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Abstract— Active cannulas are remotely actuated thin contin-
uum robots with the potential to traverse narrow and winding
environments without relying on ‘“guiding” environmental reac-
tion forces. These features seem ideal for procedures requiring
passage through narrow openings to access air-filled cavities
(e.g. surgery in the throat and lung). Composed of telescoping
concentric pre-curved elastic tubes, an active cannula is actuated
at its base by translation and axial rotation of component tubes.
Using minimum energy principles and Lie Group theory, we
present a framework for the kinematics of multi-link active
cannulas. This framework permits testing of the hypothesis that
overall cannula shape locally minimizes stored elastic energy. We
evaluate in particular whether the torsional energy in the long,
straight transmission between actuators and the curved sections
is important. Including torsion in the kinematic model enables us
to analytically predict experimentally observed bifurcation in the
energy landscape. Independent calibration procedures based on
bifurcation and tip and feature positions enable model parameter
identification, producing results near ranges expected from tube
material properties and geometry. Experimental results validate
the kinematic framework and demonstrate the importance of
modeling torsional effects in order to describe bifurcation and
accurately predict active cannula shape.

I. INTRODUCTION

Robotic dexterity at the “meso scale”—from hundreds of
microns to tens of centimeters—involves challenges in fab-
rication, modeling, and control. Continuously flexible (“con-
tinuum”) robots are a promising class of robots for this scale,
provided they can be sufficiently miniaturized. Current designs
require wires [3], [6], flexible push rods [13], pneumatic
actuators [2], [7], or other external actuation mechanisms that
can limit miniaturization.

Here, we describe active cannulas, a new class of miniature
continuum robots, that exhibit robotic dexterity at this scale
and seem well suited for working in confined or tortuous
environments. Our principle motivation for creating the active
cannula design is interventional medicine, where we expect
them to provide minimally invasive access to many challeng-
ing or currently unreachable surgical sites.

The active cannula design simultaneously has a small diam-
eter and high degree of dexterity by incorporating pre-curved
telescoping tubes in its backbone rather than external tendon
wires or other force transmission mechanisms (Figure 1).
Elastic interaction of the curved tubes as they are axially
rotated and translated with respect to one another makes an
active cannula sufficiently flexible and shapable to traverse
challenging anatomy. Importantly, active cannula dexterity
improves with miniaturization and inherent compliance may
enhance safety [17].
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A number of clinical applications may substantially benefit
from active cannulas, and similar designs have been proposed
for fetal surgery [5], steering needles in soft tissues [8] and
cardiac applications [11], transnasal skull base surgery [17],
and transgastric surgery [17]. Several specific clinical areas
in which active cannulas could improve surgical outcomes are
described in detail in [14]. In many of these applications initial
free-space cannula models (to date, only free-space models
exist) will need to be coupled with tissue models. However,
free-space models alone should be sufficient for applications
characterized by air-filled passageways, such as surgery in the
throat and lung.

Each active cannula application will require customization
of the design, and we foresee a family of both hand-held and
robotically actuated active cannulas tailored to meet various
clinical needs. However, nearly all foreseeable applications
will require an accurate forward kinematic description of
active cannula shape as a function of joint angles (translations
and rotations of component tubes), which is the focus of this
paper. Such a model serves not only as a starting point for
more complex cannula/tissue interaction modeling, but is also
directly applicable in free-space medical scenarios like the
throat and airways.

II. RELATED WORK

Active cannulas change shape using pre-curvature and dif-
ferential motion of superelastic component tubes. While the
location of actuation is similar to other medical devices like
catheters and steerable needles (at the base, outside the body),
we emphasize that active cannulas utilize a fundamentally

Fig. 1. A prototype active cannula made of superelastic nitinol
tubes. The inset line drawing indicates the active cannula’s degrees
of freedom. (Adapted from [17]).



