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INTRODUCTION
The term ‘smooth pursuit’ typically refers to visual target tracking
behaviors in the oculomotor system of foveate animals, in particular
primates (Fuchs, 1967; Lisberger et al., 1987). In tracking visual
targets, eye motions serve to stabilize the target on the fovea, the
area of the retina most densely populated with photoreceptor cells.
Visual tracking involves the cooperation of two distinct categories
of eye movements, smooth pursuit eye movements (SPEM) and
catch-up saccades, the distinction between which is typically made
in kinematic terms: SPEMs are composed of continuous eye
trajectories with low limits on velocity and acceleration, whereas
saccades are ballistic, short-duration motions thought to correct for
discontinuous positional errors, which might accumulate during
smooth pursuit (Becker and Fuchs, 1969; de Brouwer et al., 2001;
Rashbass, 1961).

This paper addresses a similar behavior: refuge tracking in the
weakly electric glass knifefish, Eigenmannia virescens (Cowan and
Fortune, 2007; Rose and Canfield, 1993). At the task level, fish
swim forward and backward to remain within a computer-controlled
moving refuge. In performing this smooth-pursuit task, fish rely
primarily upon two sensing modalities, vision and active
electrosensation, whereas mechanosensory cues have been found
to play a negligible role in refuge tracking (Rose and Canfield, 1993).

For active electrosensation, an electric organ generates an
oscillatory electric field and voltage-sensitive receptors in the skin
measure fluctuations of the near field to generate an electrosensory
image of the refuge. Electroreceptors are distributed over the

surface of the body with a higher density of receptors at the head,
not unlike the increase in density of photoreceptors in the fovea of
visual systems (Carr et al., 2004). Propulsion is generated by a
ribbon-like anal fin, allowing the fish to swim both forward and
backward with little body bending and without changing heading.
Thus, by modulating commands to ribbon-fin motor units, the fish
stabilizes its velocity relative to the refuge as encoded by visual or
electrosensory images or some fusion of the two. This behavior is
analogous to visual tracking of a moving scene.

Visual tracking behavior in primates is voluntary with neural
mechanisms closely associated to those responsible for task attention
(Khurana and Kowler, 1987). Adaptation and prediction are salient
features of these primate behaviors. For example, despite substantial
visuomotor delays, SPEMs can achieve zero phase lag with respect
to target trajectories and persist even during target blanking (Orban
de Xivry et al., 2008). In tracking horizontal piecewise-constant
velocity trajectories (irregular triangle waves in position) human
subjects change eye velocity in anticipation of target turnaround;
Barnes and Collins proposed that the behavior incorporates a model
for expected (or minimum) turnaround times (Collins and Barnes,
2009). Orban de Xivry et al. observed that while tracking a circular
trajectory with target blanking, smooth pursuit and catch-up saccades
occurred during blanked periods and explained the phenomena as
a result of predicted target dynamics based on a ‘velocity memory’
(Orban de Xivry et al., 2008). Most relevant to the present study,
Shibata et al. proposed a neuroanatomically consistent model in
which target dynamics (as described by a dynamical system with
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SUMMARY
The weakly electric glass knifefish, Eigenmannia virescens, will swim forward and backward, using propulsion from an anal
ribbon fin, in response to motion of a computer-controlled moving refuge. Fish were recorded performing a refuge-tracking
behavior for sinusoidal (predictable) and sum-of-sines (pseudo-random) refuge trajectories. For all trials, we observed high
coherence between refuge and fish trajectories, suggesting linearity of the tracking dynamics. But superposition failed: we
observed categorical differences in tracking between the predictable single-sine stimuli and the unpredictable sum-of-sines
stimuli. This nonlinearity suggests a stimulus-mediated adaptation. At all frequencies tested, fish demonstrated reduced tracking
error when tracking single-sine trajectories and this was typically accompanied by a reduction in overall movement. Most notably,
fish demonstrated reduced phase lag when tracking single-sine trajectories. These data support the hypothesis that fish generate
an internal dynamical model of the stimulus motion, hence improving tracking of predictable trajectories (relative to unpredictable
ones) despite similar or reduced motor cost. Similar predictive mechanisms based on the dynamics of stimulus movement have
been proposed recently, but almost exclusively for nonlocomotor tasks by humans, such as oculomotor target tracking and
posture control. These data suggest that such mechanisms might be common across taxa and behaviors.
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variable parameters) are learned in an online sense and used to
predict future target velocities (Shibata et al., 2005).

Here we investigate the role of adaptive and predictive neural
control strategies in the smooth pursuit locomotor task of refuge
tracking in Eigenmannia. Previously, the input–output frequency
response for this behavior was characterized using an assay of
sinusoidal refuge trajectories (Cowan and Fortune, 2007). In fitting
a linear dynamical model to the empirical frequency response, a
phase roll-off exceeding 90deg at high frequencies indicated that
the simplest (lowest order) model for this behavior was second-
order (analogous to a spring–mass–damper). Subsequently, they
used the empirically observed input–output response to predict the
sensorimotor transform, and showed how this prediction depends
strongly on the underlying locomotor dynamics (or ‘plant’ in control
theory terminology).

This analysis is, however, predicated on the assumption that the
behavior can be suitably approximated by a linear dynamical model
for some salient regime of stimuli (arguments for why one might
expect this can be found in the Discussion). In this work, we also
characterize the behavior using frequency response analysis,
although here we concurrently assess the validity of the linearity
assumption: by testing the tracking response to both pure sinusoidal
trajectories of differing amplitudes as well as sum-of-sines (pseudo-
random) trajectories, we directly test the scaling and superposition
properties that define a linear system. Our results clearly refute
earlier assumptions of linearity. Fish behavior was not linear for
any stimulus regime (i.e. single and sum-of-sines trials exhibited
different frequency response functions). Specifically, single-sine
tracking behavior exhibited broadband reduction in phase lag and
high-frequency attenuation of gain when compared with the
corresponding components of sum-of-sines trials. This supports the
hypothesis of prediction based on a learned model of target
dynamics, as proposed by Shibata et al. for visual target tracking
(Shibata et al., 2005). The response to sinusoid trajectories, which
are ‘predictable’, had greater predictive phase compensation than
that to sum-of-sines trajectories, which appear ‘random’.

