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Many biological phenomena such as locomotion, circadian cycles and breath-

ing are rhythmic in nature and can be modelled as rhythmic dynamical

systems. Dynamical systems modelling often involves neglecting certain

characteristics of a physical system as a modelling convenience. For example,

human locomotion is frequently treated as symmetric about the sagittal plane.

In this work, we test this assumption by examining human walking dynamics

around the steady state (limit-cycle). Here, we adapt statistical cross-validation

in order to examine whether there are statistically significant asymmetries and,

even if so, test the consequences of assuming bilateral symmetry anyway.

Indeed, we identify significant asymmetries in the dynamics of human walk-

ing, but nevertheless show that ignoring these asymmetries results in a more

consistent and predictive model. In general, neglecting evident characteris-

tics of a system can be more than a modelling convenience—it can produce

a better model.
1. Introduction
The concept of symmetry has helped shape our understanding of engineering

and biology alike. The Roman text De Architectura by Vitruvius and the epon-

ymous Vitruvian Man by Leornado Da Vinci exemplify the influence of

symmetry in animals and humans on man-made works of art and engineering.

Symmetry serves to simplify and reduce model complexity, making it a power-

ful tool in computational and analytical applications. The ubiquity of bilateral

(left–right, sagittal plane) symmetry in animals is genetically encoded [1],

and, from an engineering point of view, building machines with bilateral sym-

metry is justified by the fact that the left–right axis is unbiased either by gravity

or by direction of movement. However, genetic encoding of symmetry mani-

fests itself imperfectly; numerous factors, such as differences in contralateral

limb lengths, dominance of ‘leggedness’ and handedness, and developmental

processes, break perfect symmetry and enhance asymmetry.

Various measures and indices of asymmetry have been used to argue that

human locomotion is bilaterally symmetric or asymmetric (for reviews, see

[2,3]). Symmetry is thought to confer some advantages on motor abilities (e.g.

improved energetic efficiency [4–6]). The common trend among previous work

is the comparison of kinetic and/or kinematic gait parameters between the right

and left halves of the body, i.e. joint angles [7–10], ranges [11,12] and velocities

[13], stride lengths [10,12,14,15], ground reaction forces [16–19], electromyo-

graphic profiles [20–23], limb forces and moments [24–27], or centre-of-mass

oscillations [28–30]. However, as Sadeghi et al. [2, p. 35] state, ‘. . .can we argue

that it is acceptable to conclude that able-bodied gait is asymmetrical just because

of the existence of statistically significant differences between two corresponding

parameters (which we call local asymmetry) calculated from the right and left

limbs?’ During human walking, do steps from left to right and right to left recover

significantly differently from perturbations? After all, there are differences in leg

dominance—e.g. preferred kicking leg—that might lead to different responses

from step to step.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0209&domain=pdf&date_stamp=
mailto:mertankarali@jhu.edu
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Aside from demonstrating asymmetry (or not) in gait

parameters, we found no studies examining the potential

benefits of neglecting evident asymmetries. If there is a step-

to-step dynamical asymmetry, does fitting a model from

stride to stride (two step) rather than step to step (one step)

better capture the dynamics of human walking? Of course,

no single physical system has perfect symmetry. Thus sym-

metric models are inherently wrong for any physical

system, but may nevertheless be useful for simplifying both

the modelling and analysis.

‘Essentially all models are wrong, but some are useful’

wrote George E. P. Box in his seminal book [31, p. 424]. Accord-

ing to Box, the important practical concern regarding the

models of physical phenomena is ‘how wrong do they have

to be to not be useful?’ With regard to bilateral asymmetry in

human walking, we attempt to frame this concern as follows.

How wrong is it to neglect asymmetry from a statistical point

of view? And how useful is symmetric modelling in terms of

predictive power and simplicity? In most cases, correctness

and usefulness are directly related, and they are tested simul-

taneously. However, in the context of data-driven modelling

of human walking dynamics, the ‘wrongness’ and ‘usefulness’

of assuming symmetry are related but have critical, nuanced

differences. The methods presented in this paper allow us to

independently (statistically) address these differences.

In this paper, we test the assumption of bilateral symmetry

in the dynamics of human walking. As an example, consider

fitting linear models to two distinct datasets (e.g. ‘left steps’

and ‘right steps’) and testing these models in terms of their

respective ability to predict isolated validation data from just

the one of the datasets, say ‘left steps’. If walking were perfectly

symmetric, both the left-step (‘correct’) model and right-step

(‘wrong’) model would perform indistinguishably in left-step

validation. However, we show that there are statistically sig-

nificant asymmetries in the dynamics of human walking in

healthy subjects in the sense that the ‘wrong’ model performs

statistically worse than the ‘correct’ model in validation.

