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Abstract

The task of estimating the gradient of a func-
tion in the presence of noise is central to
several forms of reinforcement learning, in-
cluding policy search methods. We present
two techniques for reducing gradient estima-
tion errors in the presence of observable in-
put noise applied to the control signal. The
first method extends the idea of a reinforce-
ment baseline by fitting a local model to the
response function whose gradient is being es-
timated; we show how to find the response
surface model that minimizes the variance of
the gradient estimate, and how to estimate
the model from data. The second method
improves this further by discounting compo-
nents of the gradient vector that have high
variance. These methods are applied to the
problem of motor control learning, where ac-
tuator noise has a significant influence on
behavior. In particular, we apply the tech-
niques to learn locally optimal controllers for
a dart-throwing task using a simulated three-
link arm; we demonstrate that the proposed
methods significantly improve the response
function gradient estimate and, consequently,
the learning curve, over existing methods.

1 INTRODUCTION

From its earliest days, reinforcement learning has been
concerned with, among others, motor control prob-
lems. Analytical solutions to motor control problems
are often elusive because of nonlinear dynamics and
high-dimensional state spaces. Another challenge is
the noise inherent to real systems. For biological sys-
tems in particular, variation in the actual force exerted
by a muscle compared to the “commanded” force is
critical to performance [3]. Although noise has often

been considered little more than a nuisance for math-
ematical treatments of control systems, it is now be-
lieved to be a major determinant of the actual motor
control strategies employed by animals and humans.
The reason is quite simple: Motor control systems are
highly redundant (i.e., have more degrees of freedom
than required for most tasks) and in addition admit
virtually infinite variation of forces over time; thus, a
noise-free system may admit a high-dimensional con-
tinuous manifold of perfect solutions to a problem
such as throwing a dart at a bullseye. On the other
hand, once noise is introduced, some of these “per-
fect” strategies may prove to be extremely “fragile,”
whereas others may be “robust.”

Working from biologically reasonable assumptions
of approximately linear dynamics and multiplica-
tive noise (i.e. noise proportional to torque exerted),
Wolpert [3] found a unique optimal solution for eye
saccades that closely matches observed motion pro-
files. Todorov and Jordan [8] derived optimal linear
feedback controllers and observers for linear systems
under multiplicative noise and were able to explain a
number of qualitative features of biological motor con-
trol as strategies for minimizing the impact of noise on
achievement of the objective.

For many problems, linearization may not work. In
this paper, we consider a reinforcement learning ap-
proach based on policy search, i.e. directly modifying
the parameters of a control policy based on observed
rewards. The key challenge involves estimating the
gradient of the expected total reward with respect to
the policy parameters, given noisy training data. Per-
haps the most straight-forward method is to calculate
the empirical gradient at a given nominal policy based
on evaluation of nearby nominal policies; this tends
to require a great deal of data because it requires
comparing noisy estimates of very similar quantities.
Williams’ Reinforce algorithm [10] shows how to es-
timate the gradient at a point in parameter space using
only training samples generated by the corresponding



nominal policy. We describe and illustrate this method
in Section 2.

Williams points out that estimator variance can be
reduced by subtracting a baseline from the total ob-
served reward in each training sample, and Weaver and
Tao [9] derive an expression for the constant baseline
that minimizes the variance of the gradient estimate.
In Section 3, we view the constant baseline as a trivial
response surface model [5] for the value of the initial
state, as a function of the policy parameters, given
the current nominal policy. By extending this idea
to linear models, we obtain a substantial reduction in
variance. Furthermore, we show that for sequential
problems, it is possible to get still more variance re-
duction by reweighting the gradient contributions from
each time step in the trial to reduce the impact of
nearly-deterministic steps. Sections 4 and 5 demon-
strate these results for dart-throwing with a three-link
arm.

Our algorithms assume observable input noise from a
known distribution. These assumptions can be relaxed
somewhat (Section 6). They can also be strengthened
in the simulator setting, where the “random” noise
perturbations can be fixed in advance. Pegasus [6]
takes advantage of this by reusing the same random
number sequence for each set of trials conducted at
each nominal policy. In this way, the problem of sta-
tistical comparisons obscuring the difference in value
of two nearby policies is eliminated. We compare our
algorithms with Pegasus in Section 5, and comment
on possible synergies in Section 6.

