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Stability and performance during rhythmic motor behaviors such as
locomotion are critical for survival across taxa: falling down would
bode well for neither cheetah nor gazelle. Little is known about how
haptic feedback, particularly during discrete events such as the heel-
strike event during walking, enhances rhythmic behavior. To deter-
mine the effect of haptic cues on rhythmic motor performance, we
investigated a virtual paddle juggling behavior, analogous to bouncing
a table tennis ball on a paddle. Here, we show that a force impulse
to the hand at the moment of ball-paddle collision categorically
improves performance over visual feedback alone, not by regulating
the rate of convergence to steady state (e.g., via higher gain feedback
or modifying the steady-state hand motion), but rather by reducing
cycle-to-cycle variability. This suggests that the timing and state cues
afforded by haptic feedback decrease the nervous system’s uncer-
tainty of the state of the ball to enable more accurate control but that
the feedback gain itself is unaltered. This decrease in variability leads
to a substantial increase in the mean first passage time, a measure of
the long-term metastability of a stochastic dynamical system. Rhyth-
mic tasks such as locomotion and juggling involve intermittent con-
tact with the environment (i.e., hybrid transitions), and the timing of
such transitions is generally easy to sense via haptic feedback. This
timing information may improve metastability, equating to less fre-
quent falls or other failures depending on the task.

haptics; juggling; metastability; limit cycle; multisensory integration

TERRESTRIAL LOCOMOTION (Holmes et al. 2006) and other rhyth-
mic motor control tasks, such as juggling (Schaal et al. 1996)
and finger tapping (Yamanishi et al. 1979), often involve
hybrid transitions, namely discrete changes in the contact
configuration of the animal with its surrounding environment.
There is important information conveyed in the timing of these
transitions: a measurement of an early or late hybrid transition
carries information about the state of the body and/or environ-
ment.

We hypothesize that providing sensory feedback to the
nervous system regarding the timing and state of these transi-
tions can enhance motor control performance. Specifically, we
investigate the role of haptic cues during virtual paddle “jug-
gling.” A similar juggling paradigm has been extensively
explored by Sternad and colleagues (Ronsse et al. 2010;
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Ronsse and Sternad 2010; Schaal et al. 1996; Sternad et al.
2001; Wei et al. 2007), laying the theoretical and experimental
foundation upon which the current study is built. In a theoret-
ical model of paddle juggling, Schaal et al. (1996) showed that
if the nominal motor pattern, measured in terms of the “aver-
age” periodic trajectory of the paddle during steady-state jug-
gling, exhibits negative accelerations at the time of ball-paddle
collision, then the system would be open-loop stable; in other
words, if the nominal paddle motion were replayed in open-
loop (in a Gedanken experiment), then small perturbations to
the ball would diminish over time, and the ball would return,
asymptotically, to its nominal bouncing height. This is often
referred to as “open-loop stability” in the literature, but this
term is misleading because human hand motions are clearly not
executed in an open-loop fashion. Indeed, the human paddle
juggling behavior is a closed-loop system that relies on active
sensory feedback (vision and haptic feedback). Both our own
data and prior studies (Wei et al. 2007, 2008; Ronsse and
Sternad 2010; Siegler et al. 2010, 2013) support the fact that
active sensory feedback plays a significant role in paddle
juggling. Thus, when referring to the stability of the nominal
pattern, this article adopts the term “nominal stability.”

Sternad et al. (2001) drew the intriguing conclusion that
nominal stability seemed to improve in the presence of haptic
feedback. To the best of our knowledge, this observation, that
a change in the availability of enriched sensory information
causes subjects to adopt a different nominal pattern, has not
been repeated in another behavior or in the same behavior by
a different research group.

In the present study, we reexamine the role of haptic feed-
back in juggling. Our juggling task is virtual: users “juggle” by
using this virtual paddle controlled via a haptic interface to
repeatedly hit a virtual ball on a computer screen. The haptic
timing cue is provided in the form of a brief mechanical
impulse imparted to the subject’s hand via the haptic paddle.

We indeed confirmed that the haptic timing information
improves juggling performance as previously reported, but we
were unable to corroborate previous findings (Sternad et al.
2001) that nominal stability depends on the availability of
haptic information. More surprisingly, we also found no dif-
ference in the closed-loop convergence rate in the two haptic
conditions. Therefore, haptic feedback did not change the
closed-loop “gain” nor the nominal pattern, contradicting pre-
vious findings. As described in the DISCUSSION and APPENDIX,
there are several possible reasons for this discrepancy, includ-
ing the differences in the experimental setup between our work
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and that of Sternad et al. (2001), although it appears likely that
the difference arises from complexities in estimating paddle
acceleration at impact (see APPENDIX). Irrespective of these
differences, our results show that rhythmic motor performance
can be enhanced due to a haptic timing cue, despite no apparent
change to the nominal (open-loop) or closed-loop convergence
rates.

How does haptic feedback improve performance without
affecting either closed-loop or nominal convergence rate? In an
effort to understand the closed-loop mechanism underlying the
significant performance improvement haptic feedback affords
over vision alone, we adopted a stability metric, the mean-first-
passage-time (MFPT) that incorporates not only the determin-
istic dynamics but also the stochastic nature of the system
(Talkner et al. 1987). This metric has been used to describe the
long-term metastability of rhythmic locomotion of robotic
systems (Byl and Tedrake 2009). There are two primary ways
to improve metastability (that is, to increase the MFPT). One
way is to decrease the noise, and the other is to increase the
convergence rate. We illustrate later in this article that decreas-
ing the noise (e.g., sensory or motor) can have a much more
dramatic effect on improving the MFPT than quickening con-
vergence.

If long-term metastability were enhanced by a haptic timing
cue, despite no change in convergence rate, it would suggest
that the haptic cue enhanced the estimate of the ball and paddle
state, thus reducing the nervous system’s uncertainty. By
contrast, increasing the feedback gain itself would increase the
convergence rate.

Juggling as a Model System in Neuroscience and Robotics

How animals control rhythmic behavior, such as locomotion
and juggling, is one of the grand challenges in neuroscience. It
has been examined at all levels of biological organization from
individual ionic currents (Dale and Kuenzi 1997), to central
pattern generating networks (Ijspeert 2008; Mulloney and
Smarandache 2010), to whole organism dynamics (Holmes et
al. 2006), and it has been analyzed using behavior (Mulloney
and Smarandache 2010), physiology (Harris-Warrick and Co-
hen 1985), and modeling (Holmes et al. 2006; Cohen et al.
1982).

Yet, detailed computational models of rhythmic motor be-
havior remain limited. Indeed, while the tools for this type of
analysis are emerging (Revzen and Guckenheimer 2008,
2011), they are still in their infancy. Perhaps more importantly,
rhythmic motor behaviors may recruit different computational
circuits than those used during discrete motor tasks (Schaal et
al. 2004). Thus it is essential to rigorously quantify rhythmic
motor behavior and create models of such behaviors without
assuming that lessons learned for discrete motions will apply.

Our main goal in this work is to understand the rules of
rhythmic motor coordination. Terrestrial locomotion generally
involves extremely complicated biomechanics, and even the
simplest and most impoverished models are challenging to
analyze (Holmes et al. 2006; Schwind and Koditschek 2000)
and control (Carver et al. 2009a; Ankarali and Saranli 2010).
Yet, several studies on neuromechanical systems (Cowan and
Fortune 2007; Chiel et al. 2009; Tytell et al. 2011; Hedrick and
Robinson 2010) highlight the role of biomechanics in decoding
the neural circuits that control locomotion. To overcome these

challenges and to isolate neural systems from biomechanics,
this article considers a virtual one-dimensional paddle juggling
task, which has extremely simple mechanical dynamics com-
pared with other tasks such as walking, running, or flying.