Despite these asymmetries, we also show that a more consist-

ent and predictive model of the dynamics is obtained by

assuming symmetry, and pooling all the data from both left

and right steps to form a generic model. Quite surprisingly,

this fit significantly out-performs the mapping fitted to only

left steps even when predicting left-step data. This is good

news because, in addition to our finding that it is statistically

better to neglect asymmetry, it is also practically and theore-

tically convenient to assume symmetry. These advantages

lead us to conclude that the assumption of symmetry in walk-

ing dynamics, though clearly wrong in a platonic sense, is

nevertheless more useful for all practical purposes.
1.1. Modelling the rhythmic dynamics
Our approach to analysing and modelling walking involves

treating the underlying behaviour as a finite-dimensional non-

linear rhythmic dynamical system operating around a stable

limit-cycle. This type of modelling approach has been successful

for robotic [32–35] and biological systems [36–40]. A limit-cycle

is an isolated periodic trajectory that is a solution to the

equations governing the dynamical system [41]. A limit-cycle

is said to be stable if all trajectories in a sufficiently small

neighbourhood of the limit-cycle converge to it.

We further use Poincaré theory in our analysis of rhythmic

walking dynamics. A Poincaré return map [38,41] is a mapping
from a transverse section S back to itself, obtained by tracing

the consecutive intersections of the state trajectories with the

section S. This return map reduces the continuous rhythmic

dynamical system to a nonlinear discrete dynamical system

that preserves many properties of the behaviour. The specific

Poincaré section that we adopt for human walking is the

heel-strike event, as explained in §2.2.

The intersection of the limit-cycle with the Poincaré section

is an isolated fixed point of the return map. The limit-cycle

is asymptotically stable if and only if this fixed point is

stable. Our second modelling approximation is based on the

Hartman–Grobman theorem (or linearization theorem),

which states that local flow around any hyperbolic fixed

point is homeomorphic to the one governed by its linearization

around the fixed point itself. Thus, as detailed in §2.2, we fitted

linear models to walking trajectories on the Poincaré maps.

1.2. Limit-cycle dynamics and symmetry
Here, we define symmetry in the context of limit-cycle mod-

elling of walking and consider what kind of symmetries (and

asymmetries) can be addressed using this approach.

In our modelling approach, there are two core elements:

the limit-cycle of the rhythmic system, which characterizes

the steady-state behaviour and the dynamics (both determi-

nistic and stochastic) around the limit-cycle. In this paper,

we are interested in the latter.

Beyond its utility for approximation, bilateral symmetry

of the (steady-state) limit-cycle trajectory may have physio-

logical significance, such as reducing metabolic cost [4–6].

Indeed, the kinematic and kinetic variables that are the

focus of the majority of studies that address human [2] or

animal [42,43] locomotor symmetry are steady-state (peri-

odic) variables that correspond to the limit-cycle of a

dynamic model.

Here, we consider the dynamics near, but off the limit-cycle,

using data from Poincaré sections to estimate return maps.

Hence our analysis is not based on the steady-state parameters

of gait, but how the gait deviates from and recovers to these

steady-state parameters. To the best of our knowledge, this is

the first study that analyses the dynamical symmetry of biologi-

cal rhythmic systems. We validate our methods in data from

normal human walking experiments. These methods are also

applicable to robotic or biological locomotor behaviour with

approximately symmetric gait patterns.
2. Material and methods
The system of interest is human treadmill walking. This dataset is

obtained for eight healthy young adult participants, at three

different belt speeds (0.5, 1.0 and 1.5 m s21). We required the

subjects to cross their arms in order to continuously record the

marker positions.

2.1. Kinematic data
We placed infrared markers on each subject’s left and right

shoulder, hip, knee, ankle and toe. Markers were tracked in

three dimensions using Optotrak (Northern Digital) at 100 Hz.