MATERIALS AND METHODS
Adult knifefish of the species Eigenmannia virescens (Valenciennes
1842) were obtained through commercial vendors and housed
communally. Animal husbandry followed published guidelines for
the care and use of Gymnotiform fishes (Hitschfeld et al., 2009).
For both community and experiment tanks, water was maintained
at a temperature of approximately 27°C and a conductivity of
150–250S. An individual fish would be placed in the experiment
tank and given adequate time (2h to 1day) to acclimatize to the
environment and enter the refuge. All experimental procedures with

animals were approved by the animal care and use committee at
the Johns Hopkins University, and were in compliance with
guidelines established by the National Research Council and the
Society for Neuroscience.

Experimental apparatus
The refuge was machined from a 15cm segment of 2 inch stock
polyvinyl chloride (PVC) pipe; the bottom of the pipe was milled
away to allow video recording of the fish from below, and a series
of windows, 0.625cm in width and equally spaced at 2.5cm intervals,
were machined into the side of the pipe to provide visual and
electrosensory cues. The refuge was positioned less than 0.5cm from
the bottom of the tank. A linear stepper motor with 0.94m
resolution (IntelLiDrives, Inc., Philadelphia, PA, USA) driven by a
Stepnet motor controller (Copley Controls, Canton, MA, USA)
actuated the refuge, moving it forward and backward along specified
velocity trajectories. Video recordings, 14-bit with 1280�1024
resolution, were captured from below the refuge using a pco.1200s
high-speed camera (Cooke Corp., Romulus, MI, USA) with a
Micro-Nikkor 60mm f/2.8D lens (Nikon Inc., Melville, NY, USA).
For single-sine and sum-of-sines trials, video was captured at
50framess–1; for stimulus-switching adaptation trials, video was
captured at 80framess–1. The camera was controlled using the
Camware software package (Cooke Corp.) from a standard PC.
Custom MATLAB (The Mathworks Inc., Natick, MA, USA) scripts
were used to generate and log trials as well as to synchronize actuator
trajectories and camera shutter triggering via a USB-6221
Multifunction DAQ (National Instruments, Austin, TX, USA; Fig.1).

Experiments
Naïve individual fish (N4) were presented with a variety of refuge
trajectories composed of sinusoids, including single-sine and sum-
of-sines stimuli. An additional set of naïve fish (N3) were presented
trajectories that switched between sum of sines and single sine. One
additional fish was presented with a set of sum-of-sines trajectories,
the responses to which were used for cross validation of the
frequency response function models described below. To reduce
the occurrence of startle responses, before each individual trial
animals were presented with 10s of band-limited noise refuge
motion, and further, each stimulus amplitude was gradually ramped
up at the beginning of the trial and down at the end of the trial (10s
ramp duration) to prevent abrupt onset and offset refuge of
movements. Together, these eliminated startle responses to the
stimuli.

The stimuli are described in relation to velocity rather than
position. Thus, throughout this paper, the amplitude of a given
trajectory refers not to the distance but rather to the maximum
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Fig.1. (A)Experiment apparatus. The data acquisition board (DAQ) sends synchronized commands to the linear actuator (1; prescribing the trajectory) and
the high-speed camera (4; triggering exposures). Riding smoothly along a set of guide rails and rigidly linked to the actuator, a rigid mast (2) suspends a
PVC refuge near the bottom of the aquarium. Video is captured from below via an angled mirror (3) and images are subsequently ported back to the PC via
CamLink. (B)Coordinate system. Distinct patches are tracked using an SSD algorithm (custom Matlab code). Positions and velocities of these patches are
measured from a fixed reference. Red and blue squares indicate the features tracked on the fish and refuge, respectively.
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velocity associated with that stimulus. This is for three reasons. First,
each animal might maintain an arbitrary absolute position within
the refuge, creating an artificial DC offset in position but not velocity.
Second, the sensory receptors are high pass, so that they encode
velocity of movement rather than position (Cowan and Fortune,
2007). Third, previous experiments (Cowan and Fortune, 2007), as
well as preliminary experiments for the present study, suggest that
the animals can exhibit saturation-like nonlinearities in tracking
performance at high velocity amplitudes rather than positional
amplitudes; as described in the Results, the velocity amplitudes
selected for our experiments avoid these saturation nonlinearities,
which simply define the performance boundaries of the animal and
are not the focus of this work.

The sinusoidal stimuli were presented at a variety of velocity
amplitudes (0.6, 0.8 and 1.2cms–1) and frequencies, and sums of these
sinusoids. Refuge excursion frequencies (f) were drawn from the set
of the first thirteen prime harmonics of 0.05Hz, that is fk�0.05Hz
with k �{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}. For single-
sine trials, every other frequency was selected, f �{0.1, 0.25, 0.55,
0.85, 1.15, 1.55, 2.05Hz}. Sum-of-sines trials were composed of all
frequency components with equal velocity amplitude (0.6, 0.8 or
1.2cms–1) and randomized phase. Consequently, when waveforms
summed constructively, significantly higher velocities would be
achieved. These periodic signals appear pseudo-random within a
single period (T20s) of the stimulus.

We also explored the time scales of adaptation between single-
sine and sum-of-sines trajectories. Fish (N3) were presented with
eight trials of longer stimuli (120s duration) that switched between
sum-of-sines and single-sine trajectories. In the first minute, fish were
subjected to a sum-of-sines stimulus; at 60s all but the 0.55Hz
frequency component were discontinued. The transition between
stimulus types was instantaneous, but sum-of-sine frequency
components were phase shifted to ensure continuous velocity at the
switch. In addition, between trials, the gain of the sum-of-sine
frequency components (excluding the single component that persists)
was inverted. As a result, averaging any two consecutive trials yielded
an average input that was purely sinusoidal. Analysis was performed
on these time-averaged trial pairs. This proved helpful in estimating
phase transitions, because the averaged response to such pairs of
stimuli was dominated by the frequency component of interest.