2 POLICY SEARCH USING
STOCHASTIC GRADIENT
ESTIMATION

We limit our attention to policy search methods,
though there exist many other approaches to solv-
ing reinforcement learning problems [4]. Policy search
methods typically perform hill climbing through a
space of policies π ∈ Π. This section introduces a
toy example and then describes a well-known method
for estimating the policy gradient, i.e., the gradient of
the expected total reward with respect to the policy
parameters.

2.1 GENERAL SETTING, TOY EXAMPLE

In general, a control policy π produces a sequence of
control inputs ut, driving the environment through a
sequence of states xt. The history of the system, H,
is a random variable whose values h are possible se-
quences of state–action pairs. A response function [5]
F (h) evaluates each actual history (typically by the

sum of rewards at each time step). We seek an opti-
mal policy π∗ that maximizes E[F (H)] over the policy
space Π, where the expectation is taken with respect
to the distribution Pπ(h) over histories induced by π.

In our toy example (Figure 1), a cannonball is fired at a
distant target. A policy π = (θd, vd)T ∈ Π consists of a
desired cannon angle, 0 ≤ θd ≤ π/2, and desired initial
velocity, vd > 0. The control input u0 is given directly
by π and the initial state x0 consists of the actual ve-
locity and angle, (θ0, v0). Thus, for this “one-shot”
problem, the history is defined by just h = (x0, u0),
since the complete physical trajectory is determined
by these values. The response function for this prob-
lem is defined to be F (h) = −d(h)2, where d(h) is the
distance from the target to the point where the can-
nonball lands. Maximizing E[F (H)] is equivalent to
minimizing the expected squared distance error.

In the noise-free setting, the desired and actual values
are identical. Furthermore, there is a continuum of
values for (θd, vd) that cause the ball to hit the target
exactly, as shown in Figure 2.

d
v

θ

Figure 1: The cannon problem.

When there is noise, the actual velocity and angle im-
parted to the ball may differ from their intended val-
ues. Let the actual velocity and angle be x0 = u0 +n0

where n0 is a two-dimensional, zero-mean, Gaussian
noise vector with covariance matrix Σ. Now, there is
a unique optimal solution, as shown by the X in fig-
ure 2. This solution is at roughly θd = 45 degrees,
because this is the region where the contours are fur-
thest apart (and hence the targeting is least sensitive
to noise). The solution, is not on the noise-free op-
timal curve, however. The cannon should in fact be
fired with a slightly higher velocity than that required
in a noise-free environment because errors in the an-
gle, whether positive or negative, will cause the ball to
land short of the target.

2.2 STOCHASTIC GRADIENT
ESTIMATION

We now describe a standard approach, due to
Williams [10], for estimating the policy gradient from
observed trials (hi, F (hi)) of the behavior of the policy
and its response. From the trials, an estimate of the
gradient ∇πE[F (H)] is computed and the parameters



10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

1.4

Velocity

θ

65
51

.70
34

21
83

.9
01

2

21
83

.9
01

2

Figure 2: Squared error for the cannon problem. A
contour plot showing the squared distance d2 from the
target as a function of π = (θ, v), assuming no noise.
The solid black curve is the level set d2 = 0, and repre-
sents the optimal noise-free solutions. The ’X’ marks
the optimal solution in a noisy environment and it lies
slightly to the right of the noise-free solution curve.

of π can then be adjusted in an attempt increase the
expected response. We assume that a physical system
or simulator draws samples from a known distribution
(dependent on the policy π), and that we can measure
the resulting control noise.1

We begin by writing out the expression for the gradi-
ent of the expected response, then move the gradient
operator inside the expectation integral and rearrange
to obtain an expression that has the form of an expec-
tation with respect to Pπ(h):

v = ∇πE [F (H)] = ∇π

∫
F (h)Pπ(h)dh

=
∫ [∇πPπ(h)

Pπ(h)
F (h)

]
Pπ(h)dh .

(1)

Given N samples (h1, h2, . . . , hN ) drawn from Pπ(H),
we can approximate (1) by

v̂(h1, . . . , hN ) =
1
N

N∑
i=1

∇πPπ(hi)
Pπ(hi)

F (hi) . (2)

To understand this equation, it will be helpful to define
the eligibility of each sample point as follows:

E(h) :=
∇πPπ(h)

Pπ(h)
= ∇π log Pπ(h) . (3)

The eligibility measures how much the log likelihood
of drawing a particular sample will change due to a

1PEGASUS [6], to which we will compare our algorithm
in Section 5, assumes complete control over the randomness
introduced by the simulator.

change in π. The eligibility E(h) is a vector in pol-
icy space Π that points in the direction of making
h more likely. For the cannon problem, recall that
h = (x0, u0). The eligibility of a particular cannon
shot is E(h) = Σ−1(x0 − π). In other words, to make
a history h more likely, we should adjust π to move in
the direction Σ−1n0. Note that from (1) and (3), we
have, for the true gradient,

v = E [E(H)F (H)] (4)

and, for the estimated gradient,

v̂(h1, . . . , hN ) =
1
N

N∑
i=1

E(hi)F (hi) . (5)

Clearly, following such a gradient estimate will tend to
adjust π making the high-scoring histories more likely
and the low-scoring policies less likely, as desired.