The marker data were used to calculate the four sagittal plane

angles on each side as illustrated in figure 1. The raw angular

data were smoothed with a zero-phase-lag (non-causal) Butter-

worth filter (fifth order with a cut-off frequency of 10 Hz) to

remove measurement noise and ease angular velocity estimation.
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Figure 1. Visualization of leg angle vector u. The left leg (blue) and right
leg (red) alternate between stance and swing phase over the course of a
stride. The variables ufL, uaL, ukL and uhL correspond to the left foot,
ankle, knee and hip angles, respectively. The corresponding right leg
angles, ufR, uaR, ukR and uhR, are not labelled. The eight leg angles and
their respective angular velocities form the 16-dimensional state vector.
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In order to estimate angular velocities, a central difference filter

and another zero-phase-lag Butterworth filter was applied to the

smoothed angular data similar to the methods adopted in the bio-

mechanics literature [44,45]. We assume that the smoothed angles

(2.8) and angular velocities (2.8) form a 16-dimensional state space

for walking. The state vector includes angles (rad),

uL(t) ¼ ufL uaL ukL uhL½ �T,

uR(t) ¼ ufR uaR ukR uhR½ �T

and u(t) ¼
uL(t)
uR(t)

� �
,

9>>>>>=
>>>>>;

(2:1)

and angular velocities (rad s21),

u
:

L(t) ¼ _ufL
_uaL

_ukL
_uhL

� �T
,

u
:

R(t) ¼ _ufR
_uaR

_ukR
_uhR

� �T
and u

:

(t) ¼ u
:

L(t)

u
:

R(t)

" #
:

9>>>>>>=
>>>>>>;

(2:2)

Subscripts f, a, k and h stand for foot, ankle, knee and

hip, respectively. L and R mnemonically denote the left and

right legs.

In order to analyse the data independently from the physical

units, the state space was non-dimensionalized based on the time

constant associated with pendular walking [46–49]:

u ¼ u

and _u ¼ u_

ffiffiffiffi
l0
g

s
,

9>>=
>>; (2:3)
where the bar represents the corresponding non-dimensionalized

variable, g is the gravitational acceleration and l0 is the leg length

of the subject, which is estimated from the marker positions on

the right hip and ankle.

2.2. Events and section data
The treadmill used in this study features a split belt1 that

mechanically decouples the vertical ground reaction forces

caused by each foot. Each belt is instrumented with a separate

load cell, facilitating the estimation of the timing of heel-strike

events. We chose heel-strike events as Poincaré sections for

the analyses.
Let t[k] be the detected times of heel-strike events, where k [

K ¼ f1,2,3,. . .,kmaxg, with kmax being the total number of heel-

strike events of both legs in one walking trial. For example, if the

first heel-strike event (k ¼ 1) corresponds to the left leg, sets of

odd (KL) and even (KR) integer indices from 1 to kmax correspond

to the left- and right-heel-strike events, respectively, such that

K ¼ KL < KR. Over one stride of walking, there are two Poin-

caré sections of interest at heel-strike events. The measurement

of the state vector at these Poincaré sections is given as follows:

z[k] ¼ u(t[k])
�_u (t[k])

� �
: (2:4)

During steady-state walking and in the absence of noise, the

periodic orbit would remain on the limit-cycle:

z[m] ¼ mL, 8m [ KL

and z[m0] ¼ mR, 8m0 [ KR,

�
(2:5)

where mL and mR are the fixed points with respect to each of the

two distinct Poincaré sections. Note that assuming bilateral

symmetry implies that these two fixed points are identical up

to a relabelling [33,50–52]. This relabelling can be expressed as

a linear mapping of right-heel-strike coordinates:

M:

uL(t[k])
uR(t[k])

_uL(t[k])

_uR(t[k])

2
6664

3
7775 7!

uR(t[k])
uL(t[k])

_uR(t[k])

_uL(t[k])

2
6664

3
7775, 8 k [ KR, (2:6)

where

M ¼

0 I4�4 0 0
I4�4 0 0 0

0 0 0 I4�4

0 0 I4�4 0

2
664

3
775: (2:7)

As explained in §1.1, our approach to modelling human walking

centres around fitting linear maps between Poincaré sections

around the associated fixed points. First, we estimated the

fixed points via

m̂L ¼
1

jKLj
X

k[KL

z[k]

and m̂R ¼
1

jKRj
X

k[KR

z[k],

9>>>>=
>>>>;

(2:8)

where jKLj and jKRj denote the cardinality of sets KL and KR,

respectively. Note that kinematic asymmetry could be measured

directly in terms of the difference between respective fixed

points m̂L and m̂L: While potentially of interest, the current

paper focuses on dynamical asymmetry (measured in terms of

the section maps), and thus we computed the residuals by

subtracting the estimated fixed points from the section data:

qL[k] ¼z[k]� m̂L, k [ KL

and qR[k] ¼z[k]� m̂R, k [ KR:

�
(2:9)

