
Self-Stability of a Dissipative Runner

Stride-to-Stride Energy Regulation for Robust Self-Stability of a

Torque-Actuated Dissipative Spring-Mass Hopper
M. Mert Ankaralı1, a) and Uluç Saranlı2, b)
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In this paper, we analyze self-stability properties of planar running with a dissipative spring-mass model
driven by torque actuation at the hip. We first show that a two-dimensional, approximate analytic return
map for uncontrolled locomotion with this system under a fixed touchdown leg angle policy and an open-loop
ramp torque profile exhibits only marginal self-stability that does not always persist for the exact system.
We then propose a per-stride feedback strategy for the hip torque that explicitly compensates for damping
losses, reducing the return map to a single dimension and substantially improving the robust stability of fixed
points. Subsequent presentation of simulation evidence establishes that the predictions of this approximate
model are consistent with the behavior of the exact plant model. We illustrate the relevance and utility of
our model both through the qualitative correspondence of its predictions to biological data as well as its use
in the design of a task-level running controller.
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It has long been established that simple spring-
mass systems, such as the well-studied Spring-
Loaded Inverted Pendulum (SLIP) model, can
accurately represent the dynamics of legged lo-
comotion. However, existing work in this domain
almost exclusively focuses on lossless leg models
with actuation through tunable leg stiffness, mak-
ing it difficult to generalize associated results to
physical systems. In this paper, we introduce a
more realistic model with damping and actuation
through a controllable hip torque, subsequently
developing a sufficiently accurate analytic approx-
imation to identify and characterize its limit cy-
cles. We show that in the absence of any ex-
plicit controls, running with this model is only
marginally stable, but when an “energy regulat-
ing” feedback law is introduced on the stance hip
torque, an open-loop, fixed touchdown angle pol-
icy produces asymptotically stable running across
a much larger range of states. We also show
that, the relatively under-studied hip torque ac-
tuation not only provides robust stability prop-
erties, but also has interesting correspondence
to data from biological runners, more accurately
predicting horizontal ground reaction forces dur-
ing locomotion.

a)Electronic mail: ankarali@eee.metu.edu.tr
b)Electronic mail: saranli@cs.bilkent.edu.tr

I. INTRODUCTION

Long term practical utility of mobile robots in unstruc-
tured environments critically depends on their locomo-
tory aptitude. In this context, the performance of ground
mobility that can ultimately be achieved by legged plat-
forms is superior to any other alternative as evidenced
by numerous examples in nature as well as a number
of very successful dynamically stable autonomous legged
robots that have been built to date1–5. Unfortunately,
even on flat ground, legged morphologies do not enjoy
the simplicity of models supported by the conveniently
constrained and continuous modes of ground interac-
tion observed in wheeled and, to some extent, tracked
vehicles. Even the most basic legged behaviors such
as walking6–10 and running11 require hybrid dynamic
models whose analysis and control involve difficult chal-
lenges. In the world of quasi-static locomotion with
multi-legged robots, one can recover some of this sim-
plicity through active or structural suppression of second
order dynamics12, but these methods are not directly ap-
plicable to dynamically dexterous modes of locomotion
such as running.

One of the most significant discoveries in this con-
text was most likely the recognition of similar center of
mass (COM) movement patterns in running animals of
widely different sizes and morphologies13–17. This led
to the development of the simple yet accurate Spring-
Loaded Inverted Pendulum (SLIP) model to describe
such behaviors18,19. Significant research effort was de-
voted to both the use of this model as a basis for the de-
sign of fast and efficient legged robots1,2,20,21 and associ-
ated control strategies22,23 as well as its analysis to reveal
fundamental aspects of legged locomotory behaviors11.
The present paper falls into the latter category and
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contributes by investigating the previously unaddressed
question of how the presence of passive damping and
actuation through a controllable hip torque affects the
behavioral characteristics of running. Our approach is
based on recently proposed analytic approximations to
the dynamics of a dissipative SLIP model24, which can
capture the effects of viscous damping in the leg much
more accurately than previously available methods in the
literature that rely on the conservation of energy25–28.
Since trajectories of this dissipative model lack symmetry
properties necessary to indirectly deduce stability prop-
erties without an explicit return map29,30, we use our
analytic approximations to generalize previous uses of
Poincaré methods26,31–34 to the stability analysis of run-
ning with a dissipative spring-mass model.
Our contributions in the present paper have a number