3 REDUCING GRADIENT
ESTIMATE VARIANCE

When the policy is far from the optimal noise-free con-
tour, the gradient estimate given by (5) tends to be
quite similar to the noise-free gradient, and can be
estimated from relatively few samples. On the other
hand, in parts of the policy space near the noise-free
optimal contour, the gradient signal is only reducing
the effect of noise and is much fainter, requiring many
more samples to estimate. This is especially true for
high-dimensional problems. Because the cost of gener-
ating samples (whether simulated or physical) domi-
nates the overall cost of motor control learning, this
is a serious problem. We now discuss one existing
and two new methods for reducing the variance of the
gradient estimator and hence reducing the number of
samples required.

Formally, these methods seek to reduce the trace of
the covariance matrix, namely

σ2 = Tr
(
E
[
(v̂ − v)(v̂ − v)T

])
= E

[
(v̂ − v)T (v̂ − v)

]
.

By noting that the expected eligibility, E[E(H)],
equals zero, we can construct a family of unbiased esti-
mators by subtracting a constant reinforcement base-
line, a ∈ R

v̂a(h1, . . . , hN ) =
1
N

N∑
i=1

E(hi)
(
F (hi)− a

)
. (6)

The constant a can, if judiciously chosen, reduce the
variance of the estimator. In particular one can show



[9] that the minimal variance estimator of this form is
obtained by setting

a =
E
[
E(H)TE(H)F (H)

]
E
[
E(H)TE(H)

] . (7)

While the above expression yields the minimal vari-
ance baseline estimator, its value is unknown and thus
must be estimated from the samples. In practice, this
will introduce estimator bias.

3.1 METHOD 1: FITTING THE
RESPONSE SURFACE

One can treat the offset, a, in the baseline estimator
as a simple model of F . Intuitively, the baseline term
a acts as a 0th order prediction of F , i.e. F̂ (h) = a. In
the trivial scenario where the response surface is actu-
ally constant, the estimator F̂ can be used to compute
the exact gradient regardless of the number of sam-
ples drawn (namely, the gradient would be zero ev-
erywhere). In more interesting cases in which the re-
sponse surface is not constant, the variance will depend
on how well the model F̂ predicts future outcomes.

In this paper we extend the idea of the reinforce-
ment baseline by fitting a local linear in parameters
(LIP) model of the response surface around the sam-
ples (h1, . . . , hN ), namely

F̂ (h) := Φ(h)T b . (8)

where the feature vector Φ(h) ∈ Rm is an arbitrary
(possibly nonlinear) function of the designer’s choice,
and b ∈ Rm is the set of parameters to be fit. Define
the unbiased, model-based estimator

v̂b(h1, . . . , hN ) = G b +
1
N

N∑
i=1

E(hi)(F (hi)− F̂ (hi))

(9)
where

G = E
[
E(H)Φ(H)T

]
.

Intuitively, the function F̂ replaces the baseline a, in
the previous estimator, and we also added the term G b
outside the summation. The term G b is the stochastic
gradient of the model itself. To see that the estimator
is unbiased, note that

E
[
E(H)F̂ (H)

]
= E

[
E(H)Φ(H)T

]
b = G b , (10)

and therefore

E[v̂b] = G b + E
[
E(H)F (H)

]
− E

[
E(H)F̂ (H)

]
= G b + v −G b = v .

For many problems, such as the motor control prob-
lems considered in Section 4, G can be computed ana-
lytically when using an appropriate choice of Φ. Note

that for the constant baseline model, Φ(h) ≡ 1, and
b = a, therefore the gradient predicted by the model
equals 0.