Section maps were estimated using these residuals. A section

map from qL to the subsequent qR is denoted as L 7! R. We



L R L R L R L R L R L R L R L R L R L R L R

L R L R L R L R L R L R L R L R L R L R L R

L R L R L R L R L R L R L R L R L R L R L R
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(b)

Figure 2. Types of input – output pairs analysed in this paper. L and R represent the Poincaré sections associated with heel-strike events of the left and right legs.
(a) Left-to-right step maps (top) and right-to-left step maps (bottom). Step maps are denoted using straight arrows. (b) Left-to-left stride maps (top) and right-
to-right stride maps (bottom). Stride maps and step maps are distinguished throughout the paper by shape (straight versus curved arrows, respectively).
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fitted two categories of section maps: step to step (L 7! R and R
7! L) and stride to stride (L 7! L and R 7! R). These section maps

are illustrated in figure 2.

2.3. Fitting section maps
To fit the section maps for each category explained above, we

stack all the appropriate residuals (qL and/or qR) in matrices X
(input) and Y (output):

X ¼ [x1, . . . , xN]T and Y ¼ [y1, . . . , yN]T,

xi, yi [ Rd, (2:10)

where xi and yi represent residuals (q) from sections evaluated in

the data. For example, to fit the L 7! R step-to-step map, one

would set the columns of X and Y as follows:

x1¼ qL[1], y1¼ qR[2],
x2¼ qL[3], y2¼ qR[4],

..

. ..
.

xN¼ qL[2N � 1], yN¼ qR[2N]:

9>>>=
>>>;

(2:11)

The linear section maps are modelled as yi ¼ Axi þ di, 8 i, where

di is additive noise. The section map can be estimated via

least squares:

Â ¼ (X†Y)T, (2:12)

where X† is the Moore–Penrose pseudoinverse of X.
3. Statistical approach
Here, we tailor Monte Carlo cross-validation (MCCV) to

examine symmetry in walking dynamics. (A similar techni-

que based on bootstrap sampling produces qualitatively

similar results [53].)

3.1. Test of symmetry using Monte Carlo cross-
validation

Classical cross-validation (CV) involves fitting a model to a

training set of input–output data and validating the model

by comparing its predictions on a complementary test set of

input–output data. In classical CV, there are n pairs of

input–output data which are then split into a training (fit-

ting) set (nf pairs) and complementary test (validation) set

(nv ¼ n 2 nf pairs). The training set is used for model fitting.

The fitted model is then applied to the inputs of the test set to

generate output predictions; the error metric between the pre-

dicted and actual outputs is the cross-validation error (CVE).

The CVE is used to evaluate the performance of the model.

CV methods are commonly used for selecting models based

on their predictive ability [54–57]. A review by Arlot &
Celisse [58] summarizes different CV methods and discusses

their advantages and limitations.

The method that we present in this paper is based on

MCCV [54]. MCCV randomly splits the data m times with

fixed nf and nv (size of training and test sets, respectively)

over the m iterations. For each iteration, the CVE is computed

using the respective training and test sets; the overall CVE is

estimated using the mean of these m CVEs.

As mentioned before, the model being fitted to input–

output data in our case is a linear map. Suppose there are n
pairs of input–output data, (xi, yi), where i [ I ¼ f1,2,3,. . .,

ng. Split these data into a training set F](xf, yf ) comprising nf

pairs, and test set V](xv, yv) comprising nv pairs. Define XF
as the matrix whose rows are xT

f , and define YF, XV and YV
similarly. We use the following definition of CVE from F to V:

CVEF 7!V :¼ jjYV � XVAT
F jj

2

jjYV jj2
, (3:1)

where jj.jj denotes the Frobenius norm and

AF :¼ (XyFYF )T (3:2)

is the least-squares solution (2.12) given the training data F.

We tailor classical MCCV for systems that may exhibit

discrete symmetry. We focus our discussion and notation

on human walking, but these methods are applicable to

other forms of locomotion that involve nearly bilaterally sym-

metric gaits, e.g. walking and trotting [49], but not clearly

asymmetric gaits, e.g. galloping [59]. In classical MCCV, at

each iteration, one CVE is computed using (3.1), whereas,

in our CV method, we compute three types of CVEs. Each

CVE computation uses the same test set, but the models are

fitted using three different training sets.