Fig. 2. (Top) Tubes used in all active cannula studies to date
(including this paper), consist of a straight transmission of length
L, with a constant curvature section of length d at one end. (Bottom)
However, our models are in principle general enough to account for
piecewise circular/straight tubes with multiple transition points.

different means of steering within the body. Catheters use
blood vessel reaction forces to direct them down desired
branches. Steerable needles generate bending via tissue re-
action forces that arise as they manuver through a soft tissue
medium [10], [15], [16]. In contrast to catheters and steerable
needles, active cannulas do not require vessel or tissue reaction
force to steer. This does not preclude their use as steerable
needles (when coupled with tissue models), and multi-lumen
steerable needles based on pre-curvature have been proposed
[4], [8]. However, it does mean that active cannulas are perhaps
better classified as continuum robots. They can be considered
miniature serial robot arms composed of variable curvature
prismatic links.

Within the context of continuum robots, active cannulas
are unique in their use of the backbone itself to transmit
bending forces. Continuum robots typically use an initially
straight elastic backbone, which is bent by forces applied
through external mechanisms like wires (e.g. [3], [6]), flexible
push rods [13], or pneumatic actuators (e.g. [2], [7]). While
these external mechanisms are advantageous in permitting
direct control of curvature, they also limit miniaturization. This
motivates our desire to build bending actuation directly into
the backbone itself.

Initial studies of active cannulas have either not modeled
curved tube interaction [5], or provided beam-mechanics-
based models [11], [17]. Developed concurrently and in-
dependently, these models are strikingly similar. Though
parametrized slightly differently, both describe arc parameters
of concentric segments of curved elastic tubes as a function
of base angles of rotation. Both do so through computing the
equilibrium of applied moments, under similar assumptions.
One difference between the two studies is torsion, which is
assumed negligible in [11], and included in transmission (the
straight segments beginning at the actuators and ending at the
start pre-curved tube regions) in [17]. Without torsion, the
kinematics of an active cannula can be expressed in closed
form. Including torsion in transmission leads to transcendental
equations that must be numerically solved. While a framework
for multi-link forward and inverse kinematics without torsion
has been formulated [12], it has not yet been experimentally
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Fig. 3. The “links” or regions of unique overlap of a 3-tube cannula
composed of tubes like those in Figure 2-Top. Links start and end
at transition points, and the ;5™ link is between T} and Tj;1. The
largest tube transitions from straight to the left of 77 to curved to
the right. The same is true of the middle tube at 7% and the smallest
tube at T}.

validated. Thus, our objectives in the following sections are to
a derive multi-link kinematic framework that includes torsion,
to determine model parameters via calibration, and to experi-
mentally assess the the accuracy and descriptive capability of
models with and without torsion.

III. THE ACTIVE CANNULA

The active cannula shown in Figure 1 is made of three pre-
curved nitinol tubes, with a largest section diameter of 2.4 mm,
tapering to a smallest section diameter of 0.8 mm. We note
that this prototype has not been optimized for any particular
application. Smaller tubes can be used, inter-tube tolerances
can be reduced, and precurvatures can be chosen to suit a
particular application. While it is often challenging to add
additional bending sections to other continuum robot designs,
an important feature of the active cannula is that additional
sections can be easily added by increasing the number of tubes.

Forward kinematics for an active cannula is a description of
the complete device shape in terms of joint variables, namely
component tube linear positions and axial rotations. This
requires a model of how pre-curved tubes cause one another to
bend. A one “link” model was developed in [17], which maps
from the axial rotation angles of n concentric curved tubes to
their common equilibrium curvature and bending plane. The
main (experimentally validated) assumptions in this model are
that tubes can be considered to directly apply moments to
one another, and that (due to circular component tube pre-
curvatures) those moments can be considered constant along
the length of the link.

All previous studies mentioned above [4], [5], [8], [11],
[12], [17] have restricted themselves to component tubes that
have a straight transmission with a circular constant curvature
section at one end. While such component tubes are also
our primary concern in this paper, we note that the models
presented here are general enough to account for component
tubes that have (or can be approximated as having) multiple
constant curvature and straight sections along their lengths, as
illustrated in Figure 2.