The optimal linear response surface model F̂ is found
by minimizing the variance of our estimator. The vari-
ance can be written as

Nσ2 = NE
[
(v̂b − v)T (v̂b − v)

]
= E

[
‖G b + E(H)(F (H)− F̂ (H))‖2

]
− ‖v‖2

= (bT Ab− 2BT b + C)

where

A = E
[
Φ(H)Φ(H)T ‖E(H)‖2

]
−GT G ,

B = E
[
Φ(H)‖E(H)‖2F (H)

]
−GT E

[
E(H)F (H)

]
,

C = E
[
F (H)2‖E(H)‖2]

]
− ‖v‖2 .

The minimal variance estimator is obtained by min-
imizing the above equation with respect to b. This
turns out to be equivalent to shrinking the sum of the
individual vector norms contributing to the gradient.
The model that minimizes the variance of v̂b is ob-
tained by setting the derivative of the above expression
with respect to b to zero, and solving for b to yield

b = A−1B .

3.2 METHOD 2: WEIGHTED
ELIGIBILITIES

In multi-step problems, one can view the gradient es-
timator as the sum of individual gradient estimators
for each time step. This is due to the fact, that condi-
tioned on a fixed policy π, the probability of generat-
ing a given history h is given by a Markov chain. The
eligibility can thus be factored as

E(H) =
tfinal∑
t=t0

Et(h), (11a)

where

Et(H) =
∇πPπ(xt+1|xt)

Pπ(xt+1|xt)
. (11b)

In certain settings (e.g., multiplicative noise), the vari-
ance of gradient estimators may be quite large. This is
particularly problematic if the variance is high and the
expectation itself is relatively small. Even in a single
time step problem, such as the cannon problem, the
variance of the gradient estimate with respect to each
policy parameter πi may vary widely.

Recall that for the cannon example, the eligibility of
a given cannon shot, h = (x0, u0) is given by E(h) =



Σ−1n0 (where x0 = u0 + n0). Suppose that n0 is a
Gaussian with diagonal covariance matrix

Σ =
[
σ1

2 0
0 σ2

2

]
.

If the noise in the angle θd is much less than that of
the initial velocity vd (σ1 � σ2), then the variance
of the derivative with respect to changes in θd will
be tend to be higher. Intuitively, the variation in the
response F (h) is mostly due to variations in velocity
since that is where most of the noise enters the system.
However, there is no way to infer this from a single
response value. This means that small fluctuations in
control that are mostly deterministic will dominate the
gradient estimation. This is counterintuitive because
in most problems, these small variations give very little
information about the gradient.

We propose to use a weighted version of our previous
estimator. Others have used discounting to limit the
contributions of past actions [1], the idea being that
past actions have a smaller effect on the current reward
signals obtained due to the mixing of the underlying
Markov chain. Here, the weights will be used to miti-
gate the problem of having highly disparate variances.
Consider the following gradient estimator:

v̂Λ = Λv̂ (12)

where Λ is a (fixed) weighting matrix, and v̂ is an
unbiased estimator, for example the estimator v̂b in-
troduced in the previous section. The motivation for
using this form of an estimator comes from the fact
that, in principle, a positive definite weighting matrix
on the gradient will not imperil local convergence of a
hill climbing algorithm. The matrix Λ can be used to
discount components of the gradient estimate that suf-
fer from high variance; in particular, minimizing the
mean-squared error

MSE = E
[
‖v̂Λ − v‖2

]
by restricting Λ to be diagonal, with diagonal entries
λi given by

λi =
Nv2

i

E
[(

v̂(H)i − vi

)2]+ Nv2
i

,

where v̂(H) is the “single sample” version of the esti-
mator and subscript i indexes the ith component of a
vector.

Since the true gradient v is unknown, we can approx-
imate the above equation by using the empirical esti-
mate for the variance term and setting the vi terms to
some upper bound value k. This gives us the following

equation:

λi =
Nk2

E
[(

v̂(H)i − vi

)2]+ Nk2
. (13)

If our upper bounds are correct, we will have an es-
timator that lies between the näıve estimate (with no
discounting) and the optimal. Notice that as the num-
ber of samples N approaches ∞, the above scaling
term goes to 1.

4 MOTOR CONTROL

In this section we will show how to incorporate the
ideas given in the previous section into a motor learn-
ing problem. Let X denote the state space of our sys-
tem and the system’s state xt ∈ X evolves in discrete
time (I = {t0, t1, . . . , tfinal}), for t0 < tfinal ≤ ∞. Let
ut ∈ U denote the system’s control at a given time
instant. The system evolves according to:

xt+1 = f(xt, ut + nt)

yt = g
(
xt

)
+ wt.