Positions of both the fish and the refuge were extracted from
videos using ‘custom code implement’ in Matlab. Volitional or
exploratory behaviors within the refuge were included in the data
set. Though infrequent, trials with excess volitional movement (e.g.
the fish left the refuge or reversed rostrocaudal orientation within
the refuge) were omitted from further analysis.

Tests for linearity
Coherence analysis

Coherence, Cvz, the ratio of the squared cross-spectral density, Rvz,
of two signals, v(t) and z(t), and the product of the respective power
spectral densities, Rvv and Rzz:

describes the degree to which two signals are linearly related
(correlated) at different frequencies. Unity coherence implies that
two signals can be perfectly represented as the input and output of
a linear dynamical system; lower coherence may result from the
presence of nonlinearities, noisy measurements or additional
unaccounted inputs that contribute to the measured output. In this

Cvz (ω ) =
Rvz (ω )

2

Rvv (ω )Rzz (ω )
 , (1)
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paper, we perform coherence analysis for sum-of-sines trials to
establish that, for a given trial, the input–output relationship is linear.
Consider paired input–output measurements of a linear system. We
assume process noise, e.g. due to variability of the motor output
(Harris and Wolpert, 1998), corrupts the motor behavior itself.
Specifically, letting * denote the convolution operator, suppose the
input–output pair [u(t), y(t)] is related by:

y(t)  f(t) * u(t) + h(t) * m(t)
F
r Y()  F() U() + H() M(), (2)

where the system f(t) filters the input u(t), and h(t) filters a process
noise m ~N(0, 2). Here, F denotes the Fourier transform.
Observations of this pair [v(t), z(t)] are corrupted by measurement
noise (which can be minimized to some extent through careful
experimentation) nv,z ~N(0, v,z

2):

In the absence of noise (v, z, 0) a linear dynamical system
yields input–output pairs with unity coherence. Because noise
variances appear only as additive terms in the denominator of the
coherence function (Eqn 1), any noise introduced to the system or
measurements diminish coherence, as shown here:

Even a linear system, which in a noiseless case should produce
unity coherence, would fail to do so in the presence of noise.
Deficiencies in coherence may indicate either systematic
nonlinearities or corruption by noise or both. Moreover, the output
of a system may be coherent with the input for a particular choice
of stimuli despite nonlinearities in system. Despite being neither a
necessary nor sufficient condition, coherence is a useful indicator
of linearity, given the above caveats.

Frequency response functions
A Bode plot is a graphical representation of the input–output
frequency response function (FRF) of a linear dynamical system.
In a Bode plot, the FRF is described using both the gain (scaling
describing the level of amplification or attenuation) and relative
phase imparted by a system. Input–output signal pairs that share
the same Bode plot could be said to be resultant of (at least)
qualitatively similar linear systems. Empirical Bode plots were
generated for all trials. A fast Fourier transform (FFT) was applied
to both input and output velocity signals. For single-sine trajectories
we located the frequency at which the energy of the input signal
peaks, 0. We evaluated the output:input ratio of the FFT values at
this point, F(0), and calculated gain (magnitude) and phase from
the resultant complex number, |F(0)| and �F(0), respectively.
For sum-of-sines trials, we calculated the output:input ratio at the
frequencies corresponding to the 13 greatest local maxima
(excluding endpoints of the FFT) of the energy of the input signal.
We verified in all cases that the 13 peaks indeed corresponded to
the first 13 prime multiples of the base frequency.

Confidence intervals in Bode plots were calculated from the
distributions of output:input ratios (phasors) on the complex plane
(Fig.2). Each distribution represented the system response to a class
of inputs (either single sine or sum of sines) at a set frequency.
Single-sine trials yielded one point in the distribution corresponding

Cvz (ω ) =

F (ω )
2

U (ω )
4

F (ω )
2

U (ω )
4

+ H (ω )
2

v2σ v
2 + H (ω )

2
U (ω )

2
v2 + U (ω )

2
σ z

2 + σv
2σ z

2
 . 

(4)

v(t) = u(t) + nv (t) F⎯ →⎯ V (ω ) = U (ω ) + Nv (ω ) ,

z(t) = y(t) + nz (t) F⎯ →⎯ Z (ω ) = Y (ω ) + Nz (ω ) . (3)
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to the stimulus frequency; sum-of-sine trials yielded a point for every
constituent frequency. Fitting a Gaussian probability density function
(PDF) to each cluster, we calculated the standard error and the
associated PDF of the estimated mean (Fig.2A). The 95%
confidence interval of the magnitude of the estimated mean was
calculated as the minimum-area annulus over which the PDF
integrates to 0.95 (Fig.2B); the confidence interval for phase of the
estimated mean was the minimal conic region over which the PDF
integrates to 0.95 (Fig.2C).

Continuous phase estimation
For stimulus-switching trials, frequency response analysis was
performed on the trial-averaged input–output pair. The mean phase
for the sum-of-sines and single-sine intervals was calculated as
described above. Assuming that the beginning of the single-sine
interval represents a period of transition, the mean phase for this
regime is calculated over the final 30s to give a better approximation
of the asymptotic phase value.

A coarse estimation of the phase was calculated as it changed
with time. For a 5.0s moving window in time, the best-fit sum-of-
sines trajectory was fit using Eqn5:

The frequencies {1, …, n} are known and A[1, …, n] and
B[1, …, n] are solved for in a least squares sense. Although the
trial-averaged response is ideally sinusoidal, we use the best-fit sum-
of-sines trajectory to account for any residual frequency components
not entirely eliminated through averaging. Using the trigonometric
identity in Eqn6, we solved for the magnitude and phase of the
refuge and fish as in Eqn7:

( A, B) = arg min
A,B

αi sin(ω it) + βi cos(ω it)⎡⎣ ⎤⎦
i=1

n

∑ − y(t)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

 ,  (5)

AT

BT

⎡

⎣
⎢

⎤

⎦
⎥ = [sin(ω it) cos(ω it)]†[ y(t)] .