IV. FORWARD KINEMATICS

The forward kinematics of continuum and hyperredundant
robots is often decomposed into two mappings. One is from



Fig. 4. The arc parameters of a link of curved tube consist of
curvature (), equilibrium plane angle (¢), and arc length (¢;),
respectively).

actuator (joint) space to arc parameters (curvature, plane,
and length of each section), while the other is from arc
parameters to Cartesian positions of the robot. We follow a
similar strategy in the analysis of the active cannula. The first
mapping (Sections IV-A and IV-B) is generally robot-specific,
since the type of actuators and design of the robot strongly
influence how actuators affect arc parameters. The mapping
from arc parameters to shape (Section IV-C), on the other
hand, is common to all robots that can be modeled as piecewise
constant curvature.

The shape of an active cannula is defined by a sequence
of unique overlap regions (“links”) between transition points
T}, as shown in Figure 3. Each of these links remains circular
(although the bending plane and curvature change) as tubes
are axially rotated [11], [17]. Thus, an active cannula has
piecewise constant curvature, consisting of a series of constant
curvature links tangent to adjacent links.

A. Determining Link Lengths

The first step in describing the shape of an active cannula
is determining the number of links and link lengths. These are
defined by component tube transition point locations, which
are functions of tube pre-shaped geometry (Figure 2) and
translational joint positions of tube bases. These combine
to create a sequence of links between transition points as
shown in Figure 3. For the 3-tube active cannula illustrated
(where each tube has a straight transmission followed by a
single circular arc), there are 5 curved links. More generally,
n tubes result in 2n — 1 links. The length of some links
reach zero when transition points align. It is straightforward
to determine the lengths of the links in the cannula, given
actuator displacements and component tube geometries.

For the example in Figure 3 the lengths of the m (in this
case five) regions of overlap ¢;,j € {1,...,m} are given
by the actuator translational positions of the n tubes p;,i €
{1,...,n}, and the lengths of the curved portion d; of each

tube as,

Ly = po +day — p3,
ls = p3 +d3 — p2 — da. (D

51102*/)1,
ly = p1 + dy — po,
l3 = p3 — p1 —dy,

A general procedure easily amenable to software implementa-
tion for determining all ¢; is to sort transition points in terms
of arc length, with link lengths given by differences between
adjacent transition points. We also note that if component tubes
themselves have more than one transition point, additional
active cannula links are the result.

B. From Joint Space to Arc Parameters

Active cannula joint space is parametrized by axial trans-
lations, p, and rotations, «, applied at the base of each
tube, namely ¢ = (p1,Q1,...,pn,ay). In what follows, the
subscript ¢ € {1,...,n} refers to tube number, while j €
{1,...,m} refers to link number. Cannula links are circular
segments described by the arc parameters curvature, plane, and
arclength (k, ¢, and £), as shown in Figure 4. The mapping
from ¢ to ¢ was described in the previous section, while the
mapping from q to (x, @) can be accomplished by generalizing
the model in [17] as follows.

Attach a coordinate frame, T}, at the base of the link by
sliding a copy of the cannula base frame along the backbone
(without rotation about z) to the base of the link. The model
then yields x and y curvature components for the link in the
link frame as

Zi Evlﬂﬁj COS 9” d Zi Elllkl,j sin oi,j
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respectively. The sums over ¢ € A; only include the tubes that
overlap the 5" link. Since the intrinsic (preformed) curvature is
piecewise constant along each tube, k; ; denotes the intrinisic
curvature of the i tube in the j link. Note that these values
change as a function of the actuator translations, because the
overlapping regions change as described above, ie. k;; =
k; j(p). E; is the elastic modulus, I; is the cross sectional
moment of inertia, and 0; ; is the axial it tube angle about
the 5" link frame 2 axis. There is a direct relationship between
curvature components and arc parameters, namely

¢; = tan"? <;‘J> and ;= \/XF+7]. ()