(14)

where yt ∈ Y is the system output, available via some
sensor suite, for example. We model the system as
being corrupted by two noise processes: nt represents
an input noise process and wt a measurement noise
process.

The spaces X ,U ,Y are assumed to be, for simplicity,
real vector spaces. Let h = {xt, ut}t∈I ⊂ X × U de-
scribe the state-action history of our system.

A policy, π : I × Y → U , maps sensor values to con-
trols. The explicit dependency on time of π enables a
spectrum of policies from “open loop” to “closed loop”.
Of course, buried in π may be a state observer. For
the current work, we restrict our attention to smooth
systems f and policies π in the sense that ∂f/∂x and
∂f/∂u are well defined on X×U , and ∂π/∂t and ∂π/∂y
are well defined on I × Y.

We model the dynamics of our motor control tasks as
a discrete time nonlinear system. We assume that at
each time step, a controller generates a desired control
signal ut that is then perturbed by Gaussian noise.
This noise is centered around the desired control value
and has covariance matrix Σ(ut). The dependency on
the control value allows us to incorporate sources of
multiplicative noise. The variance of the disturbed
motor control noise nt can be written as

Σ(ut) =
M∑

j=1

Cjutut
T CT

j + Σ0,

where matrices Cj scale the Gaussian noise.



4.1 OPEN LOOP CONTROL

An open loop controller consists of a trajectory of con-
trol values ut that are fixed in advance. These control
signals are then executed without any feedback from
the environment. To calculate the eligibility for a given
history h, we will need to calculate how each control
signal varies with respect to π at each time step.

For example, one representation of an input trajec-
tory is a spline where the policy parameters πi control
the placement of knot positions at fixed time intervals.
Since the value of a spline at time t is a linear func-
tion of the knot positions, this derivative can easily be
computed.

4.2 TRAJECTORY TRACKING WITH PD
CONTROL

A proportional derivative (PD) controller is one that
uses a simple form of feedback to correct for errors
from some desired path. The state xt = (qT

t , vT
t )T

includes the positions and velocities of the system.
The control value ut is proportional to the differ-
ence between the state xt and some desired state
x∗t = (q∗t ,T v∗Tt )T . The control signal at time t is

ut = K(x∗t − xt)

where the gain matrix K is assumed fixed. To compute
how the control signal changes with respect to a change
in our desired state x∗t , apply the chain rule to obtain

∂ut

∂π(i)
=

∂ut

∂x∗t

∂x∗t
∂π(i)

= K
∂x∗t
∂π(i)

. (15)

4.3 THE ELIGIBILITY

The gradient estimators require the computation of
the eligibility. The probability of drawing a particular
sample h is given by the following equation:

Pπ(nt|xt) =
1

(2π)d/2|Σ(ut)|1/2
· e(−

1
2 nT

t Σ(ut)
−1nt)

Pπ(h) =
Tf∏
t=1

Pπ(nt|xt) . (16)

Substituting (16) into (11) we have

Et(h)(i) = −1
2
Tr
(

Σ(ut)−1 ∂Σ(ut)
∂π(i)

)
+ nT

t Σ(ut)−1 ∂ut

∂π(i)

+
1
2
nT

t Σ(ut)−1 ∂Σ(ut)
∂π(i)

Σ(ut)−1nt ,

where

∂Σ(ut)
∂π(i)

=
M∑

j=1

Cj

(
ut

∂uT
t

∂π(i)
+

∂ut

∂π(i)
ut

T

)
CT

j ,

and the terms ∂ut/∂π(i) are given by (15).

5 EXPERIMENTS

We demonstrate our algorithm by finding an optimal
policy π∗ for a dart-throwing task. The objective is to
throw a dart with minimal mean squared error (mea-
sured from where the dart hits the wall to the center
of the dart board). The arm is modeled as a three-link
rigid body with dimensions based on biological mea-
surements [2]. The links correspond to the upper arm,
forearm, and hand. These are connected to each other
using a single degree of freedom rotational joint and
the upper arm is connected to the shoulder at a fixed
location. We generated code to simulate the dynamics
of this system using SD/Fast, a software package for
physically based simulations.

The arm is controlled by applying a torque at each
joint. These torques are generated by a PD-controller
that attempts to move the arm through a desired tra-
jectory, specified by a cubic spline for each joint. The
starting posture of the arm is fixed in advanced and
the path is determined by interpolating between three
other knot positions. These three knots per joint give
us a compact policy representation of 9 parameters.
The controller is simulated for approximately 0.2 sec-
onds and then the dart is released (there is Gaus-
sian noise added to the release time with σ = 0.01).
Additional noise enters the system by perturbing the
torques ut given by the PD-controller by additive and
multiplicative noise.