Msin(ω it + φ ) = M cos(φ )

α
� �� �� sin(ω t) + M sin(φ )

b
� �� �� cos(ω t) ,  (6)

φi = arctan2 (βi ,αi ) , (7)
   Mi = αi

2 + βi
2  ,
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Fig.2. For a given frequency, the system response can be characterized by a point on the complex plane, ei, where the magnitude of  is the gain of the
system and  is the phase shift, with positive phase measured counter clockwise from the positive real axis. The circle of unit magnitude (representing unity
gain) and the positive real axis (representing zero phase shift) are denoted in blue. Each trial yields one estimate for the system response at each
frequency. (A) Phasor distribution. A Gaussian probability density function was fitted in the complex plane at each frequency; to illustrate this, the 95%
covariance ellipse for single (red) and sum of sines (black) is shown for 2.05Hz. (B) Phase 95% confidence. The phase confidence interval is the conic
region over which the probability density function (PDF) integrates to 0.95. (C) Magnitude 95% confidence. Similarly, the magnitude confidence interval
(95%) of the estimate of the mean is the annulus over which the PDF integrates to 0.95.
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where arctan2 is the four quadrant version of the arctangent function.
Gain and relative phase were then calculated as the ratio Mfish/Mrefuge

and the difference fish–refuge, respectively.
The finer estimate of the instantaneous phase was computed as

the argument of the analytic signal, f(t)+iH (f(t)), where f(t) is either

E. Roth and others

the input or output time signal and H (·) denotes the Hilbert
transform. This method, however, is highly sensitive to noise in the
time-domain signal.

RESULTS
Responses to moving refuge stimuli are coherent

As previously reported (Cowan and Fortune, 2007), fish robustly
followed the experimentally controlled movements of the refuge by
swimming backwards and forwards. The swimming of the fish was
strongly correlated with movements of the refuge, and as a result
the movement of the fish exhibited strong coherence to the stimulus
trajectory. This result held for each category of stimulus that was
tested, including predictable sine wave stimuli, sum-of-sines stimuli,
and more complex stimuli. An example response to a sum-of-sines
stimulus is shown in Fig.3.

For each trial, we computed the magnitude of the Fourier
components for input (refuge velocities) and output (fish velocities)
as shown in Fig.4A. In all instances, peaks in output power
correspond to peaks in input power. These strong relationships
confirm that the fish is tracking the stimulus, and that the fish’s
movements are not the result of other potential behaviors such as
exploratory movements. Sum-of-sines trials consistently had
coherences near unity at the stimulus frequencies (Fig.4B). Note
that for frequencies not present in the stimulus (i.e. between peaks)
the coherence value is not informative (the input–output
relationship is dominated by noise). It is also important to note
that coherence remains near unity even at high frequencies where
tracking performance diminishes, because coherence is a measure
of signal-to-noise ratio and not a measure of absolute gain
(Fig.4B).

Strong coherence for each stimulus–response pair suggests that
the tracking behavior may be described by linear dynamics. We
examined whether one linear dynamical system can indeed
adequately describe all input–output pairs across stimulus categories.
If so, a small subset of input–output pairs could furnish a predictive
linear model for the refuge-tracking behavior.
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Linear models do not generalize across stimulus classes
Linearity of a system is defined by two properties: scaling and
superposition. To test scaling, we presented three velocity amplitudes
(0.6, 0.8 and 1.2cms–1) for each stimulus type (single sinusoid and
sum of sines). The Bode plots for each velocity amplitude are shown
in Fig.5A for single sines and Fig.5B for sum of sines.

In general, the scaling property cannot hold for an arbitrarily large
regime of stimuli. Thus, based on previous work (Cowan and
Fortune, 2007) we examined a biologically relevant range of
velocity amplitudes. Over this range of velocity amplitudes, the
phase response curves within each of the two stimulus classes were
remarkably invariant, as shown in Fig.5A,B. Amplitudes were also
generally consistent with the scaling property, although some
differences can be seen for single-sine stimuli in the range of
0.25–0.55Hz. Despite the noted discrepancies in gain, within a fixed
stimulus type, changes in trajectory amplitude do not suggest
categorical changes in the response. Taken together, the amplitude
and phase responses strongly suggest that tracking behavior scales
linearly with input over the range of velocity amplitudes tested.

Having demonstrated the scaling property in these data, we next
examined the superposition property. This was done by comparing
single-sine with sum-of-sines data. If superposition holds, the
responses to single-sine inputs should predict sum-of-sines
responses. In other words, if superposition holds for these data, the
Bode plots from the two stimulus categories should be identical.
Interestingly, the Bode plots (Fig.5) for the two stimulus categories
exhibit unmistakable differences: responses to single-sine stimuli
exhibited lower phase lag at mid-range frequencies and greater
attenuation at high frequencies than responses to sum-of-sines
stimuli (Fig.5). Because the Bode plots are different across stimulus
category, superposition therefore fails. A single linear model cannot
account for the responses to both categories of input. However, when
analysis is limited to either single-sine or sum-of-sines trials, the
high coherence and low variance of frequency response estimates
suggest that a linear system might be useful in describing this
behavior within each stimulus category.

What is the consequence of the mismatch in FRFs in terms of
their predictive power? For a linear system, the linear model
furnished by one FRF can be used to predict the temporal response
of the system to the same or a different stimulus category (Fig.6).
We used this technique as a mechanism to understand the differences
between the linear models for each stimulus category. To do this,
we used the single-sine FRF to make predictions of the responses
of the fish to sum-of-sines stimuli. Next we compared these
predictions to the actual responses of the fish. Specifically, the
average single-sine and sum-of-sines FRFs shown in Fig.5C were
used to predict the response of a different fish (not included in the
FRF data) to individual sum-of-sines stimuli.

For each of the 15 trials, the sum-of-sines FRF model shown in
Fig.5C predicted the response with less root-mean-squared error
than the single-sine FRF model; the mean improvement was 36.7%,
the minimum improvement was 12.0% and the maximum
improvement was 64.3%. As expected, the FRF from singe-sine
data does not generalize to spectrally different stimuli, probably
because of the nonlinearity revealed by the FRF data (Fig.5). The
consequence of the nonlinearity between stimulus categories is that
fish perform better in response to predictable stimuli than to
unpredictable stimuli.