Each application of the extended CV method requires a

‘normal’ set, N, and an equal size ‘mirrored’ set, M. In this

paper, we analyse four different (N, M) pairs, which are

generated using the input–output data types illustrated in

figure 2, i.e. step-to-step transitions (fL 7! Rg and fR 7! Lg)
and stride-to-stride transitions (fL 7! Lg and fR 7! Rg). For

example, if the normal dataset comprises the left-to-right

step transitions, N ¼ fL 7! Rg, the associated mirrored data-

set is M ¼ fR 7! Lg. Similarly, for strides, if N ¼ fL 7! Lg
represents the set of all transitions from left heel strike to

the subsequent left heel strike, then M ¼ fR 7! Rg are

the corresponding right-to-right transitions. All (N, M)

combinations are listed in table 1.

The normal and mirrored sets each include n mutually

exclusive input–output pairs, denoted by (xi, yi) [ N and

(x̂i, ŷi) [ M, respectively, where i [ I ¼ f1,2, . . . , ng. Each

iteration of extended CV randomly splits this index set I



Table 1. Catalogue of normal, N, and associated mirrored, M, dataset
combinations used in our CV analysis.

N M

step fL 7! Rg fR 7! Lg
fR 7! Lg fL 7! Rg

stride fL 7! Lg fR 7! Rg
fR 7! Rg fL 7! Lg

N

FNCV

FCCV

FMCV

M

V

xf , yf
. . . . . . . . . . . .xu , yu

x̂f , ŷf
. . . . . .

Figure 3. Illustration of the subsets V, FNCV, FMCV and FCCV after random
splitting during an iteration of extended CV methods. The normal dataset,
N, is randomly split into the normal training set FNCV and the common
test set V. FMCV shares the same indices as FNCV but is drawn from the
mirrored dataset, M. The training set for the CCV is simply the union of
the other two training sets: FCCV ¼ FNCV < FMCV. Note that the subset
MFMCV (greyed out) is not used in any of the three CV computations.
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into a training index set If and test index set Iv in a manner

identical to classical CV: If < Iv ¼ I and If > Iv ¼ ;. The

three types of CVE computations described below draw the

test set from the normal dataset:

V ¼ {(xv, yv) [ N jv [ Iv}: (3:3)

Normal cross-validation (NCV) is the same as classical

MCCV, in that the training data are also drawn from N:

FNCV ¼ {(xf , yf ) [ N jf [ I f }: (3:4)

This set is used for fitting the linear model AFNCV
using

(3.2). Given AFNCV
, the CVE is computed on the common test

set V using (3.1). For NCV, the mirrored dataset M is not used.

Mirrored cross-validation (MCV) draws the training data

from the mirrored dataset M, using the same training

index set If as NCV:

FMCV ¼ {(x̂f , ŷf ) [ Mjf [ I f }: (3:5)

As before, this set is used for computing the linear model

AFMCV
using (3.2). The common test set V is used for comput-

ing the CVE. In MCV, we are using the ‘wrong’ training

data (mirrored), which will be critical to detect dynamical

asymmetry in walking. Note that the size (and in fact

the indices) of the training data in both MCV and NCV

are the same.

Combined cross-validation (CCV) uses training data that is

the union of the training sets from NCV and MCV:

FCCV ¼ FNCV < FMCV: (3:6)

And, as before, this data subset is used to fit the linear

model AFCCV
and the common test set V is used for calculating

the CVE. Thus, the model is fitted on data pooled from both N
and M, while the test data remain the same. Note that CCV

uses twice as much data for fitting as either NCV or MCV.

Figure 3 illustrates the set partitioning for one iteration of

extended CV for a general dataset. Figure 4a illustrates one

iteration of the extended CV algorithms on step data, where

the normal dataset is N ¼ fL 7! Rg and the mirrored dataset

is M ¼ fR 7! Lg. Figure 4b illustrates one iteration of the

extended CV algorithms on stride data where N ¼ fL 7! Lg
and M ¼ fR 7! Rg. The comparison between NCV and

MCV will be critical for statistically testing the symmetry of

human walking. As both NCV and MCV have training sets

of the same size and MCV uses mirrored data, the difference

in CVEs offers a direct measure of dynamical asymmetry. For

a symmetric system, NCV and MCV errors should be statisti-

cally indistinguishable. If there are asymmetries, we should

observe higher MCV errors than NCV errors.

However, this comparison alone is not enough to address

all concerns because the main advantage of assuming sym-

metry is that we double the amount of data by combining
the normal and mirrored datasets and fitting a single model.