We implemented the ideas presented in section 3.1
by choosing an appropriate feature map Φ and cal-
culating the gradient of the corresponding response
surface model. At each hill climbing step, multiple
samples are drawn and used to estimate the optimal
feature weights b. We originally tried a mapping that
included terms for the sum of the noise signals nt:
Φ(h) = [1

∑tfinal
t=t0

nt
T ]T . If the arm produces more

torque in one joint than expected over a sample tra-
jectory, then this difference may correlate well with
the response. The gradient according to the model is
G = [0

∑tfinal
t=t0

∂ut/∂π]. This appeared to give im-
provements for situations where the release time was
fixed. However it did not improve performance after
we added noise in the release time. Instead we found
that using the release time tr and tr

2 as features,

Φ(h) =
[
1 tr tr

2
]T

, (17)
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Figure 3: Learning curve for the dart-throwing prob-
lem. This graph is averaged over 100 hill climbing
episodes with 100 samples drawn at each step. The
linear response surface model gives a significant im-
provement to the rate of convergence over the optimal
baseline. Using weighted eligibilities gives a further
improvement for the linear model. PEGASUS, which
makes stronger assumptions about the simulation en-
vironment, outperforms both methods.

yields a considerable reduction in the variance of the
gradient estimator, and thus improved hill-climbing
performance. Since the release time is independent
of the policy parameters and the expected eligibility
is zero for any release time, the gradient according to
the model is zero (G = 0).

Figure 3 shows the learning curve for the dart-throwing
problem. This graph is averaged over 100 hill climb-
ing episodes with 100 samples drawn at each step. The
best response seen so far is plotted at each hill climb-
ing step (some episodes diverged in our experiments).
The linear response surface model gives a significant
improvement to the rate of convergence over the op-
timal baseline. Using weighted eligibilities to reduce
the effects of high variance components appears to give
further improvements in the gradient estimates for the
linear response surface model. The reweighted eligibil-
ities do not appear to improve the baseline results. In
both cases, an upper bound was placed on the squared
gradient for each vector component (k2 = 10).

The PEGASUS curve was generated by using a fi-
nite difference method to estimate the gradient. This
method outperforms the other techniques, but makes
stronger assumptions about the simulation environ-
ment. The other gradient estimates could in principle
be implemented on a real system, provided that there
is a way to measure the noise.
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Figure 4: Superimposed images of our agent trying to
hit the bullseye. The solid line shows the path of the
dart after it is released.

6 CONCLUSIONS

Figure 4 shows one trial of a locally optimal policy
for the dart thrower. The motions generated by this
policy are, to a human observer, extremely natural.
(See www.cs.berkeley.edu/~gregl/uai03-videos/
for examples.) This lends support to Wolpert’s claim
that noise is a major factor in determining biologi-
cal motor control strategies. Notice in particular that
the path of the hand prior to the dart release follows
the trajectory of the dart as if it were already in free
flight. This strategy minimizes the error introduced
by noise in the release time. In general, we expect
that, perhaps counterintuitively, injection of noise into
physically-based animation is likely to result in much
more physically realistic motion behavior.

Both of the variance reduction techniques we have in-
troduced require estimating parameters that are then
incorporated into the basic gradient estimator equa-
tion (4). While the optimal parameter equations
are exact in expectation, estimating these values may
prove to be difficult. In fact, if one is not careful, this
procedure could cause the gradient estimates to suf-
fer from higher variance. In general, one should draw
more samples to fit models that are more complex.
Sample reuse [7] could limit this problem in some sit-
uations, improving performance.

Whereas we assumed full observability, others have
presented gradient estimation techniques that apply in
partially observable domains. These techniques typ-
ically assume uncertainty in the state variable, but
complete access to the disturbed control signal ut +nt.
We would like to explore the case where the controller
receives a noisy measurement of the disturbance nt as



we believe a solution to this problem will lead us a step
further to being able to design learning algorithms ap-
propriate for real physical systems.

PEGASUS reduces the variance of the gradient esti-
mate by reusing the same noise signals when evaluat-
ing different policies. This assumes access to a simula-
tor that can produce samples with fixed perturbations.
We would like to explore how this idea can be used to
improve our algorithm in the simulation environment.
One possible extension would involve sampling points
under a proposal distribution, different from Pπ(H).
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