Fish adapt to changes in stimulus
We next investigated the time course of the transition between the
two responses, focusing specifically on the response to stimuli at

0.55Hz where phase shows maximal change. However, current
methods for estimating the time-varying phase of a signal often yield
noisy or unreliable results for short time intervals, and in fact
instantaneous estimation of phase for dynamical systems remains
an area of active research (e.g. Revzen and Guckenheimer, 2008).
Towards wholly describing the transition between sum of sines and
single sine, we present phase analyses at three timescales: one 30s
window, six 5s windows, and a continuous phase estimate (see
Fig.7).

At the coarsest level, the asymptotic phase – calculated as the
FFT estimate of phase from the second half (30) of each stimulus
regime – reveal phase lag reductions of 10.8, 13.9 and 18.7deg,
which is less than the mean 33.9deg reduction observed in the first
population of fish. A more refined view of the adaptation is captured
by dividing the 30s following transition into six consecutive non-
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Fig.6. An example demonstrating that frequency response functions
generalize better within stimulus class than across classes. Assuming
superposition holds, the frequency response functions (FRFs) in Fig.5C
generated from four fish, can be used to predict the response to an
arbitrary input for a fifth fish. (A)10s of a sum-of-sines stimulus (blue) and
the fish’s response (green). (B)A comparison of predictions made by
different FRF models. The sum-of-sines prediction (black) closely matches
the fish’s performance (green). The single-sine prediction (red) is worse
than for the sum-of-sines FRF. (C)The difference between the single-sine
and sum-of-sines prediction errors. Negative values (in red) indicate time
intervals for which the single-sine FRF model has greater error than the
sum-of-sines model. Predominantly, the sum-of-sines model better predicts
the fish’s actual response. If the system were linear, an assay of single-
sine experiments would be sufficient for predicting the response to the
sum-of-sines stimulus.
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overlapping 5s windows. For the first two fish, a trend seems to
emerge, possibly suggesting an exponential decay to the asymptotic
phase. However, because of the variance of the phase estimate
(standard deviation shown as black error bars) any estimate of a
time constant for such decay would be tenuous. For the third fish,
volitional movement and/or other sources of motion noise, yield
phase estimation at this time scale that is unreliable. At the most
refined time scale, we use the argument of the analytic signal to
generate a continuous estimate of phase (shown in green) (Revzen
and Guckenheimer, 2008). Although this approach yields a noisy
estimate it highlights an important trait of the transition: the variance
of the phase estimate is lower in the single-sine regime. This may
partially be attributed to the method used for phase estimation but
we suspect that this reduction in variance results at least in part
from changes to the behavior that occur during adaptation to the
switch in the stimulus.

Adaptation to single-sine stimuli reduces tracking error
Having observed categorically different FRFs elicited by single-sine
and sum-of-sines stimuli, we hypothesized that this nonlinearity was
indicative of a stimulus-mediated adaptation. In this section we
explore the benefits of such an adaptation: whether tracking
performance for single-sine stimuli improves compared with the
response to sum-of-sines stimuli and the energetic trade-offs of
improved performance. In order to address these questions, we
consider yet another representation of the frequency response, as
complex phasors.

When considering the tracking behavior in terms of phasors on
the complex plane, gain is measured as the distance from the origin
and phase measured as the angle (counter clockwise) from the
positive real axis. Hence, unity gain is represented by a unit circle

E. Roth and others

and zero phase corresponds to the positive real axis (Fig.8A). The
intersection of the unit circle with the positive real axis, the point
1+i0, indicates perfect tracking. The magnitude of the error signal
(the sensory slip) is measured as the distance between the empirical
phasor (represented as a point on the complex plane) and the perfect
tracking point.

In Fig.8A, the mean phasor for each frequency is plotted for
both single-sine and sum-of-sines stimuli. At every frequency
compared, there is less error in the responses to the single-sine
stimuli. Excluding the frequencies 0.1 and 0.85Hz, these
improvements in tracking were achieved despite a reduction of gain
(Table1). The gain (the distance between the empirical phasor and
the origin 0+i0) provides an indication of effort or energy expended
during tracking. For the two frequencies where gain increased, it
increased only 8.0 and 3.9%, and these increases were not
statistically significant (two-sample, one-sided t-test, P0.1206 and
P0.3343, respectively). This was consistent with performance in
the frequency range from 0.1 to 1.15Hz (see Table1), where gain
remained relatively constant (within ±10%) while error was reduced
dramatically (18–32%). In contrast, at the highest frequencies
tested, 1.55 and 2.05Hz, fish dramatically reduced their effort,
maintaining a small but statistically significant improvement in
tracking error (P0.0218 and P0.0151, respectively). These
results show that there was a frequency-dependent shift in the trade-
off between effort and tracking error.

DISCUSSION
Eigenmannia virescens exhibit a switch in tracking performance
depending on the category of the refuge trajectory – a simple sinusoid
versus a more complex sum of sines. This nonlinear switch results
in reduced tracking error to simpler sinusoidal stimuli despite an
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often-dramatic reduction in motor effort. This concomitant decrease
in tracking error and motor effort suggests adaptive and predictive
neural mechanisms for locomotor control in Eigenmannia.

Responses to single-sine and sum-of-sine stimuli
Both categories of stimuli – single sine and sum of sines – are
fundamentally deterministic. So, why then are fish able to track
single-sine stimuli so much better and with less motor effort at each

frequency? Intuitively, single-sine stimuli are more predictable than
sum-of-sines stimuli. More formally, as the number of parameters
of a signal increases, noisy measurements – which are inescapable
– lead to greater variance in parameter estimates. Thus, given the
same amount of measurement data, computational algorithms that
extrapolate sensory measurements of stimuli will perform worse for
sum-of-sines stimuli than for single-sine stimuli. In this sense, single-
sine stimuli are fundamentally more predictable than sum-of-sines
stimuli, which we treat as pseudo-random.