Juggling has been addressed from several perspectives, in-
cluding nonlinear dynamics (Guckenheimer and Holmes 1983;
Holmes 1982; Tufillaro and Albano 1986; Chatterjee et al.
2002), robotics and control (Buhler et al. 1990, 1994; Zavala-
Rio and Brogliato 2001), and human movement analysis (de
Rugy et al. 2003; Morice et al. 2007; Wei et al. 2007; Ronsse
et al. 2010; Siegler et al. 2010, 2013). From the human
movement analysis point of view, several researchers (Schaal
et al. 1996; Ronsse and Sternad 2010; Ronsse et al. 2010; Wei
et al. 2007, 2008) have investigated the same simplified jug-
gling task we consider here in which a ball is stabilized in the
air by hitting it upwards with a paddle. Despite its apparent
simplicity, rhythmically bouncing a ball raises fundamental
questions common to the study of general rhythmic movements
(including walking). To rhythmically juggle a ball requires fine
tuning of the movements of the hand to hit the ball with the
appropriate velocity, at the right place, and at the right time.
The result of successful juggling is a hybrid dynamical system
that displays limit-cycle-like behavior, just as with walking.
The wide interest in this behavior likely arises from its sim-
plicity, experimental tractability, and relevance to neural con-
trol. Of course, this simplicity is relative as juggling can exhibit
surprisingly complex behavior (thanks to its hybrid dynamic
nature): Guckenheimer and Holmes (1983) showed that a ball
bouncing on a periodically driven planar surface exhibits a
wide variety of motions, including steady states, period bifur-
cations, strange attractors, and chaotic motion.

MATERIALS AND METHODS

To analyze human motor control of a rhythmic behavior, we used
a one-degree-of-freedom (1-DOF) haptic device and a virtual envi-
ronment (Fig. 1A). In our experiments, subjects manipulated a haptic
paddle with their hand, causing a virtual paddle to move up and down
on the computer screen and “juggled” by using this virtual paddle to
repeatedly hit a virtual ball, much like bouncing a table tennis
ball. The paddle and ball physics were simulated and conveyed to the
participant haptically via force impulses at impact rendered with the
1-DOF haptic interface and visually via rendered ball and paddle
movement on a computer screen (Fig. 14). The goal was to cause the
ball to reach its apex between two horizontal lines. Example data
acquired from this system are depicted in Fig. 1B. In the APPENDIX, we
describe the rationale for using a virtual juggling setup over a physical

juggling setup.

Experiments

Eighteen college- and graduate-school-aged participants (2 female,
16 male) attempted to perform the given juggling task. The experi-
ments were approved by the Johns Hopkins University Institutional
Review Board (IRB). Each experiment consists of a demonstration
session, four training sessions, and two final data collection sessions.
The duration of each session was 2.5 min. Between each session,
participants were given 30-s rest to prevent fatigue.

During the demonstration session the experimenter explained how
to use the haptic device to the participant and then performed a brief
demonstration of the juggling task. For training and data collection
sessions, we asked participants to bounce the ball so as to repeatedly
cause the ball to reach its apex within the goal region. In training
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Sample Data

Height [cm]

— Paddle Trajectory
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Fig. 1. Virtual paddle juggling setup and sample data. A: paddle juggling using a haptic interface. The one degree-of-freedom (1-DOF) haptic device measures
the vertical displacement of a subject’s hand and uses this to control the position of a virtual paddle. A ball is rendered to the computer screen. When the ball
strikes the paddle, a brief force impulse can be provided depending on the experimental condition. The goal is to bounce the ball (gray circle) under the influence
of gravity so that it reaches apex (bold plus sign) within a goal region (between the parallel horizontal lines) using a virtual paddle (horizontal rectangle).
B: sample data obtained with our experimental setup. Paddle and ball trajectories are depicted as solid and dotted curves, respectively. Users were
instructed to maintain the ball within the goal region (gray). The initial apex of the ball is outside the goal region for this illustrative example (in
experiments, the first apex was set to the middle of the goal region). However, the user achieves successful rhythmic juggling within # ~ 3 s and maintains

this throughout the trial.

sessions, the subjects performed the task with and without haptic
feedback based on a fixed order: /) without haptic feedback, 2) with
haptic feedback, 3) without haptic feedback, and 4) with haptic
feedback.

The purpose of the training sessions was to enable subjects accli-
mate to the environment and behavior. In the data collection sessions,
one session was performed without haptic feedback and the other
session was performed with haptic feedback. Half of the subjects
started the data collection sessions without haptic feedback, and the
other half started with haptic feedback.

Experimental Setup and Virtual Reality Implementation

Experimental apparatus. The haptic device measured the displace-
ment of a user’s hand, which was mapped to the position of the virtual
racket on the screen. Depending on the experimental condition, the
haptic paddle could simulate the virtual ball-paddle collision by
providing a force impulse to the hand. The juggling paddle was
coupled to a DC motor (A-max 26 Series-110170; Maxon Precision
Motors, Fall River, MA) with a back-drivable capstan mechanism.
Haptic force feedback was simulated via generating an impulsive
torque to the motor shaft. The DC motor was also equipped with a
HEDS 5540 quadrature laser encoder (Avago Technologies, San Jose,
CA) that was used for measuring the rotation in the motor shaft. The
virtual reality part of the system was developed in the C# program-
ming language environment (Microsoft, Redmond, WA), and the loop
rate of the whole system was 1 kHz.

Mechanical system model and virtual reality implementation. Pad-
dle juggling, like many other rhythmic dynamic tasks, is a hybrid
dynamical system. Roughly speaking, a hybrid dynamic system is one
for which smooth dynamics are punctuated with discrete “jumps”
triggered by threshold functions (Guckenheimer and Johnson 1995).
In this context, we divide the ball dynamics into two parts: a contin-
uous flight phase describing the dynamics of flight, and a discrete
transition phase describing the state transitions due to collision be-
tween the paddle and the ball. Table 1 provides the notation we use
throughout the article. Neglecting aerodynamic drag, flight dynamics
of the ball take the form

b=—g, 0

subject to appropriate position and velocity initial conditions, where b,

15, and b denote the height, velocity and acceleration of the ball,

respectively. To implement the physics digitally on a computer, we
discretized the continuous dynamics in (1). Let 7, denote the time of

the kth time step, and let
b(ty)
Zr = -
b(ty)

denote a discrete-time state variable. Then,

Table 1.

Notation

Parameter Units Description

System parameters

g m/s? Gravitational acceleration

a Ball-paddle coefficient of
restitution

bnax m Upper limit of goal region

brin m Lower limit of goal region

Continuous-time
variables

t S Time

b m Height of ball

b m/s Velocity of ball

b m/s Velocity of ball just before
the collision

bt m/s Velocity of ball just after
the collision

P m Position of paddle

p m/s Velocity of paddle

p m/s? Acceleration of paddle

Discrete-time variables at
specific events
Index of apex events
Time of kth ball apex event
Apex height at kth cycle
Steady-state value of ball
apex height
Deviation of ball apex
height around
steady-state
m/s* Acceleration of paddle at
collision

t s
b apex [k] m
m

s

x[k] m

pimpacl
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1 Ay N s gty
Z = Z
k+1 0 1 |* oAy,
where At, = f,,., — t, is the time between two sampling instants. In
real ball-paddle dynamics, a collision event is triggered when the ball

hits the paddle, which occurs when the following conditions are
satisfied:

b=p,
b<p.
(where p, p, and j are the height, velocity and acceleration of the

paddle, respectively), which were approximated in discrete-time (to
implement in virtual reality) as the first discrete time, #,, for which

b(ty) < p(t),
b)) < ptp).