of important differences from existing work. Firstly, our
plant model is dissipative, invalidating most existing an-
alytic approximations and their predictions. Secondly, in
contrast to the usual energy regulation mechanisms in the
literature through adjustments of the leg length or chang-
ing stiffness, our model uses only a single torque actuator
at the hip to compensate for energy losses. These differ-
ences are motivated by being much more realistic from
an implementation point of view, as evidenced by the
successful use of similar actuation mechanisms in a num-
ber of monopedal platforms35,36, the Scout quadrupeds5

as well as the RHex hexapod1. Finally, our approximate
solutions to the return map also take into account the
effect of gravity on the angular momentum for steps that
are non-symmetric with respect to the gravitational ver-
tical, increasing the practical applicability of our stability
results.

II. THE TORQUE-ACTUATED DISSIPATIVE SLIP

MODEL

A. System Dynamics and the Apex Return Map
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FIG. 1. TD-SLIP : Planar, dissipative spring-mass hopper
with rotary hip actuation

Fig. 1 illustrates the Torque-actuated Dissipative
Spring-Loaded Inverted Pendulum (TD-SLIP) plant we
investigate in this paper. It consists of a fixed orienta-
tion (2-DOF) planar rigid body with mass m, connected

to a massless, fully passive leg with linear compliance k,
rest length r0 and linear viscous damping c, through an
actuated rotary joint with torque τ . Section II B pro-
vides detailed justifications for our choice of fixed body
orientation within this model.
The TD-SLIP system alternates between stance and

flight phases during running, with the flight phase further
divided into the ascent and descent subphases. Fig. 2
illustrates three important events that define transitions
between these phases: touchdown, where the leg comes
into contact with the ground, liftoff, where the toe takes
off from the ground and finally apex, where the body
reaches its maximum height during flight with ẏ = 0.
Another important event, not illustrated in the figure,
is bottom, where the leg is maximally compressed during
stance. Table I details the notation used throughout the
paper.
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FIG. 2. A single TD-SLIP stride with definitions of transition
states. The (cyclic) horizontal position variable at apex, xa

and the fixed leg length at touchdown, rtd = r0 are omitted
for simplicity.

TABLE I. Notation used throughout the paper

System States, Event States and Control Inputs

x, y, ẋ, ẏ Cartesian body position and velocities

r, θ, ṙ, θ̇ Leg length, leg angle and velocities
τ Hip torque command during stance

ya, ẋa Apex height and velocity
Ea Apex energy

θtd, ṙtd, θ̇td Touchdown leg angle, polar velocities
tb, rb, θb Bottom time, leg length and angle

tlo, rlo, θlo, ṙlo, θ̇lo Liftoff time, leg length, angle and velocities
pθ Angular momentum around the toe

Kinematic and Dynamic Parameters

m, g Body mass and gravitational acceleration
k, r0, c Leg stiffness, rest length and damping

During flight, the body obeys ballistic flight dynamics
[

ẍ
ÿ

]

=

[

0
−g

]

(1)

and the massless leg can be arbitrarily positioned. In
contrast, during stance, the toe remains stationary on
the ground while the body mass feels forces generated by
both the passive spring-damper pair and the hip torque.
The exact stance dynamics of the SLIP model in polar
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leg coordinates with respect to the toe location take the
form

d

dt

[

mṙ

mr2θ̇

]