We introduce a potential bias by neglecting the asymmetries

in the behaviour, but reduce the variance in the estimation

by simply doubling the amount of data used for fitting. From

this perspective, comparison between NCV and CCV will be

critical for statistically testing predictive powers of asymmetric

and symmetric modelling approaches, which is an effective

way of testing the ‘usefulness’ of the symmetry assumption.
4. Results
The results presented here are based on the methods pre-

sented in §3.1, which rely on Monte Carlo sampling and

CV. The results presented below were qualitatively similar

(and stronger in one case) to those obtained using the

bootstrap method presented in [53].

We set the sample size of Monte Carlo iterations to

m ¼ 1000 based on pilot experiments which showed that

increasing the sample size beyond this had a negligible

effect on CVE. In each iteration, 20% (nv/n ¼ 0.2) of the

normal dataset, N, was withheld for validation. Training

sets for the three CV computations were drawn from the

remaining data according to the procedure detailed in §3.1.

4.1. Symmetric versus asymmetric modelling
The question being addressed in this paper is not just the

symmetry versus asymmetry of the dynamics of human

walking, but also the statistical consequences of choosing

one approach over the other. We applied our CV method

(§3.1) to expose these consequences.

4.1.1. Step maps
To apply the extended CV to step-to-step transitions, we

analysed both combinations of normal and mirrored data:

(N, M)¼ (fL 7! Rg,fR 7! Lg) and (N, M)¼ (fR 7! Lg,fL 7!
Rg) (table 1). For each category of CV—NCV, MCV and

CCV—we averaged the errors for both combinations of

(N, M). Figure 5a compares MCV and CCV errors with NCV

errors from step-to-step data. MCV errors are (statistically) sig-

nificantly higher than NCV errors at all speeds (p1.5 m s21¼ 0.004,

p1 m s21¼ 0.008 and p0.5 m s-1 ¼ 0.004; one-sided Wilcoxon rank-

sign test). This shows that our dataset is indeed dynamically

asymmetric between L 7! R and R 7! L. The comparison of



NCV

MCV

CCV

NCV

MCV

CCV

(a)

(b)

L R L R L R L R L R L R L R L R L R L R L R

L R L R L R L R L R L R L R L R L R L R L R
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Figure 4. Illustration of extended CV dataset partitioning. (a) For step-to-step data, the normal dataset (N) comprises all left-to-right step ordered pairs, whereas
the mirrored dataset (M) comprises all right-to-left step ordered pairs. (b) For stride-to-stride data, the normal dataset (N) comprises all left-to-left stride ordered
pairs, whereas the mirrored dataset (M) comprises all right-to-right stride ordered pairs. In both cases, for each iteration, a common test set (V, green arrows),
used for all CV methods, is randomly sampled from the normal dataset. The training sets, however, are unique to each method. NCV: the remainder of the normal
dataset is used for training (FNCV, blue arrows). MCV: the training set (FMCV, red arrows) is obtained using the same indices (dashed lines) as for FNCV. CCV: the
union of the test sets for NCV and MCV constitutes the combined training data (FCCV ¼ FNCV < FMCV, red and blue arrows).
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CCV and NCV errors illuminates a different perspective

(figure 5a). For speeds of 1.5 m s21 and 1.0 m s21, CCV and

NCV errors were statistically indistinguishable (p1.5 m s21 ¼ 0.38
and p1 m s-1 ¼ 0.84; Wilcoxon rank-sign test), suggesting that,

for these speeds, the predictive power of a model that assumes

symmetry is just as good as one that embraces the asymmetry.
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More surprisingly, the average CCV error for the slowest speed

tested was (statistically) significantly lower than the average

NCV error (p0.5 m s-1¼ 0.0039; Wilcoxon one-sided rank-sign

test) for the slowest speed (0.5 m s21). In other words, assuming

symmetry (CCV) produces a single step-to-step model that

has greater predictive power than is achieved by refining the

analysis to produce separate fL 7! Rg and fR 7! Lg step maps.

4.1.2. Stride maps
We analysed the dynamical symmetry and the statistical

consequences of symmetric modelling on the stride-to-stride

transitions. Similar to before, we analysed two different

(N, M) combinations, (N, M) ¼ (fL 7! Lg, fR 7! Rg) and

(N, M) ¼ (fR 7! Rg, fL 7! Lg) (table 1). And again, for each

category of CV, we averaged the CV errors for both combi-

nations of normal and mirrored data. As in the previous

section, we first compared NCV and MCV errors to test if

the stride-to-stride dataset is statistically asymmetric. The

NCV and CCV errors were also compared to contrast the

symmetric and asymmetric modelling approaches.