Furthermore, the pseudo-random sum-of-sines stimuli are
complex periodic waveforms with a long (20s) period. To avoid
the potential for long-term learning of these stimuli, the relative
phases of each component sinusoid were randomized from trial to
trial, thus creating distinct temporal trajectories that nevertheless
had identical spectral content. Importantly, the response to these
distinct sum-of-sines stimuli generalized (Fig.6).

For mid-ranged frequencies, the gain of single-sine and sum-of-
sines responses are approximately the same, but the single-sine phase
lags are substantially reduced compared with the corresponding
components of the sum-of-sines response (Fig.5C). This corresponds
to a substantial decrease in tracking error with little to no change
in the motor effort. Moreover, complex-plane analysis (Fig.8)
reveals that at high frequencies, single-sine responses show a
dramatic reduction in motor effort (the high-frequency responses
are much closer to the origin of the complex plane) and a
simultaneous decrease in tracking error (the responses are closer to
the point 1+i0).

Thus, at all frequencies fish exhibit the same or less tracking error
with approximately the same or less motor effort when presented
with single-sine stimuli (Fig.8). The decreases in tracking error are
generally associated with reduced phase lag for single sines, and
the decrease in motor effort (which occurs at high frequencies, where
there is substantial phase lag for both single and sum of sines) is
generally associated with lower gain.

An internal model predicting refuge movement explains
phase discrepancies

Phase profiles are consistent between trials when the stimulus regime
is fixed but shift categorically between the two different stimulus
types. Specifically, for single-sine stimuli, fish exhibit reduced phase
lag, but surprisingly this decrease in phase occurs with little to no
change in gain for frequencies up to 1Hz. Thus, we suspect a
predictive mechanism – in which stimulus dynamics are included
in the state estimate – to be responsible for this disparity between
single-sine and sum-of-sines phase responses.

Neural delays introduce inherent phase lags between the sensory
stimulus (input) and locomotor action (output). But if a stimulus
were sufficiently predictable, the nervous system could, in principle,
compensate for these delay-induced phase lags by extrapolating the
stimulus trajectory forward in time. This would enable the neural
control system to act upon an estimate of the current–time stimulus

Table1. Phase, gain and error differences between sum-of-sines and single-sine trials as depicted in Fig.8A

Frequency (Hz) Error reduction (%) Gain difference (%) Phase difference (deg)

a 0.10 31.7 8.0 –7.7
b 0.25 25.3 –0.9 –15.4
c 0.55 33.8 –1.2 –33.9
d 0.85 28.8 3.9 –31.9
e 1.15 17.9 –7.9 –30.2
f 1.55 8.2 –33.4 –18.1
g 2.05 5.3 –48.7 –2.9

(a) 0.10 Hz

(b) 0.25 Hz

Single-sine

Sum-of-sines

(e) 1.15 Hz

(f) 1.55 Hz

(g) 2.05 Hz(c) 0.55 Hz

(d) 0.85 Hz
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Fig.8. (A)Frequency response phasors shift to decrease tracking error in
the transition from sum-of-sines to single-sine stimuli. (B) For a frequency
response characterized by gain a and phase lag , denoted by the red dot
above, the magnitude of the sensory slip e is the distance from the
frequency response point to the perfect tracking point 1+0i. For a fixed
phase , the minimal error e*sin() for �(–/2,/2) is achieved by a gain
of a*min(cos(), 0) (depicted as the green dot). For �(–/2,/2) the
minimum achievable error is 1. The locus of minimum-error responses
given fixed phase lag (or lead) is denoted by a circle with diameter equal to
one and centered at the point 0.5 + 0i; within this circle (shaded green),
there is a trade-off between increased error and savings in expended
energy.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1178

signal despite the sensorimotor delay. However, for trajectories that
evolve randomly, this prediction is inaccurate, requiring the system
to rely heavily on the delayed sensory measurements to calculate
the appropriate motor response. Hence the internal delays manifest
as phase lag. The Kalman filter, a state-estimation algorithm
common to many engineering applications, provides a flexible
framework for discussing prediction in the context of sensory and
motor uncertainty (e.g. Kuo, 2005).

The Kalman filter generates the optimal state estimate by
reconciling two streams of information: a belief about what the state
of the system should be (as predicted by an internalized model of
the system dynamics) and sensory measurements. Each of these
streams of information, the model-based prediction and the
measurement bear their own sources of uncertainty: process noise
determines the extent to which the evolution of the system states is
affected by randomness (in effect, the unpredictability of the
system) and measurement noise degrades the reliability of observed
quantities. In our proposed model of refuge tracking (Fig.9) the
internalized model includes a stochastic dynamical model of refuge
motion in addition to the locomotor dynamics of the animal. The
Kalman filter reweights the contributions of these two streams on
the basis of the relative sizes of the measurement and process noise
variances. Thus, the internalized model makes a less effective
prediction about the state evolution for these pseudo-random stimuli,
requiring the nervous system to rely on the delayed sensory
measurement as described above.

Prediction in motor control often refers to an adaptive model of
internal system states [e.g. estimating the position or orientation of
your hand during a reaching task without visual feedback (Shadmehr
and Mussa-Ivaldi, 1994; Wolpert et al., 1995)]. Although this kind
of prediction would be pertinent to refuge tracking, this is not the
kind of predictive mechanism we suspect here. Rather, we contend
that the nervous system predicts (using an internalized dynamical
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model) the movement of the exogenous signal. Similar stimulus
prediction has been described in terms of probabilistic representations
of target locations in a pointing task (Körding and Wolpert, 2006)
and in terms of the anticipation of the time of direction reversal in
a visual target tracking behavior (Collins and Barnes, 2009).