J

Neglecting torsional compliance completely (that is, assum-
ing infinite torsional rigidity), 0; ; = 0; 0 = o for all j, which
results in a direct symbolic mapping (2) from actuator space
to arc parameters for each link. However, when transmissional
torsion is included, 6;; no longer equals actuator input a;,
because the straight transmission will “wind up” as torque
is applied at the actuators. Since transmissions are generally
long compared to curved sections, we assume that tubes can
be modeled as infinitely torsionally stiff beyond 77, implying
that 0; ; = 0; 1 = 9, for all j > 1. With these definitions, the



total elastic energy stored in the system is given by
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where G is the shear modulus, J is the polar moment of inertia,
and L is the length of straight transmission between actuator
and curved section of tube.

We assume that actuator inputs influence the system “adia-
batically” in the sense that as we move the actuators, the sys-
tem remains at a local minimum of the energy landscape. Thus
the angles at the end of the straight transmission (¢1, ..., ¥;,)
are always assumed to be at a local minimum of (3).

As we describe in Section V, there can be multiple stable
local minima of (3). Thus the forward kinematics, given the
actuator states, is not necessarily a unique mapping. The
particular minimum of (3) in which the robot finds itself is
dependent on the path traversed through through joint space
to reach current joint angles.

To obtain the minimum of the energy function (3), one
can solve for the critical points where the gradient equals
zero. This leads to a set of transcendental equations, which
can be solved numerically using a variety of techniques (e.g.
Newton’s method).

C. End-Effector Pose

The shape of the cannula is defined by the arc parameters
and the product of exponentials formula. Using the notation
of [9], the joint twists associated with arc parameters are,

&= 00 0 0 1]7,
=10 01 % 0 0.

The full kinematics of the mechanism is then given by,

g = [ & @oclE0) @)
j=1

where A¢; = ¢; — ¢;_1 and g € SE(3) is the transformation
from cannula base to tip. Thus, each cannula link contributes
a pair of exponentials to the overall kinematics.

V. THEn =2 CASE

For the remainder of the paper we will consider the specific
case of n = 2 which corresponds to the prototype with which
we perform experimental validation and parameter fitting. For
n =2 we have m = 2n — 1 = 3 regions of overlap, only the

Fig. 5. Contour plots of the energy landscape as the angular difference
between the tube bases is increased. (Top Left) 120° (Top Right)
160° (Bottom Left) 180° (Bottom Right) 240°. For small angular
differences between the tubes, there is only one global minimum. As
the angular difference approaches 180°, two appear. Beyond 180°,
the new minimum becomes the global minimum, and eventually the
only minimum. These plots are for the ‘partial overlap’ experiment
in Section VI and are made using nominal parameter values.

middle of which contains two curved tubes. In this case the
energy (3) is

U(t1,1h2) = C51(041 —1)? + %2(012 —2)? + lrcski+

k k
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where ¢; = T2 = GE—;’Q and c3 = %m@. The
gradient is then
—c1(ar — 1) + Lacz sin(Py — 1a)
VU = . =0, (5
{—02(% —a) — aczsin(Py — ) ©)

where the unknowns are (2, 1), and (a1, a2) are the inputs.
Adding these two equations yields ¢o = ¢ (a1 — 1) + aa,
which when substituted back into (5) yields

1 — oq = Laby sin(ag + by — (14 b2)1)1), 6)

where

bl = C3/Cl and b2 = 01/02. (7)

The transcendental (6) can be approximately solved using
a variety of techniques. Here, we use a 5" order Taylor
expansion of the sine term about the previous value of ;. We
choose the real root of the resulting polynomial that is closest
to the previous value as the solution. While this procedure
worked well for our data set (generally there was only one non-
complex root), a more careful solution of (5) that is guaranteed
to find all possible critical points as well as resolve the path-
dependence issue represent works in progress.



0.6 N

b, (rad)

4.5

3.5

b, (rad)

Fig. 6. Contour plot of the energy function at the bifurcation point.
The * denotes the position of the system (from (9) and (10)) just
before it bifurcates to a new minimum.