The ball position and velocity were simulated and were therefore
known to the numerical precision of the computer, but the paddle
position and velocity were estimated in real time from optical encoder
measurements. To estimate paddle velocity, encoder position data
were low-pass-filtered and passed through a backward difference
filter.

To model the discrete transition due to collision between the paddle
and the ball, we assumed that the collisions were purely elastic and the
mass of the paddle was infinite such that the paddle velocity was not
affected by the collision. Based on these assumptions, using the
coefficient of restitution rule, the discrete transition at the collision
instant was defined as

b =b",
bt =—ab” +(1— a)p )

where « is the coefficient of restitution. In the experiments with haptic
feedback, we applied an impulsive force (short duration 10 ms,
constant magnitude) proportional to the impact velocity to the haptic
paddle, v;,,,, = v, = v, (with a gain of 0.1 Ns/m) immediately after
collision. We manually tuned the amplitude and duration of the haptic
feedback in our preliminary analysis based on the authors’ perception
of the haptic experience, such that the haptic feedback was noticeable,

natural, and within the capabilities of our haptic device hardware.

Task Performance

We asked the participants (n = 18) of our experiment to keep the
apex height of the ball within a goal region, and they performed the
task both with and without haptic feedback. To ease the task for the
participants, we displayed a plus sign showing the last apex height of
the ball (Fig. 1A). We also asked the participants their opinions about
the difficulty level of completing the task with and without haptic
feedback.

First, we analyzed the importance of haptic feedback based on two
performance measures: percentage of outliers (PO) and coefficient of
variation (CV). Percentage of outliers corresponds to the percentage
of apex heights that are not inside the goal region. Lower PO values
indicate good performance. CV is the coefficient of variation of apex
height values, which is found by dividing the standard deviation of the
data set to the mean value and multiplying by 100. CV captures the
variability of the behavior.

Since our goal was to study successful rhythmic juggling behavior,
we excluded the unsuccessful experimental data. Two of the subjects
were unable to produce successful rhythmic juggling regardless of
haptic condition, and their performance was unacceptably poor in both
cases for both metrics (PO values >80% and CV values >60%). A
third subject achieved stable juggling with haptic feedback (PO =
19.8% and CV = 6.2%), but this subject failed to produce successful

rhythmic juggling without haptic feedback (PO = 70.2% and CV =
85.3%). Since this subject produced no useful data without haptic
feedback, we excluded all of the subject’s data from our statistical
analysis (although this subject supports our general finding that haptic
feedback enhances performance). As a result, we analyzed the data of
15 subjects.

Nominal Behavior and Nominal (Open-Loop) Stability

Nominal stability, also called open-loop or passive dynamic stabil-
ity, is an important concept in rhythmic dynamic behaviors (Dickin-
son et al. 2000; Chatterjee et al. 2002), and it has been analyzed
extensively, especially for legged locomotion (Full et al. 2002; Garcia
et al. 1998; Geyer et al. 2005; McGeer 1990).

In previous studies on paddle juggling behavior, researchers exten-
sively investigated nominal (open-loop) stability (Schaal et al. 1996;
Sternad et al. 2001; Wei et al. 2007, 2008): nominal stability in paddle
juggling would imply that if the average motor pattern were recorded,
and played repeatedly, then small errors in ball motion would dimin-
ish over time, even without sensory feedback. The open-loop juggling
model initially introduced by Schaal et al. (1996) requires that the
paddle motion has to be strictly time periodic and the paddle has to hit
the ball with an upward velocity. Under these conditions, ball bounc-
ing becomes a nonlinear dynamical system, operating near a limit
cycle (Holmes et al. 2006). A limit cycle is an isolated periodic
trajectory that is a solution to the equations governing the dynamical
system. If all trajectories in a sufficiently small neighborhood of the
limit cycle converge to the limit cycle, the limit cycle is said to be
stable. One way to test for stability is to analyze the eigenvalues of the
Poincaré return map (Guckenheimer and Holmes 1983; Ghigliazza et
al. 2003; Ankarali and Saranli 2010); if the eigenvalues all have
magnitudes less than unity, then the system is (locally) stable.

Schaal et al. (1996) showed that under the conditions described
above, open-loop stability of the juggling pattern is guaranteed if and
only if the acceleration of the paddle at the impact (Pimpac) Satisfies

1+ a?

- 2gm < Pimpact <0. (&)
In human subject trials with a physical (not virtual) paddle juggling
system, Schaal et al. (1996) and Sternad et al. (2001) found that in fact
subjects adopt impact accelerations that satisfy the constraint in (3),
suggesting that paddle juggling is nominally stable. One major issue
associated with negative impact acceleration is that it unavoidably
creates a deviation from optimal nominal input effort [which is
achieved at zero acceleration (Sternad et al. 2001)]. In other words,
there is a trade-off between open-loop stability and nominal energetic
cost. Previous results (Schaal et al. 1996; Sternad et al. 2001; Wei et
al. 2007) suggest that humans sacrifice energetic optimality to achieve
nominal stability.

In this study, we analyzed impact accelerations with and without
haptic feedback (see Fig. 4A). Previously, Sternad et al. (2001)
analyzed nominal stability during ball bouncing and also compared
impact accelerations with and without haptic feedback (n = 3 partic-
ipants).

Let T denote the period of the nominal paddle trajectory. To
analyze nominal stability, we only require characterization of the
paddle trajectory in the vicinity of ball-paddle collision. For each
impact time, f,, we measured the paddle position over a 0.1-s time
interval, [f, —1 s, #,]. We applied a causal smoothing filter, rlowess,
in Matlab (Mathworks, Natick, MA) to the paddle position data and
estimated velocities using a central difference approximation. These
velocity estimates were further smoothed (rlowess in Matlab).

After filtering, we fit a third-order polynomial to the smoothed
velocity data:

VIAL] = ay + a;Ar + a, AP + a; AP “4)
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At=1—1, (®)

where a,, a,, a,, a; were the paddle trajectory polynomial coeffi-
cients, averaged across impacts within a single trial. In addition to
limit-cycle analysis, we used these polynomials to derive the impact
accelerations as described above.

As an alternative to this filtering and estimation method, one might
have used simple noncausal linear filters (which have the benefit of
introducing zero phase lag) to the paddle data for the experiments with
haptic feedback (Schaal et al. 1996; Sternad et al. 2001; Wei et al.
2007, 2008). However, our analysis in the APPENDIX shows that the
rapid negative force applied to the paddle at impact generated a small
but significant negative acceleration, and noncausal filters therefore
produced consistent biases to the velocity and acceleration estimates
at the impact instant.

Computation of the limit cycle also required the period 7. One
possible estimation of the period would be the average of the elapsed
times between successive impacts. However, this method produces
estimates for the limit cycle period that do not, in general, satisfy the
constraint that the ball must have the same speed before and after

impact, i.e., bt = b Enforcing this constraint, we computed the
period of the limit cycle as

20t a) 5
- g(l + a)pimpacl' ( )

Open-loop stability based on the acceleration constraints from Eq. 3
provides a categorical result, stable or unstable, not a graded measure
of stability. Thus we estimated the nominal (linearized) return-map
eigenvalues that measure convergence (or divergence) rate of the limit
cycle. To find eigenvalues, we first found the states of the system,
paddle position, ball position, and ball velocity at the instant of
impact. We numerically estimated the linearized return map (Jacobian
matrix) by using a finite-difference approximation. The eigenvalues of
this Jacobian matrix characterize nominal stability.

