0 =

[
LR0

LT0

0 0 1

]
and RH0 =

[
RR0

RT0

0 0 1

]
(2.4)

respectively. The total camera map, defined only for points in front of both cameras, is given

by

c : {x ∈ E2 : Lx2,
Rx2 > 0} → R2 (2.5)

c : x 7→
[
π(Lx)

π(Rx)

]
(2.6)

where Lx := LH0
0x andRx := RH0

0x (2.7)

where 0x is x expressed in base coordinates.

This paper considers a camera model which accounts for the limited FOV present in CCD

cameras, modeled by a minimum and maximum value on the image plane between which

our measurements must be bounded to ensure visibility. The visible set, V , is thus defined

for binocular vision to be all those configurations in front of both cameras such that the

projection is on both image planes. Formally,

V =
{
x ∈ E2 : Lx2,

Rx2 > 0 and y1, y2 ∈ [ymin, ymax]
}

, (2.8)

where y =

[
y1

y2

]
= c(x). (2.9)

Denote the image of the visible set

J := c(V) ⊂ [ymin, ymax]× [ymin, ymax]. (2.10)

The objective of our visual servoing problem is to find a control law for which x → x∗ as

t →∞, using the image measurement, y∗ = c(x∗), of our goal.

We now consider two special cases of binocular visual servoing. For case 1 (Section 2.1),

we assume a simple “base-line disparity” between the cameras as shown in Figure 1 so

the camera optical axes are parallel. In the second case (Section 2.2), the optical axes are

perpendicular, as shown in Figure 2, which is generalized in Section 2.3.
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Figure 1: Left: Two cameras with a base-line disparity. The cameras are assumed to

have a finite FOV, depicted by the extent of the gridlines radiating from each image plane.

Right: The image space [ymin, ymax]× [ymin, ymax] is the cross product of the two image plane

measurements. The line y1 = y2 is the projection of the “line at infinity”. The visible set, V ,

of configurations consists of those points which may be seen simultaneously by both cameras,

and D ⊂ V is a compact subset. The image Iρ = c(D) under perspective projection is a

compact solid triangle.

2.1 Case 1: Base-line disparity

For this case, depicted in Figure 1, both cameras face the same direction, seperated by a

distance δ, i.e.

LH0 =

1 0 δ/2

0 1 0

0 0 1

 . and RH0 =

1 0 −δ/2

0 1 0

0 0 1

 (2.11)

with the base frame taken to be between the cameras. The visible set is an unbounded cone,

and its image is the “triangle” c(V) = {ymin ≤ y1 < y2 ≤ ymax}. It is interesting to note that

the set {ymin ≤ y2 < y1 ≤ ymax} corresponds to Euclidean point locations behind the image

plane pair, and the line y2 = y1 corresponds to the “line at infinity” depicted in Figure 1.

Neither the line at infinity nor the points behind the camerea are part of the visible set. The

camera map reduces to

c(x) =
[

x1−δ/2
x2

x1+δ/2
x2

]T

. (2.12)

It is well known that given the projection y of a point on a binocular image plane pair,

one can compute the unique location x = c−1(y) of the point in front of the camera which

corresponds to that projection. Moreover, the mapping c and its inverse c−1 are smooth, i.e.

Dxc(x) =
1

x2
2

[
x2 −x1 + δ/2

x2 −x1 − δ/2

]
=⇒ |Dxc(x)| = δ/(x3

2) (2.13)
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and hence the Jacobian matrix and its inverse are well defined over the visible set. The

camera map is, therefore, a diffeomorphism from V to its image.

Because c is a diffeomorphism, we may treat the measurement vector y = c(x) as a set of

generalized coordinates for the motion of the point x. Therefore, an NF, ϕ̃, imposed on J
may be pulled back into the task space through c and, more importantly, the gradient may

be pulled back through the transposed Jacobian of c, i.e.

ϕ = ϕ̃ ◦ c =⇒ ∇ϕ = (Dc)T∇ϕ̃. (2.14)

This provides a great simplification to the problem of remaining in the FOV of both cameras,

by reducing the problem to that of designing an NF on image coordinates which renders the

FOV boundary as an obstacle. As shown in Appendix 4, the NF can then be used to generate

convergent first and second order controllers.

Before designing an NF, a few subtle issues remain. First, notice that V is not compact.

However our domain must be compact (see Appendix 4). Fortunately, we may provide an

additional border in the image plane to construct a compact domain D ⊂ V. In other words,

we let D = c−1(Iρ), where Iρ is the compact set

Iρ =

J︷ ︸︸ ︷
{ymin ≤ y1 < y2 ≤ ymax}∩

safety collar︷ ︸︸ ︷
{y2 − y1 ≥ ρ}

= {ymin ≤ y1, y2 − y1 ≥ ρ, y2 ≤ ymax} ⊂ J , where ρ > 0. (2.15)

The set D and its image Iρ = c(D), are depicted in Figure 1. A natural consequence of using

image coordinates is that the FOV shows up in a simple way.