In the context of the current work, we found it sufficient to
frequently visually inspect the roots returned, and to evaluate
(6) with the 1)1 value obtained to ensure that the numerical
values of the left and right hand sides are approximately
equal. We note that in practice on a robotic system, a close
approximation for the true value of v); about which to expand
is readily available, because the robot will only move a small
amount between computer servo cycles.

A. Bifurcation and “Snapping”

As the difference between actuator input rotations (ag — 1)
approaches 180°, a bifurcation in the energy landscape in the
torsion angles (1, t2) introduces two spurious critical points:
a saddle and local minimum (see Figure 5). As actuator input
difference approaches 180° from below, the new minimum
deepens, and the minimum in which the system rests rises,
until at (ag — 1) = 180° the heights of the minima are equal.
Just beyond an actuator difference of 180°, the spurious min-
imum actually becomes the global minimum, but the system
remains in the original local minimum due to the “torsional
windup” history effect. As the input angle difference continues
to increase, the system remains in the local minimum until it
reaches another bifurcation, at which point the local minimum
disappears, leaving only the global minimum above 180°. At
this point the system “snaps” to the global minimum, releasing
built-up torsional energy.

At a bifurcation point, a local minimum and saddle merge.
This effect happens when the Hessian is singular (concavity
changes) while simultaneously the gradient is zero (critical
point). This is illustrated in Figure 6. The Hessian is singular
when

0*U
det <8¢2> = c1co + (€1 + ¢2)lacz cos(thy — ha) = 0. (8)

Combining this with the zero gradient constraint (5), it is

possible (for a fixed a;) to solve for the ¢, ¥o and input
ag at which the bifurcation occurs. These are given by,
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where the bifurcation parameter 6 = —c3/co — c3/c1. In

Section VI-C we experimentally determine input angles that
cause bifurcation, and use closed-form expression (11) to
facilitate bifurcation parameter fitting.

VI. EXPERIMENTS AND PARAMETER FITTING

Two types of experiments were undertaken to evaluate the
ability of the model discussed above to capture bifurcation
behaviour and cannula shape. A second goal of these exper-
iments was to calibrate the active cannula, estimating model
parameters.

A. Experimental Setup

Our experimental prototype consists of a 1.60 mm diameter
wire and a tube with 2.39 mm outside diameter (OD) and
2.01 mm inside diameter (/D). The wire has a 218.5 mm
straight transmission and an 85 mm long circular curved
section created via plastic deformation with a curvature of
0.0138/mm. The tube has a a 93.5 mm straight transmission
and a 92.3 mm curved section created via plastic deformation
with a curvature of 0.0099/mm. Both tube and wire have
acrylic discs affixed to their base as shown in Figure 7. The
discs are etched with radial lines every 10° to enable manual
axial rotation to desired angles. The linear translations of the
discs can be set using a scale etched onto the acrylic support
structure. Locking mechanisms consisting of spring-loaded
pins are available to fix wheel positions in both degrees of
freedom.

Fiducial markers (bands of black tape) are placed along the
cannula for stereo triangulation as shown in Figure 8. The
positions of these fiducials are sensed using a stereo vision
system composed of two calibrated Sony XCD-X710 firewire
cameras. One source of error in this data collection procedure
is the accuracy of manual point selection in images, which
is estimated at 2 pixels or 0.6 mm. Another is fiducial size
(they are not perfect points), causing small differences in
intended selection locations. We estimate fiducial dimensions
to introduce error of no more than the diameter of the wire
itself (1.6 mm). Thus the overall vision system measurement
error is estimated to be approximately 2.2 mm.