Figure 5b compares the MCV and CCV errors with NCV

error for stride-to-stride data. MCV errors were higher (on aver-

age) than NCV errors for all speeds, and these differences were

statistically significant (p1.5 m s21 ¼ 0.0391, p1 m s21 ¼ 0.0117 and

p0.5 m s-1¼ 0.0039; paired one-sided Wilcoxon rank-sign test).

This shows that our dataset is dynamically asymmetric between

L 7! L and R 7! R. However, the comparison of NCV and CCV

errors in the stride-to-stride dataset is more striking than in the

step-to-step case in that CCV errors were statistically signifi-

cantly lower than the NCV errors at all three speeds

(p1.5 m s21 ¼ 0.004, p1 m s21 ¼ 0.012 and p0.5 m s-1¼ 0.004; paired

one-sided Wilcoxon rank-sign test).

4.1.3. Model uncertainty
CVEs are powerful metrics for comparing the effectiveness of

symmetric and asymmetric modelling approaches. However,

if two models have similar CVEs, the next thing to address is

how well the data constrain the two models—i.e. how much

uncertainty there is in the model parameters [55]. This was par-

ticularly important for our step-to-step data because symmetric

and asymmetric modelling produced indistinguishable CVEs

for 1.5 and 1.0 m s21 walking. This implies that both modelling

approaches are equally powerful from the perspective of CVE.
However, the parameters of the fitted section map model may

exhibit greater variability for the asymmetric modelling

approach as it uses less data for fitting.

In order to measure the uncertainty of the models, we

adopted the following metric:

J ¼
Xd

i¼1

Xd

j¼1

s2
ij, (4:1)

where s2
ij is the sample variance of aij, i.e., the element at the ith

row and jth column of the section map AF fitted during Monte

Carlo iterations of the extended CV method. Symmetric model

uncertainty was computed using the fitted matrix samples

of the CCV method. Model uncertainties of the fL 7! Rg and

fR 7! Lg (and fL 7! Lg and fR 7! Rg) maps were averaged to

have a single asymmetric model uncertainty for step maps

(and stride maps).

We found that, by neglecting asymmetry and fitting a

single return map, there was a substantial reduction in

model uncertainty for both the step-to-step and stride-

to-stride data (figure 6). Thus, even though, in a few cases,

the CV errors were similar for NCV and CCV, the models

produced using CCV (that is, neglecting asymmetry and

pooling the data) are substantially less variable.

For step maps, assuming symmetry substantially lowers

model uncertainty; we saw 56%, 54% and 72% improvement

with the symmetric approach for speeds 1.5, 1.0 and

0.5 m s21, respectively. All improvements were statistically sig-

nificant ( p ¼ 0.0039; one-sided Wilcoxon signed-rank test). We

observed the same trend with stride maps: 61%, 58% and 74%

improvement with the symmetric approach for speeds 1.5, 1.0

and 0.5 m s21, respectively ( p ¼ 0.039; one-sided Wilcoxon

signed-rank test). These results are illustrated in figure 6.

4.2. Step return maps versus stride return maps
One of the advantages of assuming dynamical bilateral sym-

metry (i.e. neglecting asymmetry) is that one step becomes

the fundamental period of the system; the mapping from

step to step defines the return map of the dynamics. On the

contrary, if we embrace the asymmetry, the stride becomes

the fundamental period. The disadvantage of using stride-

to-stride return maps compared with step-to-step maps is a

potential loss of signal-to-noise ratio due to the fact that

stride maps reduce the temporal resolution. Thus, one can
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expect that stride-to-stride return maps would have lower

predictive power in the CV setting.

In order to compare the predictive powers of step and

stride return maps, we analysed the CVEs by assuming sym-

metry and fitting lumped return maps to both step and stride

data. Specifically, we compared the CCV errors of step and

stride data in our method. In order to estimate CCV error of

the step/stride return map, we took the mean of the CCV

errors of fL 7! Rg and fR 7! Lg/fL 7! Lg and fR 7! Rg.
The results illustrated in figure 7 show that there is a dra-

matic signal-to-noise ratio loss with stride-to-stride return

maps and that step-to-step return maps have more predictive

power in the CV setting. CCV errors of stride return maps are

significantly higher than the ones with step return maps:

79%, 87% and 31% more CV error with stride return maps

for speeds 1.5, 1.0 and 0.5 m s21, respectively. The differences

are statistically significant ( p ¼ 0.0039; one-sided Wilcoxon

signed-rank test).
5. Discussion
In this paper, we focused our attention on bilateral dynamic

asymmetry in human walking. Specifically, we introduced

a statistical framework based on applying CV techniques and fit-

ting linear maps to the data associated with the heel-strike events.