Similar to our proposed model, Carver et al. investigated whether
the dynamics of a moving visual scene are estimated for human
posture control (Carver et al., 2005). They compared three different
dynamical models for the external scene and assessed how well
prediction schemes incorporating these models might reproduce
empirical data. Through a broad parameter search they found that,
even for an optimized set of parameters, the models they considered
in which external dynamics were estimated did not satisfactorily
capture qualitative features of the empirical data. The data presented
in this work suggest that similar prediction-of-dynamics models
should be revisited in the context of the refuge-tracking behavior
in Eigenmannia. Using input–output FRF models to reverse engineer
the sensorimotor transform requires a sufficiently representative
model of the locomotor dynamics (Cowan and Fortune, 2007) so
that as the dynamics of ribbon-fin propulsion become better
understood (Sefati et al., 2010; Shirgaonkar et al., 2008) our model
(Fig.9) can be used to generate quantitative predictions for refuge-
tracking behavior.

Gain discrepancies indicate improved tracking for predictable
stimuli

At the higher frequencies we observed a significant reduction in
gain for single-sine presentations. Typically, this attenuation
would be interpreted as a worsening of tracking performance,
which would deceptively suggest that at high frequencies fish do
poorly at tracking predictable stimuli compared with unpredictable
stimuli. However, consider the tracking behavior transfer function
on the complex plane (Fig.2). In this representation, unity gain is
represented as the dashed unit circle; zero phase is designated by
the dashed line along the positive real axis. The intersection of
the unit circle with the positive real axis, the point 1+0i, indicates
perfect tracking. The magnitude of the error signal (the perceived
sensory slip) is measured as the distance between the empirical
transfer function (represented as a point on the complex plane)
and the perfect tracking point.

For 2.05Hz, we see that the distribution of single-sine trials is,
on average, closer to 1+0i than the sum-of-sines trials. At any given
phase lag (or lead) , error is minimized by a gain of max(0,cos())
(Fig.8B). In these analyses, gain represents a normalized velocity
(the ratio of fish and refuge velocities) and therefore might serve
as an indicator of expended energy. Subscribing to this interpretation,
gains lower than the minimal-error gain compromise error for
energetic savings; higher gains are suboptimal in both error and
energetic cost. For phase lags greater than 90deg, error is minimized
at zero gain. Despite the immediate interpretation that reduced gain
indicates reduced tracking performance, in the high-frequency
regime reduced gain improves tracking performance with respect
to sensory slip. Hence, for predictable stimuli (single sines), the
controller adapts to reduce both error and energetic cost.

A diversity of image stabilization behaviors
Optomotor responses in primates, including target tracking (in which
a sensory image is stabilized on the fovea) and optokinetic
nystagmus (OKN; tracking a moving broad-field stimulus) are
perhaps the most commonly studied sensory-image-stabilization
behaviors. OKN is recognized as a separate behavior from target
tracking, although both are comprised of alternating epochs of slow
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Fig.9. A proposed model of tracking behavior that accounts for the
categorical differences in phase and gain between predictable and pseudo-
random stimuli. The reference signal r(t) is an arbitrary refuge trajectory;
the fish internally estimates this refuge trajectory as the output of an
internal dynamical model. The animal’s sensory systems measure the
tracking error, e(t), which represents the relative velocity of the refuge with
respect to the fish. This measurement is corrupted by noise, nm(t), as
shown. However, because of sensory and transmission delays amounting
to t, control actions at time t must be determined using outdated sensory
slip information. The Kalman filter uses this outdated sensory measurement
in conjunction with the internal reference model to estimate the current
state of the system, x̂(t) and ê(t), which includes the position and velocity
for the fish and the relative position and velocity of the refuge. This time-
corrected estimate is used to determine the control signal u(t) sent to
muscles along the ribbon fin, which, in turn, result in changes to the fish
position and velocity y(t). 
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and fast eye motions. During the slow phase of OKN (the optokinetic
response; OKR), eye trajectories are arguably indistinguishable from
smooth pursuit. The fast phase of the OKN is composed of saccadic
motions opposite to the direction of pursuit used to recenter the
gaze. SPEMs are volitional whereas OKN is an involuntary response
to broad-field motion. Both primates and humans show OKN and
target tracking behaviors, but non-foveate and lateral-eyed animals
exhibit OKN, although they lack SPEM (Büttner and Büttner-
Ennever, 2006).

Although they are two distinct behaviors with independent neural
pathways, target tracking and OKN are similar in many ways. Both
share the common task-level goal of stabilizing a moving image
(albeit narrow-field for tracking and broad-field for OKN).
Kinematically, these behaviors are characterized by periods of
smooth continuous motion interjected with abrupt corrective
saccades. Most importantly, both target tracking and the OKR rely
on sensory feedback. These attributes, however, are hardly unique
to the oculomotor system.

Indeed, an image in the nervous system is simply a neurally coded
representation of an exogenous stimulus – the output of a sensory
transformation. This notion of image includes a wide range of
sensory signals [e.g. in wall following, a cockroach antenna encodes
a signal, hence an image, representing head-to-wall distance (Camhi
and Johnson, 1999)] and sensory signals at higher brain centers,
which may have already been transformed through neural processes
(e.g. the spatial integral of retinal slip over the fovea). Image
stabilization, therefore, refers to the class of feedback control policies
in which the image – the sensory signal representing a moving
exogenous stimulus – is stabilized to a sensory goal (typically target
fixation or zero sensory slip) via motor output.

In this sense, image-stabilization tasks are ubiquitous across taxa:
optomotor yaw regulation in Drosophila, in which a fly generates
saccadic turning moments to stabilize a visual scene (Götz, 1968;
Heisenberg and Wolf, 1988; Reiser and Dickinson, 2008); high-
speed antennal wall following in the American cockroach,
Periplaneta americana (Cowan et al., 2006; Lee et al., 2006; Lee
et al., 2008); human posture control, in which leg muscles generate
forces in response to proprioceptive, visual and vestibular cues to
maintain balance (Carver et al., 2005; Jeka et al., 2004; Kiemel et
al., 2006); visual prey capture in the tiger beetle (Gilbert, 1997);
flower tracking in the hawkmoth, Manduca sexta, in which moths
attempt to maintain a constant relative position with respect to a
moving flower during feeding (Sprayberry and Daniel, 2007).