B. Parameter Estimates from Physical Quantities

Writing model parameters in terms of basic material prop-
erties and measured dimensions is the first step in determining
reasonable physical expectations of parameter values. This can



be accomplished by combining (7) with the formula for cross-
sectional inertia of a circular section (I = Z;(OD* — ID*)),
and the relationships between shear and bending quantities
(J =2I and E = 2G(1 + v) where v is Poisson’s ratio), to
produce

o EQIQlele(l + 1/1)

b - E1[1L2(1—|—l/2)
! Er I + Fol,

- EQIQLl(]. + Vl) '

ba (12)
Expected parameter ranges for b; and b, can be deduced from
the uncertainty in each quantity upon which they depend.
Nitinol dimensions are specified by the manufacturer (Nitinol
Devices and Components, Inc.) to +0.0010 inch, while the
elastic modulus F is reported as 41-75MPa. Poisson’s ratio
is not quoted, but is often taken to be approximately 0.35 for
Nitinol. It has also been noted that plastic deformation can
increase Poisson’s ratio for Nitinol to 0.5 or more [18], so
we will assume a range of 0.30-0.55. Measurement errors in
straight transmission lengths are estimated to be 1 mm, and
measurement accuracy of curvature was estimated at 10% (see
[17]). Applying error propagation, the variance in parameters
can be determined by'

Q= Jpe Qc JiL (13)
where (). is a diagonal matrix of variances in each quantity
upon which b; and by depend (denoted by ¢), and Jy is
the Jacobian between parameters and quantities containing
error (Jbg = g—i’). The square roots of the diagonal entries of
Qy yield the variance in parameter values. These yield a by
range of 3.36-7.06 and a by range of 3.14-8.45. A similar
calculation for the bifurcation parameter (5 = —by (b + 1))
yields a range for 5 of (—41.45)—(—29.41). These ranges
provide a basis for comparison with fitted parameter values
produced by the calibration procedures described below.

'For the sake of estimating parameter variances, we assume that physical
parameter ranges are equally-scaled variances.

Fig. 7. Experimental apparatus. Both tube and wire have input
circular handles etched to encode rotation and the support structure
features a linear ruler etched to encode translation. Spring pin locking
mechanisms hold wheels at desired linear and angular positions.

fo (mm) | 823 | 72.3 | 62.3 | 52.3 | 42.3 | 323
as (deg) | 295 | 283 | 265 | 240 | 225 | 205

TABLE 1
SAMPLE EXPERIMENTAL BIFURCATION ANGLES FOR VARIOUS LENGTHS

27.3
200

OF CURVED TUBE/WIRE OVERLAP

C. Bifurcation Point Experiment

To experimentally determine the bifurcation parameter (3
for the cannula, the tube was fixed in place and the wire was
rotated until the bifurcation angle was reached. This was done
for twelve linear translational positions in 5 mm increments
for {5 from 82.3 to 27.3 mm. A sampling of this data is shown
in Table I. Note that the input angle at which bifurcation
occurs is always more than 180°, and often significantly more.
This illustrates the torsional windup that occurs in active
cannulas. The [ parameter was fit to this data using Matlab’s
nlinfit, which computes a nonlinear regression using least
squares. Using this procedure, we estimated G at -44.91, with
a 95% confidence interval of +2.02, which is which is near
(though slightly above) the ranges described in Section VI-B.
In Section VI-D we explain how unmodeled effects should
be expected to increase the magnatude of the experimental
[ in this type of experiment, but we first determine 3 again
in Section VI-D through a different procedure that uses data
more uniformly distributed over cannula workspace.

An important feature of active cannula bifurcation behavior
is that it ceases to occur for some values of 3. For a given
cannula with fixed curvatures, this corresponds to a minimum
length of curved tube overlap. Below this length, the energy
landscape always has a single global minimum and thus it
is not possible to simultaneously satisfy (5) and (8). The pre-
dicted ¢5 from (11) is 22.3 mm (the value at which cosfl(ﬁ)
becomes undefined). Minima at slightly larger ¢o values will
be very near one another (and very near 180°), and friction
will also mask very small bifurcation motions. These effects
cause a first discernible experimental cannula bifurcation at /5
= 27.3 mm, slightly higher than the theoretical value. Given
arclengths, it is also possible to choose Cannula curvatures so
that bifurcation is prevented even for complete overlap. For
fixed curvatures, we will further explore ¢5 prediction in the
next section.