=

[

mrθ̇2 −mg cos θ − k(r − r0)− cṙ

mgr sin θ + τ

]

, (2)

easily derived using an Euler-Lagrange formulation.
A very useful abstraction for the analysis and control

of cyclic TD-SLIP trajectories is provided by the apex re-
turn map, induced by the Poincaré section ẏ = 0 during
flight. In the following sections, we will use this map to
study stability properties of TD-SLIP, and later adopt it
as a task-level gait representation for a closed-loop run-
ning controller.
We will find it convenient to define three individual

submaps

Pd : [ya, ẋa] → [ṙtd, θ̇td] (3)

Ps : [ṙtd, θ̇td] → [rlo, θlo, ṙlo, θ̇lo] (4)

Pa : [rlo, θlo, ṙlo, θ̇lo] → [ya, ẋa] (5)

for the descent, stance and ascent phases, respectively,
to yield the overall apex return map as P := Pa ◦ Ps ◦
Pd. Note that the liftoff states incorporates additional
redundant variables for convenience, but the apex return
map is two dimensional. The descent and ascent maps
are trivial and are given by

Pd :

[

ṙtd
r0θ̇td

]

= −R(π/2− θtd)

[

ẋa

−
√

2g(ya − r0 cos θtd)

]

(6)

Pa :

[

ya
ẋa

]

=

[

rlo cos θlo + ẏ2lo/(2g)
ẋlo

]

(7)

where ẋlo and ẏlo are liftoff velocities in Cartesian coor-
dinates and R denotes the standard 2D rotation matrix.
Unfortunately, the stance dynamics of (2) are not inte-
grable in closed form. In the following sections, we briefly
review analytical approximations to the stance dynam-
ics of a dissipative SLIP model proposed by Ankaralı et
al.24, and extend it in subsequent sections to support hip
torque actuation.

B. Relevance and Feasibility of Hip Torque Actuation

The TD-SLIP model described in the previous section
assumes a fixed body orientation that enables control-
lable torque actuation at the hip, while also being suffi-
ciently simple to admit the approximate analytical solu-
tions we present in subsequent sections. Even though this
assumption seems to be rather unrealistic for an actual
legged machine, it should be noted that our model is not
intended for direct realization on a legged platform, just
as the original SLIP model with its point-mass riding on
a compliant leg did not directly correspond to any physi-
cal animal or robot morphology11. Our main motivation
is to gain a focused understanding of stability properties
in the presence of attributes common to a large range

of legged morphologies, passive damping and hip torque
actuation in particular, within a model sufficiently de-
scriptive but simple enough to provide analytical insight.

Nevertheless, practical relevance and applicability of
this model to physical systems also needs to be estab-
lished. In this section, we briefly describe three differ-
ent, physically plausible morphologies (or “anchors”37)
illustrated in Fig. 3 that would benefit from using TD-
SLIP as the underlying “template” to analyze and control
their locomotory performance. It should be noted that
detailed analysis of these models is beyond the scope of
the present paper, so we only provide sufficient detail to
establish the applicability of our model.

Fig. 3(a) shows a simplified planar model of the RHex
hexapod1 which incorporates three torque actuated, pas-
sively compliant legs, each representing a contralateral
pair of physical legs. The body angle is not explicitly
constrained, but the front and back legs provide restor-
ing forces that passively push the body angle towards
the horizontal. Moreover, we have recently shown that
active, template-based control can also use hip torques
to actively regulate the body angle, while simultaneously
controlling the locomotory center-of-mass dynamics38. In
contrast to our previous use of the passive SLIP model,
TD-SLIP would be a much better template with which
this hexapedal robot can be analyzed and controlled.