Image stabilization represents a model framework that can be
used to describe a broad set of behaviors. Essentially, the image-
stabilization description can be applied to those behaviors aimed at
reducing sensory error or slip via closed-loop control. Often
behaviors are compared on the basis of morphological similarity of
the motor plant (e.g. ocular target tracking and OKN that manifest
in the same mechanical system or tracking behaviors in Drosophila
as in Manduca). Unified at the task level by the image-stabilization
framework, we are more inclined to interpret the similarity of
behaviors on the basis of their control strategies. Hence, we draw
comparisons between refuge tracking in Eigenmannia and target
tracking in the primate oculomotor system despite apparent
biomechanical differences.

A role for linear models in describing image-stabilization
behaviors

The frequency response analyses used in previous studies on image
stabilization behaviors (Carver et al., 2005; Cowan and Fortune, 2007;
Gilbert, 1997; Götz, 1968; Heisenberg and Wolf, 1988; Jeka et al.,

2004; Kiemel et al., 2006; Reiser and Dickinson, 2008; Sprayberry
and Daniel, 2007) are predicated on an assumption of linearity.
Without this linearity assumption, a frequency response function
(FRF) generated from one set of stimuli would not predict the
system’s response to spectrally distinct stimuli. And, it would be
impractical to test the entire range of possible stimuli for any system.

The linearity assumption underlies the predictive and generative
power of frequency analyses. But why should we expect any animal
behavior to be described by such a seemingly restrictive set of
models? Admittedly, nonlinearities manifest in many of the
biological subsystems that give rise to behaviors, from low-level
mechanisms (e.g. sensory tuning curves, saturation and hysteresis
in muscle force production) to high-level neural processes (e.g. long
time-scale adaptation, volitional changes between different
behaviors). But, linearity at the task level does not preclude
nonlinear constituent subsystems. In this class of closed-loop
behaviors, the system is stabilized at a task level to an equilibrium
state corresponding to the sensory goal. Local to an equilibrium,
many nonlinear systems [and, in fact, almost all in a certain
mathematical sense (Sastry, 1999)] can be closely approximated by
(oftentimes low-order) linear models. Hence, cockroach wall
following, for example, could be faithfully captured by a linear
model (Cowan et al., 2006; Lee et al., 2008).

However, when linear models fail to adequately represent a
behavior, i.e. the behavior does not appear linear for any
neighborhood of the equilibrium, the discrepancies in frequency
responses to different stimuli can illuminate the underlying
nonlinearities. In our analysis of the refuge-tracking behavior of E.
virescens, we ascribe the differences in frequency response functions
between stimulus types to a model-based prediction mechanism and
optimal control. For the proposed model (Fig.9) and a fixed
stimulus, the Kalman filter and optimal controller are linear; the
nonlinearity observed in our experiments is introduced as the Kalman
filter adapts to new stimuli, updating an internalized model of the
system and external dynamics. The linear analyses we present
provide snapshots of an adapting behavior – waypoints that constrain
future nonlinear models for the full behavior. Future work can
address the mechanisms responsible for these adaptations.

Extending frequency analyses to other image-stabilization
tasks

Similar assays to those described in this paper could be used to
identify control strategies for other animal image-stabilization tasks.
The approach outlined in this work is applied to task-level dynamics.
For many biological systems, identifying the task-level goal and
subsequently measuring a suitable task-level state is not trivial.

Locomotor dynamics often obscure the task-level states of
interest. For most animal behaviors of interest, the motor dynamics
are cyclical (e.g. walking strides, flapping wings). The periodicity
of locomotor dynamics may or may not manifest in the task-level
states. For example, in the case of Eigenmannia, the individual
undulations of the ribbon fin (which occur at a frequency of ~10)
do not introduce significant variance into the task-level states
(longitudinal position and velocity of the body). In contrast, for the
control of walking or running in humans, the within stride phase
significantly affects the task-level state (often the vertical position
and velocity of the center of mass). Walking dynamics are often
modeled as an inverted pendulum or some variant on the theme
(Alexander, 1995) whereas running is often represented as a
spring–mass hopping system (Blickhan, 1989); both models clearly
illustrate how the task-level state changes periodically, in synchrony
with the gait. Similarly, cyclical motor dynamics can manifest in
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task-level states for flying – particularly in slow-flapping (wingbeat
frequencies within the band salient to task-level behavior) animals
such as moths and butterflies, bats, and birds – and swimming
modalities such as carangiform swimming in which thrust is
generated by the caudal fin through body bending.

Many locomotor behaviors are described in terms of stable limit
cycles, attracting periodic trajectories in the state space; at a task-
level, the goal of an image-stabilization behavior is described as an
equilibrium point. We have presented a small sample of behaviors
in which cyclical motor plants are controlled to achieve stationary
sensory goals. But in the interest of identifying neural control
algorithms, it is sometimes useful to isolate the task-level states from
the ‘artifacts’ that can be introduced by such cyclic motor dynamics.

For the cases above, systems theory of cyclical dynamics provides
tools for stripping task-level states from the kinematics. Floquet
analysis allows the task-level states to be recoordinatized according
to the phase of the cyclical dynamics, in essence transforming an
equilibrium cycle (or limit cycle) into an equilibrium point. Once
the kinematic data are transformed to align these Floquet coordinates,
data captured from different phases of a ‘stride’ can be compared
using techniques such as those described above (Revzen, 2009;
Revzen and Guckenheimer, 2008). In a similar approach, cyclical
systems can be discretized through Poincaré analysis. Rather than
aligning a cyclically changing coordinate system as in Floquet
analysis, Poincaré analysis considers the state of a system at only
one phase of a cycle, generating a discrete datum point for each
cycle. In this way, the task-level states are captured at the same
phase of every stride, fixing the equilibrium point to the state of the
limit cycle at that phase (Lee et al., 2008).

LIST OF ABBREVIATIONS
FFT fast Fourier transform
FRF frequency response function
OKN optokinetic nystagmus
OKR optokinetic response
PD proportional-derivative
PDF probability density function
SPEM smooth pursuit eye movement
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