D. Shape Experiment

Using the stereo camera system described above and with
the base of the tube fixed, cannula shape information was
captured for multiple angles at two distinct linear positions
of the base of the wire. One, called the “full overlap” position
caused /1 = 10 mm (tube curved, wire straight), {5 = 82.3 mm
(both curved), and /3 = 2.7 mm (tube ended, only curved wire
present). The other, called the “partial overlap” position caused
1 = 48.0 mm, {5 = 44.3 mm, and ¢3 = 40.7 mm, with the
same tube and wire combinations in each link. For the full
overlap case, 15 input angles were applied at 20° increments
from 0° to 280°. For the partial overlap case, 11 input angles
were applied at 20° increments from 0° to 200°.



Using data collected from these experiments, we fit b; and
bo. The transformation between the stereo camera coordinate
frame and a frame fixed at the base of the cannula was first
estimated by applying Arun’s method for point cloud registra-
tion [1]. Images of a 15 mm checkerboard pattern (with corners
at known physical locations with respect to the cannula base
frame) were captured. Sixteen corners on the checkerboard
were triangulated with the stereo vision system. Since the
points were coplanar, this registration was only expected to
provide a rough estimate of the frame transformation. Thus
six “nuisance parameters” (a 3-vector for position and a 3-
vector for orientation with magnitude of rotation encoded as
length) describing the cannula base frame were included in
the calibration procedure, and initialized with the results from
the point cloud registration.

Parameter fitting was accomplished using Matlab’s
fmincon, with angular nuisance parameter bounds set to
+0.349,2 from initial estimates. The objective function
was the sum of Euclidean distances from experimental to
theoretical tip positions (Eq. 4), outer tube endpoints (Eq.
4 up to link m — 1), and positions of fiducial band nearest
the cannula base (a fixed distance along the straight cannula
transmission between 7T, and 77). The optimization rapidly
converged to by = 7.92 and by = 4.11 from a wide range
of initial b; and by values. Nuisance parameters showed
only small changes during optimization, with cannula base
frame orientation moving 4.4° while position of the base
tape fiducial translated 1.1 mm. These small changes in
nuisance parameters are reasonable given the coplanar data
used to compute our initial frame transformation estimate.
Average tip error was reduced from 10.1 mm (22.10 mm
max) with no fitting to 3.0 mm (8.76 mm max) with fitting.
Given estimated measurement error of 1 mm in individual
tube straight and curved lengths, and the estimated 2.2 mm
error in vision system data, a final average tip error of 3 mm
appears reasonable.

Furthermore, the fitted b, was within the range determined
in section VI-B, while b; was near it. The energy bifurcation
parameter they imply (3 = —40.49) is also now within its
estimated parameter range. Small differences in 3 compared
to the bifurcation experiment (which produced 5 = —44.91)
are the results one would expect from unmodeled torsional

2This is equivalent of 20° converted to radians. However, since magnitude
is also encoded in these variables, this bound cannot be strictly thought of as
an angle.

Fig. 8. Experimental photo from one of the stereo cameras showing
the cannula with fiducial markers.
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Fig. 9. Shown above are the final angle of the partial and full
overlap positions (200° and 280° respectively), the data points with
the greatest overall tip error for each case above. Overlaid model
predictions clearly show that torsion is a vital part of an accurate
active cannula kinematic model.

deformation (in the curved regions) and unmodeled friction.
Both would serve to increase the magnatude of the bifurcation
experiment estimate of (3. In that experiment all data was
from regions in joint space where the highest possible cannula
internal forces occur. This contrasts the shape experiment,
which used data more uniformly distributed over the joint
space. If effects of friction and unmodeled torsion cause a
5.4% reduction in each experimental bifurcation angle (see
Table I), this would account for the difference in 3. Further,
0 = —40.49 generates the prediction that bifurcation will
cease at /o = 24.7 mm, only 2.6 mm less than the experi-
mental value (¢ = 27.3 mm found in VI-C), and somewhat
closer than the /5 = 22.3 mm determined in the bifurcation
experiment.