Closed-Loop System Identification

We use Poincaré nonlinear oscillator theory and assume that the
closed-loop behavior is a rhythmic dynamical system operating near a
limit cycle (periodic orbit). Poincaré return maps reduce the contin-
uous rhythmic dynamical system to a lower dimensional discrete-time
system that describes the behavior in terms of its step-to-step transi-
tions, i.e., a discrete-time nonlinear dynamical system. The stability of
this new system is equivalent to the stability of the complete system
(Holmes 1990), and most of the essential properties of the behavior
are preserved by this discrete-time dynamical system.

We fit a linear dynamical system model of the apex-to-apex
dynamics as an estimate of the closed-loop Poincaré return map. Our
method relies on the fact that local flow of a (hyperbolic) dynamical
system is governed by its linearized version. We assume that, in our
experiments, subjects remain within a local region where the linear
dynamics dominate. Based on our assumptions and motivations we fit
a linear stochastic dynamical system, an auto regressive (AR) Gauss-
ian model, to the apex height data for each subject and for each haptic
condition. A first order AR model takes the form

x[k] = ax[k — 11 + e[k], e[k] ~ N(0, 0?), )

where x[k] = b,,..[k] — b, is the relative displacement of the ball
apex height at time k, measured with respect to b, the steady-state
apex height. We estimated the parameters using least-squares that
minimizes the following loss function

N
E= e[k]>. (8)
k=1

In addition to the first-order AR model in Eg. 7, we also tested zeroth-
and second-order AR models and computed the loss functions in Eq.

8. Note that zeroth-order AR model simply treats the evolution of
apex heights as a pure noise process centered around the nominal
height. We compared the quadratic losses provided by both zeroth-,
first-, and second-order models, (i.e., E,, E, and E,), by evaluating
the relative improvement at each order increase, 100 |E,,, — E, I/
E, . |, which must be traded off with the addition of extra parameters.
The mean improvement of the first-order model with respect to
zeroth-order model was substantial (20%), whereas the mean im-
provement of the second-order model with respect to the first-order
model was negligible (2%). Thus we selected the first-order AR model
for our data analysis. The order of the fitted model can also be
considered as the dimension of the slow, template dynamics (Full and
Koditschek 1999; Revzen and Guckenheimer 2011) that emerge in the
closed-loop behavior. The parameter a in Eg. 7 is the eigenvalue of
the dynamics that measures convergence rate, namely the slowest time
constant associated with recovery to equilibrium, one of the most
common metrics for quantifying stability of dynamical systems.

Our fitted AR model is a “black-box” model that makes fewer
assumptions than the open-loop juggling model by Schaal et al.
(1996). However, since it is a linear model there could be nonlinear
affects that cannot be captured by our model. There could be nonlinear
control strategies such as the “mirror law” (Buehler et al. 1994) or
robust hybrid stabilization (Guckenheimer 1995). However, we ap-
proximate the system in a local region around the goal, where the
linear dynamics likely dominate.

Mean First Passage Time

MFPT is a stability metric that incorporates time and stochasticity
and has been recently applied to legged locomotion (Byl and Tedrake
2009). Recently Milton et al. (2009a,b) used MFPT to measure
performance in a human balance control task and Venkadesan et al.
(2007) used MFPT in the context of a hand manipulation task;
however, these tasks are not rhythmic hybrid dynamical systems, thus
our methods and approach regarding MFPT generally build more
directly upon the derivations by Byl and Tedrake (2009).

The MFPT is also referred to as the mean time between failures.
For juggling, the passage time refers to the number of cycles until the
apex of the ball fails to land in goal region; in the example depicted
in Fig. 2A, the passage time is four cycles because the ball apex first
lands outside the goal region on the fourth successive cycle. Note that
passage time in our task is a discrete random variable, unlike the
interpretation in some previous studies (Milton et al. 2009a,b; Ven-
kadesan et al. 2007), where passage time is measured in seconds and
is a continuous random variable.

The MFPT metric is the probabilistic expectation of the passage
time. Of course, this must be estimated from data. We propose two
different estimation methods for the MFPT: estimation directly from
failure events and estimation based on a stochastic dynamical model.

The first method is a direct statistical approach, which does not
require a stochastic dynamical model for the system. For a given trial,
we record all the observed passage times (times between failures). Let
{k,.1> k, -, k, 5} be the set of observed passage times. Our goal is to

estimate the MFPT, /&mfm, from data. The sample mean of the data
gives such an estimate:

1 N
—> k. )

A
I‘mept =
Ni=i

Assuming that passage times are independent and identically distrib-
uted geometric random variables, Eg. 9 corresponds to the maximum
likelihood estimate, namely ﬁmfpt = E[Mynp]- Direct estimation via
the sample mean in Eg. 9 is simple but may require many failures to
obtain a low-variance estimate. Unfortunately, failure is often a rare
event so this method may be impractical. Estimating mean time
between falls in human locomotion, for example, would require
waiting until subjects actually fall, which is challenging due to safety
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Fig. 2. Passage time and computational modeling for mean-first-passage-time
(MFPT). A: data from a single example trial (not used for analysis) showing the
ball height (dark gray) paddle height (light gray). Four cycles (5 consecutive
apex heights) are shown (filled circles at peaks of ball height). Here, the user
failed to keep the apex height of the ball within the goal region at the fourth
cycle. Accordingly, passage time (# of cycles) for this trial was 4.
B: discretization process for model-based MFPT computation. We discretized
the state space (apex height of the ball) into a finite set of representative states
(bins). By convention the first state was assigned to the whole failure region
(shown in light gray). Thus for our juggling paradigm, the first state corre-
sponds to apex heights that lie above or below the goal region. All other states
are equally spaced within the goal region. Fifty bins were used to compute the
MFPT; increasing the number of bins to 100 produced negligible differences
in numerical values (<0.01%).

and other reasons. For our juggling experiments, the goal (hitting the
ball to reach apex within a desired region) was designed so that
subjects typically fail at least two to three times in a single experiment
(often more). However, there are many trials for which we have few
enough failures that large uncertainty in MFPT estimate is inescapable
via the direct sample mean estimate.

To overcome this issue, we developed a second, model-based,
method built on the derivations by Byl and Tedrake (2009). They
estimated MFPT for a simulated robotic system, and thus the equa-
tions of motion (including noise terms) and the feedback control laws
were completely specified. However, in the present work, our goal is
to estimate MFPT from experimental data; no model is known a
priori. Therefore, to apply the technique, we first must fit a stochastic
dynamic model to behavioral data. We use the first-order AR model
fitted to the data (see Eg. 7 above). This model must be augmented to
include a definition of failure (passage). For our experimental setup,
failure is defined as the first apex event that exceeds the limits of the
goal region (see Fig. 2). In other words, the state x[k] is a failure if
X > Xpax OF X < X0 (Where x,, = b — bgs and X, = by —
bss)'

To compute MFPT from this model requires the assumption that
there exists a metastable distribution (Talkner et al. 1987), which we
now assume. The state (apex height) evolution in Eg. 7 represents a
discrete time, continuous-state Markov process. For computational
purposes, we discretize the state space into a finite set of states as
illustrated in Fig. 2B. After that we compute the stochastic state
transition matrix, T:

T = Pr(X[n] = x;|X[n — 1] = x)). (10)

T; is the probability of going to jth state from ith state. Since x,
corresponds to the failure region, we consider it as the absorbing state,

such that
T,=1,T,;=0Vj#1. (11

For all other elements we use the AR model in Eq. 7 to complete
the stochastic state distribution matrix. The n-step dynamics are
revealed by the Chapman-Kolmogorov equation,

pln]=p[n— 11T, (12)
where p[n] is the state distribution vector defined as
pilr] = Pr(X[n] = x;), (13)

Assuming that the second-largest eigenvalue of T is less than one,
this absorbing Markov chain will have a unique stationary distri-
bution, with the entire probability mass in the absorbing state.
Since there is only one absorbing state and it is possible to jump to
the absorbing state from any state (due to properties of Gaussian
noise), our system inherently satisfies this assumption. The sto-
chastic state transition matrix T in our problem takes the following

specific form
10
T=| _|. (14)
r T

with TERNMN, TeRW-D*W=D RN, peR¥~D*! The dynamics
of escape to the absorbing state can be investigated using eigenmode
analysis (Byl and Tedrake 2009). Let us order the eigenvalues of T, A,
in order of decreasing magnitude. The transition matrix from an
absorbing Markov chain will have A, = 1, with (left) eigenvector
v, = [10...0] representing the stationary distribution on the absorbing
state. The magnitude of the remaining eigenvalues (0 = A; <I, Vi >
1) describe the transient dynamics and escape rate to the stationary
distribution.