Our statistical methods allowed us to examine the ‘wrongness’

and ‘usefulness’ of neglecting bilateral dynamic asymmetry.

We applied our methods to data obtained from eight

different individuals walking at three different speeds.

Based on the results obtained with this dataset, we observed

that dynamical asymmetry in walking is significant and stat-

istically distinguishable. These results underscore what

several studies have previously observed on steady-state

parameters [8,11–13,23,24,27,60].

Despite the existence of significant asymmetry, we show

that ignoring this and modelling human walking dynamics

as symmetric produces significantly more consistent models

(figure 6). Moreover, the predictive power of these symmetric

models is higher than (or at worst equal to) their asymmetric

counterparts (figure 5). This shows that neglecting bilateral

asymmetry—an inescapable characteristic of the human
form—not only provides modelling convenience but, more

importantly, produces better models in terms of consistency

and predictive power. It is not only acceptable to neglect

asymmetry; in some cases, it is better.

One should also note that the slight differences between

two ‘symmetrically’ placed sensors (e.g. load cells) can gener-

ate an appearance of asymmetry that is not related to the

actual system. These asymmetries can both affect limit-cycle

symmetry as well as introduce dynamical asymmetries.

Fortunately, despite possible measurement asymmetries

that would probably exacerbate asymmetries in modelling,

a symmetric dynamic model was still preferable for our

data. Another limitation to this study is that participants

held their arms crossed while they walked on a treadmill,
both of which can affect gait [61,62]. As instrumentation

improves, the questions addressed in this paper can be

revisited in unconstrained and/or overground walking and

it would be interesting if walking were to be either more or
less symmetric in those cases.

Even though we applied our methods to human walking

data, they are directly applicable to a wide range of rhythmic

dynamical systems in biology and robotics. Specifically, we

are interested in behaviours that exhibit alternating (out of

phase) gait patterns but are symmetric via reversing the

left–right axis for half the stride. This class includes bipedal

walking, running and sprinting [63,64]; quadrupedal walk-

ing, trotting and pacing [59,65]; hexapedal alternating

tripod gait [66,67]; and even swimming [68,69].

In the context of robotics, our methods can be used for diag-

nostics and calibration as symmetry is considered a desirable

property in the design and development of robotic systems.

Asymmetric robotic gaits can potentially increase energy

expenditure, reduce performance and introduce a steering

bias, hindering the control and operation of the robot. It may

be possible to eliminate this steering bias by using existing

gait adaptation methods [70,71], which, to date, requires exter-

nal instrumentation and specialized arenas. However, our

method relies on only internal kinematic measurements

which are directly available in most robotic systems, and so

perhaps the methods presented in this paper can be used to

develop fast and effective calibration methods for field robotics.

On the biological side, there is scientific value in

investigating dynamical symmetry across species. Models of

biological locomotion can be decomposed into two com-

ponents: the mechanics of the locomotion (plant) and the

neural feedback (controller) [72]. A ‘less wrong’ model of

the plant provides better understanding of the controller,

and vice versa [73,74]. The locomotor pattern of a behaving

animal is the closed-loop interaction of the plant and control-

ler. Investigating dynamical symmetry (or asymmetry) in

the locomotor gait as well as symmetry (or asymmetry)

of the kinematics allows us to better predict the structure of

the corresponding neural controller.

With regard to human health in particular, our tools may

be useful for understanding motor deficits during loco-

motion. Specifically, these methods provide an important

extension to those that centre on kinematic symmetry and

its relations to human physiology [4,10]. Individuals with

damage to the musculoskeletal system or nervous system

often use asymmetric kinematic walking patterns (e.g. ampu-

tees and stroke patients). The kinematic asymmetry can be in

the amount of time standing on one leg versus the other,

the extent of limb movements, or some combination. An
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understanding of the underlying dynamical asymmetry (or

even symmetry) in these cases would provide more infor-

mation about the nature of the deficit, and perhaps suggest

new targets for focusing rehabilitation treatments.

Finally, an interesting extension of our methods would be

analysing dynamical asymmetry in gaits with categorically

asymmetric steady-state kinematics, such as quadrupedal gal-

loping and bounding. The steady-state limit-cycles of such

gaits are obviously asymmetric, but the dynamics around

those limit-cycles may be symmetric (enough).
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Endnote
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