Proposition 2.1. (Adapted from [12]) The objective function

ϕ(y) =
‖y − y∗‖2k∏n

i=0(yi+1 − yi)2 − ρ2
i

is convex on

Iρ = {y ∈ Rn : yi+1 − yi ≥ ρi, i = 0, . . . , n}

where y0, yn+1 and ρi, i = 0, . . . , n are suitable constants and k > (2n + 3)/2 in which case

ϕ̃ :=
ϕ1/k

(1 + ϕ)1/k
(2.16)

is a navigation function on Iρ.

For planar servoing, n = 2 and so we require k > 7/2, hence

ϕ(y) =
‖y − y∗‖2k

(y1 − ymin)2 [(y2 − y1)2 − ρ2] (ymax − y2)2
(2.17)

is convex. Hence ϕ̃ given by (2.16) is an NF on Iρ and, since NF’s are invariant under

diffeomorphism, ϕ := ϕ̃ ◦ c is an NF on D.
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Figure 2: Left: Two cameras with orthogonal optical axes. It is assumed that the two FOV’s

intersect in a parallelogram as depicted. Right: The image space is the cross product of

the two image plane measurements. In this case, D = V is compact, and I = c(D) =

[ymin, ymax]× [ymin, ymax].

2.2 Case 2: Orthogonal optical axes

In this section we consider the camera configuration depicted in Figure 2. For simplicity, we

position the world frame coincident with the left camera, and

LH0 =

1 0 0

0 1 0

0 0 1

 and RH0 =

 0 1 −δ

−1 0 δ

0 0 1

 (2.18)

and hence

c(x) =

[
x1

x2
−δ+x2

+δ−x1

]
=⇒ Dxc(x) =

[
1
x2

−x1

x2
2

x2−δ
(δ−x1)2

1
δ−x1

]
(2.19)

=⇒ |Dxc(x)| = δ(x2 − x1)

x2
2(x1 − δ)2

. (2.20)

For this camera arrangement, there are some possible singularities to the camera map. If the

FOV of each camera subtends an angle greater than±45o, then the line x2 = x1 will lie within

the FOV of both cameras, and on that line the Jacobian becomes singular. Points along
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the line x2 = x1 cannot be triangulated, as they all correspond to an image measurement

of y = [1,−1]T . (In a more general camera placement, points along the line connecting the

two camera pinholes are not resolvable). We make the assumption for this simple example

that ymin > −1 and ymax < 1. In this case, the FOV’s intersect as shown in Figure 2, and

there are no singularities in V .

In the orthogonal case, the geometry is a bit simpler. We may take D = V , and hence I =

J . For simplicity, assume that we have rescaled the image plane so that −ymin = ymax = 1
2
.

A navigation function on I is given as follows. Consider the function

f(y) =

[
y1−y∗1„“

1
2

”2
−y2

1

« 1
2

y2−y∗2„“
1
2

”2
−y2

2

« 1
2

]T

and ϕ := 1
2
fT Kf

where K ∈ R2×2 is a positive definite symmetric matrix. It is routine to verify that the

function

ϕ̃ :=
ϕ

1 + ϕ
(2.21)

is a navigation function on I, and hence ϕ = ϕ̃ ◦ c is a navigation function on D.

2.3 Toward General Camera Placement

The two example systems discussed above, parallel cameras and orthogonal cameras, are

special arrangements of the camera pair, designed to simplify the mathematics. However, it

would be comforting to know that the results may be applied to a more general setting, lest

they serve no practical value.

Fortunately, for very little additional effort we may generalize the orthogonal configuration

of Section 2.2 to an open subset of the configuration space, by observing that sufficiently

small changes in the location of the right camera w.r.t. the left camera, RH0, and in the

FOV limits (ymin, ymax) for each camera, still results in a quadrilateral visible set, V , and,

more importantly J = c(V) = [ymin, ymax] × [ymin, ymax] does not change. Moreover, the

camera map remains a diffeomorphism onto its image for small analytic perturbations of

the parameters. Hence the NF in (2.21) applies by simply rescaling the image plane to

[−1
2
, 1

2
]× [−1

2
, 1

2
]. We conclude with the following conjecture, proof of which is in progress.

Conjecture 2.1. If the FOV’s intersect in a compact quadrilateral with boundary to form

the visible set V, then its image, J = c(V) = [ymin, ymax] × [ymin, ymax]. Moreover, ϕ̃ (2.21)

is an NF on J , and hence ϕ = ϕ̃ ◦ c is an NF on V.