We assume that the second-largest eigenvalue, A,, (which is also

the largest eigenvalue of T, i.e., A, = Xl) is close to (but still less than)
1, A, <1 andalso A, >> A, which means that initial conditions
(in eigenmodes 3 and higher) decay quickly, and eigenvector of T(v,)

associated with A, = A; describes the long-living (metastable)
distribution of the state. The metastable distribution is given by v,,
the eigenvector associated with largest eigenvalue of T with proper
normalization. Under these circumstances MFPT is approxi-
mated by

. 1
Memfpt = q > (15)
Note that the submatrix T is a positive matrix (not to be confused with
positive-definite matrix), such that based on Perron-Frobenius theo-
rem the largest eigenvalue of T(v,) is always positive, and the
magnitudes of all other eigenvalues are strictly lower than
Ay, ie, My ER  and A, >IN Vi > 1.

Making use of Eg. 15 is practically equivalent to assuming that
metastable distribution is a good summary of the initial conditions. In
fact, if the initial condition is a random variable that is drawn from the
metastable distribution, Eg. 15 is the exact MFPT of the system. By
assuming that A; << A, <<—1, the distribution will tend to quickly
converge to the metastable distribution, making Eg. 15 a good ap-
proximation.

To test the reliability of the metastable distribution, we com-
puted the MFPT starting from different initial conditions and
generated confidence bounds on the MFPT estimate given by Eq.
15. The vector of MFPTs (ﬁ,mfpt) for all nonabsorbing states can be
computed as

/i\mep[,Z
P =| ¢ |=U-D7', (16)
I-Al'mfpt,N

where 1 = [1...1]" and figy; denotes the MFPT starting from initial
condition x,. Specifically, we computed the 5th and 95th percentiles of

ﬁmfpt to form a confidence bound on Egq. 15.
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Fig. 3. Haptic feedback enhances performance. Performance in 2 metrics
percentage of outlier apex heights (PO; hollow markers) and coefficient of
variation (CV; solid markers), was significantly improved with haptic feed-
back; larger values of these metrics indicate inferior performance. Each marker
compares the performances (based on one of the metrics) of a single individual
for the 2 haptic conditions. Performance was enhanced by haptic feedback for
points lying below the 45° line.

RESULTS

Subjects Believe Haptic Feedback Improves Their
Performance

After completing the experimental session, all participants
completed a brief questionnaire on their perception of task
difficulty with and without haptic feedback. Among the 15
participants whose data were not excluded, 13 participants
reported that the task seemed easier with haptic feedback. Two
(out of 15) subjects reported no apparent difference in both
cases. Among the three participants whose data were excluded,
one subject reported that the task seemed easier without haptic
feedback. This subject was also one of the subjects who failed
to perform the task in both haptic conditions. The other subject
who failed to perform the task in both haptic conditions was
among the group that reported no apparent difference in both
haptic conditions. Finally, the subject who did well with haptic

feedback, but failed to achieve rhythmic juggling without
haptic feedback, reported that the task was easier with haptic
feedback.

Objective Measures Confirm that Haptic Feedback Improves
Performance

Each subject (excluding the 3 whose data was not included)
performed better with haptic feedback in at least one perfor-
mance metric (see Fig. 3). Based on the PO metric, each
subject performed better with haptic feedback and the differ-
ence in performance was statistically significant (P < 10~>,
paired r-test). For the CV metric, all but one subject also
performed better with haptic feedback and this performance
improvement was also statistically significant (P < 102,
paired r-test).

Nominal Stability is Fragile and Unchanged by Haptic
Feedback

Impact accelerations illustrated in Fig. 4A show that major-
ity (13 out of 15) of the participants did not adopt predomi-
nantly negative mean impact accelerations in either haptic
condition, contradicting previous results (Sternad et al. 2001).
According to Sternad et al. (2001), the impact acceleration is
predominantly negative if it satisfies pippa& [—6, —2] m/s>.
For the experiments with haptic feedback, they reported a
median im%)act acceleration across all individuals of piypac
—4.16 m/s”, whereas for the no haptic feedback experiments
the median impact acceleration is pinpace —0.31 m/s. Even in
a recent juggling study (Wei et al. 2007) from same group,
reported mean impact acceleration with haptic feedback is not
predominantly negative (Pimpact —1.75 m/s®, mean across 7
individuals and 4 different coefficient of restitution values), but
this study did not compare impact accelerations with and
without haptic feedback.

In our experiments, all subjects exhibited many positive
impact accelerations, even for those whose average impact
accelerations were negative. Therefore, while the mean
impact accelerations across individuals for both haptic con-
ditions were slightly (but statistically significantly, P <
0.05, one-sided r-test) negative (see Table 3), nominal
stability does not appear to be a robust strategy: for 21 out
of 30 trials (15 subjects X 2 haptic conditions), 25% or more
of the impact accelerations were positive. Indeed, statistics

A
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vidual. Markers and error bars indicate the means * E ol
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Table 2. Eigenvalues of the nominal behavior

Y.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HF 0.8 0.8 0.8 0.8 2.00 1.54 0.8 0.8 0.94 1.43 0.8 0.8 0.8 0.8 0.94
No HF 0.8 0.8 0.8 0.8 1.82 0.8 0.8 0.8 0.84 1.65 0.8 0.8 1.00 0.8 0.8

Italic numbers indicate subject numbers. HF, haptic feedback.

of the data from Wei et al. (2007) suggest similarly nonro-
bust nominal stability; even though the mean impact accel-
eration of each individual was negative in that study, for five
out of seven participants at least 15% of the impact accel-
erations were positive.

We examined whether haptic feedback changes nominal
stability by comparing the mean impact accelerations for each
individual between the two haptic conditions, as shown in Fig.
4B. We found no statistically significant difference (P > 0.4,
paired t-test). Thus haptic feedback cannot be shown to have
had an effect on nominal stability, which contradicts previous
conclusions (Sternad et al. 2001).

Table 2 lists the magnitude of the largest eigenvalues for
each subject and condition, computed based on limit cycle
estimates (see MATERIALS AND METHODS). Many subjects
achieved a nominal eigenvalue of 0.8 (based on the average
impact acceleration) in both haptic conditions, correspond-
ing to the best (smallest) nominal eigenvalue possible, given
the coefficient of restitution used in our experiments (a =
0.8) (Schaal et al. 1996). As for our nominal stability
analysis based on paddle accelerations (see Fig. 4), we
observed no significant improvement in the open-loop
eigenvalues with the addition of haptic feedback (P > 0.65,
paired sign test). Note that the eigenvalue distribution was
nonnormal because a significant fraction of the eigenvalues
were concentrated at the coefficient of restitution of 0.8, and
thus we used the more conservative signed test rather than a
t-test, which is not based on normality.

Also, although we did not observe predominately nega-
tive accelerations in paddle trajectories (Fig. 4), the “typi-
cal” subject seems to achieve the best possible nominal
eigenvalue in both haptic conditions. However, this ob-
served nominal stability is fragile since many accelerations
for each subject lies in the open-loop unstable region (nom-
inal eigenvalue >1).