E. The Importance of Torsion

As we have described in this paper, including torsion
in active cannula models leads to transcendental equations.
Because of this (as outlined in Section II), models have been
proposed in the literature that have assumed infinite torsional
rigidity and treat active cannula kinematics as a pure beam
bending problem. While this is analytically attractive, our
experimental results indicate that assuming infinite torsional
rigidity precludes accurate prediction of active cannula shape.
Without torsion, there is only one model parameter present
in the kinematic model (2), namely the ratio of tube flexural
rigidities (B = %) The range for B estimated via the
tolerances described in Section VI-B is 0.630—4.33.

Applying the same fitting procedures described in Section
VI-D to the torsion free case, we first determined a tip error of
24.78 mm (54.32 mm maximum). We then fit model and frame
nuisance parameters and found convergence over a wide range
of initial values to B = 3.98, nuisance angle = 36.93°, and
nuisance distance = 1.11 mm. Average tip error was reduced
to 13.60 mm (31.48 mm maximum). Thus, tip errors remain
large for the torsionless model even with calibration. Further,



the angular nuisance parameters changed significantly during
the optimization, resulting in highly inaccurate predictions of
overall cannula shape throughout the workspace.

To explore the possibility that nuisance parameters were
not well suited for torsionless calibration, we also applied cal-
ibration procedures to the torsionless model while holding the
nuisance parameters fixed values known to give approximately
correct frame transformations. Fixing nuisance parameters at
initial estimates from Arun’s method, we optimized B alone
and determined a value of 3.59. This resulted in average tip
error of 23.50 mm (53.94 mm max). The other approximately
correct set of nuisance parameters available are the calibrated
values found for the torsion-included model in Section VI-
D. Holding nuisance parameters fixed at these values, we
determined B = 3.98. This resulted in an average tip error
of 22.20 mm (52.39 mm).

All of the above efforts to calibrate the torsionless ac-
tive cannula model result in large tip errors. This indicates
that active cannula models that do not include torsion are
structurally insufficient for making accurate predictions of our
experimental active cannula shape. They also do not predict
bifurcation behavior, since infinite torsional rigidity implies
that tube angles are equal to base input angles at all points
along the cannula. Results are illustrated visually in Figure 9
for a parameter value in the middle of the physically expected
range, and using the initial frame estimate. If the cannula
design were modified to use a different material with higher
torsional rigidity for straight transmissions, the torsionless
model may be more successful. However, doing so would
be challenging from a prototype manufacturing standpoint.
For our current all-Nitinol prototype, inability to account for
torsional windup in the torsionless model makes it inaccurate
except in a small neighborhood of (a2 — a;) = 0.

VII. CONCLUSION

Building upon the initial beam-mechanics-based models of
tube interaction in one link of an active cannula [11], [17],
we have described a general kinematic framework for multi-
link cannulas that includes torsion in transmission. We also
explored in detail the two-tube, three-link case, and exper-
imentally calibrated model parameters using two different
methods that agree well with one another and also produce
results near parameter ranges derived from material property
tolerances and physical geometry. Experimental results lead
to the conclusion that when modeling active cannulas, torsion
must be taken into account.

These results pose future research areas for active cannula
designers, including solving standard robotics problems for
active cannulas (e.g. compute differential or inverse kinemat-
ics) in an analytically more complex setting without the aid of
closed form kinematics. Alternatively, one could approach the
problem from a design perspective and try to construct active
cannulas that more closely approximate torsionless kinemat-
ics, perhaps using innovative materials (e.g. the windings in
flexible drive shafts).

The results presented in this paper are a steps toward realiz-
ing the potential of active cannulas, which we believe can give
doctors the ability to reach previously inaccessible locations
in the human body to treat disease much less invasively.
The kinematics and calibration described here enable further
advancement toward a complete theory of active cannulas, en-
hancing their utility in both medical and non-medical domains.
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