3 Conclusions

This paper presents a very simple approach to binocular image-based visual servoing. The

approach yields dynamic, convergent servoing algorithms which respect the boundaries of

the FOV. To the best of the author’s knowledge, there are no prior visual servoing algorithms
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for a binocular rig which guarantee convergence to a goal while avoiding FOV boundaries,

much less in a dynamic setting.

Notwithstanding the improvements that this paper suggests may be possible over tradi-

tional algorithms, there is much left to do. Generalization to 3D settings seems is a high

priority, as is handing of rotational degrees of freedom. A challenge with two spatial cameras

lies in the fact that each image provides two numbers, so that a 3 DOF point in space is

represented by four numbers. The author believes that incorporating the epipolar geometry

will lead to a 3 DOF image based coordinate system, so that the algorithms present in this

paper may be easily generalized to 3D.

Application to new settings requires the construction of specific transformations and co-

ordinate systems for each new setup. Nevertheless, the basic approach of geometrically

characterizing the visible configurations and their image under projection seems an effective

way generate formally valid, globally convergent, dynamical visual servoing systems.

4 Robot control via navigation functions (NF’s)

Assume we have a holonomically constrained, fully actuated robot with known kinematics

and configuration space Q. The system dynamics may be found using Lagrange’s equations

(see, for example, [8, 19]). Assume exact knowledge of the kinematics and that the effect

of gravity is exactly known and may be cancelled. Also, assume that one may cancel any

external forces such as friction. The robot moves a set of feature points via the kinematics

in view of a camera system, which acts as an output, c : Q → Y .

4.1 Task specification

The state space is constrained by the presence of forbidden configurations, the obstacle set

O ⊂ Q. The free space is defined as the obstacle-free configuration space V = Q − O, and

safe configurations D ⊂ V form a compact connected differentiable manifold with boundary.

The positioning objective is described in terms of a goal q∗ ∈ D. The task is to drive q

to q∗ asymptotically, subject to the system dynamics, by an appropriate choice of torque

input. Moreover, we wish to maintain our configuration within D to avoid obstacles. We

require that the basin of attraction E ⊂ TD includes a dense subset of the zero velocity

section of TD, so that we may guarantee convergence from the entire configuration space.

Obstacle avoidance requires that the trajectories avoid crossing the boundary set B = ∂D,

i.e. q(t) ∈ D, for all t ≥ 0.

4.2 Navigation functions

The task of moving to a goal while avoiding obstacles along the way can be achieved via a

nonlinear generalization of proportional-derivative (PD) control deriving from Lord Kelvin’s

century old observation that total energy always decreases in damped mechanical systems
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[13]. Formally, this entails the introduction of a gradient vector field from a “navigation

function,” a refined notion of an artificial potential function, together with damping to flush

out unwanted kinetic energy. A good survey of potential field methods for robot navigation

is given by ([15], Chapter 7). The refinement to navigation functions, first articulated by

Koditschek and Rimon [13, 14, 20], is only very briefly sketched here, through a very sim-

plified example. The application of navigation functions to visual servoing first appeared in

[4], and is most clearly articulated in [7].

4.3 Simple Example

Consider a system with configuration space Q = R, with two point obstacles O = {−1, 1},
and goal q∗ = 0. The free space is given by V = (∞,−1)∪ (−1, 1)∪ (1,∞). There are three

connected components to V , so we choose the compact safe domain D = [−1 + ρ, 1 − ρ],

where ρ > 0 is an arbitrarily small safety collar, to contain the goal point. Suppose the

dynamics are given by

mq̈ = u

and apply the NF ϕ(q) = q2/(1 − ρ)2. Note that ϕ evalutes to 0 at the goal and 1 on the

boundary of D. Letting

u = −α∇ϕ(q)− bq̇ where α :=
k

2
(1− ρ)2 =⇒ mq̈ + bq̇ + kq = 0

which renders 0 globally asymptotically stable, and guarantees never to cross the boundary

set B = {±(1− ρ)} for all initial positions on D.1

For the purposes of this paper, one may simply consider the first order gradient system

given by

q̇ = −∇ϕ(q)

when considering the convergence properties of the controller. This lifts naturally to the

second order setting as shown above by simply adding a suitable damping term (this is

distinctly different from trajectory planning and trajectory tracking).

4.4 Invariance under diffeomorphism

One last key ingredient in the mix of geometry and dynamics underlying the results presented

in this paper revolves around the realization that a navigation function in one coordinate

system is a navigation function in another coordinate system, if the two coordinate systems

are diffeomorphic [13]. This affords the introduction of geometrically simple model spaces,

such as the image space, and their correspondingly simple model navigation functions.

1To be precise, one must put bounds on the initial velocities to compute the domain of attraction on TD
as a function of damping [11].
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