Closed-Loop Eigenvalues Are Stable but Unchanged by
Haptic Feedback

Nominal stability, which was not dependent on the haptic
condition, could not explain the performance enhancement
afforded by haptic feedback during rhythmic juggling. Thus
we examined the closed-loop dynamics. Specifically, we
fitted a first-order AR model to the apex height time-series
data (see MATERIALS AND METHODS) and analyzed the closed-

Table 3. Mean impact accelerations in different studies

Our Study Sternad et al. (2001) Wei et al. (2007)
HF —0.863 —4.16 —-1.75
No HF —0.778 —0.31 —

Mean impact accelerations (Pimpac) are in m/s>.

loop eigenvalues to quantify the stability of the behavior.
The closed-loop eigenvalues of each subject are illustrated
in Fig. 5.

Comparing the closed-loop eigenvalues with the nominal
eigenvalues listed in Table 2 reveals that the least stable
closed-loop eigenvalue in both haptic conditions, A, = 0.58,
is significantly more stable than the best eigenvalue, Ap. =
0.8, that could be achieved in open loop. Clearly, active
sensory feedback control played a critical role in this juggling
task. Similarly, Wei et al. (2007, 2008) and Ronsse and Sternad
(2010) observed that a purely passive model failed to explain
measurements of closed-loop behavior in terms of “relaxation
times” (convergence rate), thus indicating the existence of
active error corrections.

Even though active feedback control clearly plays a role for
the behavior, we observed no statistically significant trend in
closed-loop eigenvalues between the two haptic conditions
(P > 0.3, paired r-test). In fact, about half (7 of 15) of the
subjects had more stable eigenvalues without haptic feedback.
The results based on both the closed-loop and open-loop
eigenvalues suggests that haptic feedback was not used by the
nervous system to regulate the convergence rate in this juggling

Comparison of Closed-Loop Eigenvalues
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Fig. 5. Haptic feedback does not enhance (decrease) closed-loop eigenvalues.
The closed-loop eigenvalues identified from experiments with and without
haptic feedback are not significantly different. Each marker in the figure
corresponds to an individual’s closed-loop eigenvalues without (abscissa) and
with (ordinate) haptic feedback. The 45° line indicates ideal agreement in
eigenvalues of conditions with and without haptic feedback.
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Comparison of MFPT Estimation Methods

Direct MFPT Estimates

Model Based MFPT Estimates

Fig. 6. Direct and model-based MFPT estimates agree. Markers indicate the
MFPT estimates (the horizontal axis is model-based, and the vertical axis
is direct estimation; see MATERIALS AND METHODS) for all users and both
haptic conditions (with and without haptic timing cue). The 45° solid black
line would indicate ideal agreement between direct and model-based MFPT
estimation. Vertical and horizontal error bars indicate the 95% confidence
bounds for the direct and model-based MFPT estimates, respectively.

task, and the performance improvement must be explained by
other means.

Haptic Feedback Significantly Improves Mean First Passage
Time

MFPT provides a measure of stochastic stability for the
closed-loop behavior. We verified the consistency of the two
independent MFPT estimation methods (see MATERIALS AND
METHODS) by directly comparing them. Since each estimation
method used the same data in categorically different ways,
there were differences in the estimates; however, there was a
strong correlation between estimates obtained via the two
distinct methods (see Fig. 6). The 95% confidence bounds
(direct estimates) overlapped with the model-based estimate in
all cases. Thus the two methods were independent, but mutu-
ally consistent, ways to assess the stochastic stability of the
behavior.

We also observed the statistics of the A, and A5 (second
and third largest eigenvalues of T in Eq. 14, respectively)
distributions obtained from our experimental data. The
mean and standard deviations of the A, and A; data were
(wy,05) = (0.8,0.1) and (m3,03) (0.15,0.09) respectively;
given that these eigenvalues are bounded between 0 and 1,
A; was much lower than A,, as expected. To test further the
reliability of Eq. 15 (i.e., model-based MFPT estimates), we
scrutinized our assumptions by computing 95% confidence
bounds on Eq. 15. The confidence bounds (Fig. 6) indicated
that the uncertainty of the model based method was much
lower than the uncertainty of the direct estimation method.

A shown in Fig. 7, each subject’s MFPT was higher (i.e.,
more stable) with haptic feedback and the differences were
significant (P < 10~ %, direct method and P < 0.005, model-
based method; paired #-test).

DISCUSSION

What is the mechanism by which the haptic cue at the instant
of ball-paddle collision improves juggling performance? We
suspected that the haptic cue would quicken convergence.
Surprisingly, however, haptic feedback had no significant ef-
fect on the convergence rate as measured by either the nominal
or closed-loop eigenvalues of the dynamics in our study.
Instead, we found that long-term metastability, namely, the
“persistence” of the system, was enhanced. The haptic timing
cue is a measurement that decreases the nervous system’s
uncertainty of the ball’s state. Decreasing noise may improve
stability as measured by persistence, while potentially having
very little effect on convergence rate. Indeed, it may not be the
speed of convergence but rather the infrequency of failures that
matters most for a great many behaviors.

Stability: Convergence or Persistence?

It has long been hypothesized that human motor control
commands are derived from an economic policy made by the
nervous system, such as optimizing energetic cost, reward rate,
and stability (Kuo et al. 2005; O’Connor and Donelan 2012;
Harris and Wolpert 1998; Shadmehr et al. 2010; Kiemel et al.
2011). However, little is known about how stability might
affect the neural controller or how stability might be evaluated
in such a cost function.

The most common measure of system stability is the ten-
dency of a system to return to steady state after a perturbation.
This tendency can be measured in terms of a system’s eigen-
values. Thus it is natural to hypothesize that one of the goals of
the nervous system is to effectively regulate the eigenvalues of
the closed-loop behavior. If this measure of stability were
important, then one might predict faster convergence rates in

MFPT Comparison
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Fig. 7. Haptic feedback enhances metastability as measured by MFPT. Markers
indicate the MFPT values without (horizontal axis) and with (vertical axis)
haptic feedback. Direct and model-based MFPT estimates are depicted by solid
light gray and hollow dark gray markers respectively.
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Fig. 8. Simplified schematic representation of juggling behavior with different
hypotheses on the role of haptic feedback. Dashed lines represent (slow)
parametric or “structural” tuning of the dynamics. Solid lines represent (fast)
dynamical signals. z and Z represent the actual and estimated (continuous and
discrete) states of the dynamics, respectively. The u is the control input to the
juggling dynamics which is regulated by the feedforward and feedback
controllers. In principle, haptic sensing information could be used for tuning or
regulation of feedforward (nominal) motor patterns (dashed light gray line),
regulation of feedback controllers (dashed dark gray line) and/or state estima-
tion (solid line). We found that neither the feedforward pattern nor the
feedback gains were altered by the presence of haptic feedback. This suggests
that haptic feedback serves mostly a state-estimation-like role that reduces
uncertainty, thus improving performance in paddle juggling.

the presence of haptic feedback. In paddle juggling, we inves-
tigated the two main possible ways of regulating the conver-
gence rate. One way is shaping the nominal paddle trajectories
without adjusting the feedback controller, and the other ways is
regulating the feedback controller itself. The human nervous
system might choose either (or both) ways to tune the stability
of the behavior. Different hypotheses on the role of haptic
feedback for human paddle juggling behavior are illustrated in
Fig. 8.

In contrast to previous results (Sternad et al. 2001), we
observed no statistically significant change in nominal patterns,
suggesting that haptic feedback did not enhance nominal sta-
bility (Fig. 4). Perhaps this is not so surprising: it seems
counterintuitive that adding haptic sensory information would
decrease optimality. Recall that increasing nominal stability of
the nominal pattern requires higher (absolute) negative accel-
erations at impact; thus immediately before impact the paddle
(and arm) must reach a peak velocity that is actually substan-
tially higher than the impact velocity. Producing faster arm
motions than nominally necessary likely wastes energy. How-
ever, since it is possible to regulate convergence rate in
rhythmic ball motion using active closed-loop neural feedback
without changing the nominal trajectories, there may be no
need to sacrifice energetic optimality for nominal stability.
Therefore, we investigated the stability of the closed-loop
system (Fig. 8) by analyzing its eigenvalues.

The closed-loop eigenvalues illustrated in Fig. 5 verify our
hypothesis that the closed-loop dynamics are dramatically
more stable than the nominal eigenvalues. Indeed, the slowest
closed-loop eigenvalue extracted from all trials was signifi-
cantly more stable than the best possible nominal eigenvalue of
0.8. However, the addition of haptic feedback did not change
the closed-loop stability (Fig. 5). Taken together, these results
strongly suggest that haptic feedback provided at the moment
of ball-paddle collision had no significant effect in conver-

gence rate (in either nominal or closed-loop). Thus the regu-
lation of convergence rate cannot explain the difference in
performance in between two haptic conditions.

Rate of convergence to an equilibrium point, while com-
monly used and easy to quantify, is hardly the only measure of
stability that is relevant to rhythmic behaviors (Pratt and
Tedrake 2006; Chatterjee et al. 2002). Moreover, different
stability measures may yield qualitatively different results. For
example, Chatterjee et al. (2002) showed that open-loop linear
stability does not correlate well with the size of the domain of
attraction for an open-loop juggling model. More recently, Byl
and Tedrake (2009) applied the MFPT as a stability metric to
quantify long-term metastability. The MFPT can be thought of
as the tendency of a system to persist for long periods of time,
rather than the tendency of a system to converge.

Eigenvalues again play a role, but here the eigenvalue of
interest, A, (see Eq. 15), is the one associated with the (statis-
tical) “escape rate” of the system-the associated MFPT is given

by ﬁmfpt = 1/(1 — A,). We suspect that the eigenvalues of the
dynamics fail to explain the performance improvement with
added haptic feedback due to their deterministic nature; they
cannot capture stochastic characteristics of the real system.
Therefore, we adopted the MFPT as stability metric because it
embraces the inherent stochasticity of the system. All biolog-
ical systems suffer from some uncertainty or stochasticity, thus
MFPT, i.e., persistence, may be a useful alternative to tradi-
tional eigenvalues, i.e., convergence, as a measure of stability.
Indeed, our analysis with MFPT shows that haptic feedback
enhanced the long-term closed-loop metastability as measured
via the MFPT (Fig. 7).

We suspect that the primary effect of haptic feedback in this
task was to mitigate noise or uncertainty (a natural conse-
quence of adding additional sensory information), thereby
enhancing persistence of the dynamics and ultimately improv-
ing subject performance in the task.

To illustrate the profound effect of decreasing uncertainty on
metastability and persistence, compared with aggressively reg-
ulating the convergence rate, in Fig. 9 we illustrate the depen-
dence of MFPT on two parameters, the eigenvalue and the
uncertainty, of a scalar stochastic dynamical system with
additive white Gaussian noise. Uncertainty in Fig. 9 is mea-
sured in the form of a normalized standard deviation (standard
deviation divided by the vertical size of the goal region). As
shown, a decrease in normalized standard deviation is dramat-
ically more effective than a decrease in the eigenvalue in terms
of improving MFPT-based stability. In other words, minimiz-
ing the deterministic eigenvalues (which may be highly sub-
optimal) is ineffective compared with mitigating noise, and
thus the first goal of additional sensory measurements may be
to reduce uncertainty, not regulate convergence rate.

Sensing of Hybrid Transitions for State Estimation

Rhythmic motor control tasks, such as legged locomotion,
often involve “hybrid transitions,” namely discrete changes in
the contact configuration of an animal with its surrounding
environment. When a rhythmic system operates near a limit
cycle (see MATERIALS AND METHODS), these hybrid transitions
punctuate the system dynamics at particular instants in phase
(Revzen and Guckenheimer 2008), a measure of the time
elapsed since the beginning of a cycle, relative to the overall
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Fig. 9. Reducing noise is more effective for increasing MFPT than regulating
eigenvalues. The MFPT is shown as a function of the eigenvalue and uncer-
tainty of a scalar stochastic dynamical system with additive white Gaussian
noise (see Eq. 7). Upper and lower failure limits are symmetric with respect to
the origin. Uncertainty is measured in the form of a normalized standard
deviation, which is computed by dividing the standard deviation by the size of
the goal region (b,,,, — bpin)- Darker means more stable (i.e., higher MFPT)
in the contour plots.

cycle time. Sensing the timing and state of hybrid transitions
may enhance rhythmic motor control performance.

Haptic sensing plays a critical role in motor control, as has
been shown for rhythmic finger movements (Elliott et al. 2010;
Wing et al. 2010; Studenka et al. 2012) and continuous haptic
feedback during dynamic manipulation tasks (Huang et al.
2007; Forsyth and Maclean 2006). However, surprisingly few
neuroscience studies address how haptic feedback, especially
provided by hybrid transitions, enhances neural control during
dynamic rhythmic behaviors such juggling (Sternad et al.
2001).

To furnish a mechanistic explanation for how haptic sensing
may enhance performance in this rhythmic dynamical task, it is
natural to interpret our results in terms of state estimation and
feedback control (Kuo 2002; Schaal et al. 2007). In this
context, one possibility is that the nervous system may pro-
cesses haptic cues at hybrid transitions to improve state esti-
mation, thereby reducing uncertainty, as has been demon-
strated in legged robotic systems (Gur and Saranli 2012; Lin et
al. 2005). The estimated states could be used by a separate
controller whose goal may be regulating energy, cost of trans-
port, stability, etc. This interpretation resembles the ‘“‘separa-
tion principle” in the linear-quadratic-Gaussian (LQG) control
problem (Athans 1971). LQG is an optimization problem
where the goal is to minimize a cost function for linear systems
that suffer from uncertainty in the form of additive Gaussian
noise, and the solution involves a combination of a Kalman
filter and linear-quadratic regulator (LQR). The Kalman filter
optimally estimates the states and the LQR optimally applies
state feedback-based only on state estimates-to control the
plant. A loose analogy can be drawn between the LQG prob-
lem and our paddle-juggling control problem: adding haptic
feedback in the juggling problem amounts to adding an addi-
tional sensor measurement. Assuming linear dynamics around
the nominal trajectory, and applying the separation principle,

then only the estimator, i.e., the Kalman filer, would be
affected by the number of measurements, and the state feed-
back gains would remain the same. Our data suggest that this
mechanism could be at play for the human motor control of
paddle juggling. Indeed, it has been shown that the human
nervous system integrates haptic cues with other sensory mo-
dalities in a statistically optimal fashion for estimating the size
of an object (Ernst and Banks 2002) and for synchronizing
finger motions (Elliott et al. 2010; Wing et al. 2010). Thus it is
possible that humans may integrate haptic and visual feedback
under a Kalman-filter-like strategy to estimate the states of the
ball (and hand) in paddle juggling behavior while keeping the
controllers fixed. Our findings suggest that haptic cues during
hybrid transitions improve state estimation and a separate
controller uses these state estimates for control, in a manner not
dissimilar from a separate Kalman filter plus a LQR controller
for a linear control system. However, the separation principle
does not necessarily apply to nonlinear systems such as jug-
gling. For example, since the removal of sensory information
can decrease the reliability of sensor-based state estimates, the
nervous system may rely on shaping nominal paddle motions
to improve nominal stability and less on sensory feedback.
Sternad et al. (2001) reported the reverse of this in paddle
juggling, where the addition of haptic feedback caused steady-
state hand trajectories to become more nominally stable but
also energetically more costly. We were unable to reproduce
this result.

“Perfect-Time” Control

Almost all control system formulations implicitly depend on
the assumption that time can be perfectly observed. What
happens if this assumption is violated, i.e., if the chronometer
is imperfect? Perhaps due to the remarkable precision of
engineered clocks, this question has been largely ignored.
Neural control systems in nature, by contrast, exhibit signifi-
cant temporal variability (Bienkiewicz et al. 2012). Thus, while
neglecting uncertainty in time leads to accurate control systems
for many engineering applications, perfect timekeeping may be
a poor assumption for the modeling and analysis of biological
control systems. Yet, all computational models of human
motor control implicitly assume that time is known to the
neural controller (Harris and Wolpert 1998; Todorov 2005;
Kuo 2005; Shadmehr and Krakauer 2008; Shadmehr et al.
2010), including our own prior work (Carver et al. 2009b).

Both open- and closed-loop controllers may be time varying,
thus both categories of control policies may suffer from the
imperfections in chronometry. For example, Lamperski and
Cowan (2013) extended the finite-horizon LQR problem to
account for temporal uncertainty and showed that in this
context the classical solution produces suboptimal results.
Open-loop control policies, such as for juggling (Schaal et al.
1996), even more sharply illustrate the potential problems in
assuming perfect timekeeping. An open-loop control policy is
typically formulated as a function that maps the time ¢ into
control input u(f). However, time must be measured and/or
estimated; is it appropriate to call this open-loop control or
rather perfect-time feedback control (LaValle and Egerstedt
2007)? Indeed, it is even possible for a system that has been
stabilized using open-loop (perfect-time feedback control) to
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be destabilized by small imperfections in timing (LaValle and
Egerstedt 2007).

Open-loop control is appealing because it potentially obvi-
ates the need for complex computations and active feedback
(McGeer 1990; Schaal et al. 1996; Garcia et al. 1998; Full et al.
2002; Geyer et al. 2005). Since the animal nervous system does
not have access to a precise master clock, the nervous system
must estimate and process time (Buonomano and Karmarkar
2002; Barclay et al. 2012; Eagleman 2008), likely integrating
feedback from sensory stimuli. Carver et al. (2013) showed
that even for a simplified model of motor control, time esti-
mation requires complex computations. Thus open-loop con-
trol does not, after all, eliminate the need for feedback or
complex computations, since time itself must be estimated.
Perhaps sensory feedback provided during hybrid transitions
not only enhances state estimates but also enhances time
estimates, therefore decreasing uncertainty in both feedback
and feedforward control, ultimately enhancing long-term meta-
stability. Recently, Studenka et al. (2012) showed that adding
event based tactile feedback in a rhythmic circle drawing task
can enhance the structure of timing variability, supporting our
theory regarding the connection between haptic feedback and
human timing.

APPENDIX
Virtual vs. Physical Paddle Juggling

Our preference toward virtual juggling (de Rugy et al. 2003; Wei
et al. 2007, 2008; Ronsse and Sternad 2010; Ronsse et al. 2010) over
physical juggling (Schaal et al. 1996; Sternad et al. 2001) stems from
our ability to control the physical dynamics that the human interacts
with during control. Indeed, these dynamics play a critical role in
decoding and understanding neural circuits that control motion
(Cowan and Fortune 2007; Chiel et al. 2009; Tytell et al. 2011;
Hedrick and Robinson 2010).

One of the main limitations of the physical juggling used in (Schaal
et al. 1996; Sternad et al. 2001) was that it required two experimental
systems, one that displays haptic feedback, and a distinct system that
did not. Specifically, with haptic feedback, the subject controlled the
motion of a physical paddle whose surface remained horizontal via a
mechanical linkage, and the paddle hit a table tennis ball that was
fixed to a hinged boom. Because the linkage was mechanical, impact
forces were transmitted nearly instantaneously to the user’s hand. To
create the no-haptic feedback condition, by contrast, a telerobotic
system mechanically decoupled the user’s hand from the paddle. The
user’s hand motions provided a reference trajectory that was tracked
by a robotically controlled paddle. In this case, haptic feedback
regarding the ball-paddle collision was not transmitted back to the
user’s hand. This setup introduced a confound: the setup without
haptic feedback included an entire telerobotic system with its own
dynamics (including potential filtering and phase lags), which likely
affected results. Indeed we show below (in the specific context of
offline filtering), that subtle differences to filtering dynamics can
dramatically alter estimates of impact acceleration. Therefore, in this
article we reexamine the role of haptic feedback in a context where the
two experimental conditions (with vs. without haptic feedback) are
directly related.

Estimating the time of the ball-paddle collision, and the accelera-
tion of the paddle at that instant, is coupled in the physical apparatus.
When the ball bounces, it imparts significant (negative) momentum to
paddle. The time at which the ball reaches a local minimum is used to
estimate impact time (Schaal et al. 1996; Sternad et al. 2001). Because
the ball’s rapid positive acceleration and reversal is concomitant with
the negative momentum changes to the paddle, the point in time
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Fig. Al. Noncausal filtering biases the estimate of impact acceleration with
haptic feedback. Markers indicate estimated impact accelerations (abscissa and
ordinate belong to causal and noncausal estimates, respectively). Hollow dark
markers and solid light markers correspond to scenarios without and with
haptic feedback, respectively. The 45° solid black line would indicate ideal
agreement between causal and noncausal estimates.

corresponding to a local minimum in the ball height also corresponds
to a moment when the paddle has already necessarily accelerated
downward. The detection of impact time and the estimation of
acceleration at impact are fundamentally coupled in this physical
juggling system in a way that leads to a negative bias in the estimated
impact accelerations for the haptic condition, a bias consistent with
previous findings (Sternad et al. 2001).

The coupling of detecting the moment of ball-paddle impact and
estimating acceleration at impact can be eliminated in virtual juggling
since the computer can detect the (virtual) impact, and only then
impart the force to the haptic paddle. This allows us to (causally)
determine impact acceleration without being potentially biased by our
method for detecting impact time based on physical accelerations of
the paddle and/or ball.

Causal vs. Noncausal Impact Acceleration Estimation

As described in MATERIALS AND METHODS, to estimate the accel-
eration of the paddle at the time of impact we follow a causal
method and only the kinematic information before the time of
impact is used. As an alternative to our filtering method, one might
have used simple noncausal filters (Wei et al. 2008, 2007; Schaal
et al. 1996; Sternad et al. 2001; Ronsse et al. 2010), which have the
benefit of introducing zero phase lag and thus are quite commonly
used in data analysis. However, the force that we applied to the
paddle during the impact instant generated a small but significant
negative acceleration at the hand, and noncausal filters therefore
produced consistent biases to acceleration estimates at the impact
instant. For smoothly changing data, noncausal filters typically
provide accurate estimates so we developed a causal filter that, for
the no-haptic feedback case (without force impulse generation),
our scheme provided similar results to a well-tuned causal filter.
Figure Al illustrates our comparison of causal and noncausal mean
impact acceleration estimates of each individual and for both
haptic conditions. For the data without haptic feedback both
estimation methods agree showing no statistically significant dif-
ference (P > 0.3, paired t-test). However, in the haptic case the
noncausal estimation method resulted in significant negative bias
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compared with causal estimation method (P < 10~°, paired one-
sided t-test). These results show that noncausal impact acceleration
estimation methods can generate misleading negative acceleration.
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