In contrast, Fig. 3(b) shows a monopedal platform
where the leg is attached above the center of mass to ex-
ploit the stability of natural pendulum dynamics. This is
a principle that has been used by most successful mono-
pod robots with a freely rotating body39,40. In our case,
the restoring torque provided by gravity would passively
counteract the leg torque, making it possible to approxi-
mately embed TD-SLIP dynamics within this more com-
plex morphology. Further research is of course needed
to establish that perturbations arising from body oscil-
lations do not destroy TD-SLIP stability, but we think
this is one of the simpler ways in which our results can
be applied to physical robots.

Finally, Fig. 3(c) illustrates a human-like legged mor-
phology with an upright body posture23, the most diffi-
cult scenario for which the TD-SLIP morphology would
be relevant. Unlike the previous example, body dynamics
are close to those of an inverted pendulum and are nat-
urally unstable. Nevertheless, we believe that it would
still be possible to use a properly chosen body angle tra-
jectory that would both allow an approximate realiza-
tion of the hip torque profile required by our analysis in
Section IID, while also stabilizing around a body angle
trajectory that would provide the necessary gravitational
torque to counteract the hip torque. This idea is simi-
lar in spirit to the extension of passive dynamic walking
models6 to incorporate an upright torso41,42 both for en-
ergy input and balance.

Now that we have provided a context for the utility of
the TD-SLIP model, we proceed with a detailed analysis
of and approximate solutions of its dynamics.
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FIG. 3. Possible robot morphologies for which the TD-SLIP model is relevant. (a) A planar hexapod with individually actuated
hips (b) A monopedal platform with low center of mass (c) A human-like morphology with an upright pody posture.

C. Approximate Stance Map for the Unforced TD-SLIP

Similar to earlier work on conservative SLIP models26,
approximations to the stance trajectories of a dissipative
SLIP model proposed by Ankaralı et al.24 rely on two key
assumptions: 1) The angular travel throughout stance
is relatively small and remains close to the vertical, al-
lowing linearization of the gravitational potential in the
Lagrangian with subsequent conservation of the angular
momentum pθ := mr2θ̇ and 2) the radial compression
is small with r0 − r ≪ r0, allowing a truncated Taylor
expansion of related terms. Even though these assump-
tions seem rather limiting, we found that the resulting
approximate return map remains accurate for leg com-
pressions up to %75 of the spring rest length as well as
deviations of up to 30◦ away from the vertical using our
gravity correction method of Section IID. Under these
conditions and assuming, for now, that τ = 0, the radial
component of (2) reduces to

r̈ + (c/m)ṙ + (ω2
0 + 3ω2)r = −g + r0ω

2
0 + 4r0ω

2 , (8)

with the definitions ω0 :=
√

k/m and ω := pθ/(mr20).
Solutions to this simple second-order ODE can be found
as

r(t) = e−ζω̂0t(A cos(ωdt) +B sin(ωdt)) + F/ω̂2
0 , (9)

with ω̂0 :=
√

ω2
0 + 3ω2, ζ := c/(2mω̂0), ωd :=

ω̂0

√

1− ζ2, F := −g + r0ω
2
0 + 4r0ω

2. A and B are de-
termined by touchdown states as

A := r0 − F/ω̂2
0 , (10)

B := (ṙtd + ζω̂0A)/ωd . (11)

Simple differentiation and further simplification yields ra-
dial TD-SLIP trajectories as

r(t) = M e−ζω̂0t cos(ωdt+ φ1) + F/ω̂2
0 , (12)

ṙ(t) = −Mω̂0 e
−ζω̂0t cos(ωdt+ φ1 + φ2) , (13)

with M :=
√
A2 +B2, φ1 := arctan(−B/A) and φ2 :=

arctan(−
√

1− ζ2/ζ). At this point, the angular trajec-
tories can be determined using the constant angular mo-
mentum. An additional linearization of the term 1/r2

in the angular momentum leads to an analytical solution
for the rate of change of the leg angle as

θ̇(t) = 3ω − 2ωF/(r0ω̂
2
0)− 2ωMe−ζω̂0t cos(ωdt+ φ1)/r0 ,(14)

integrated to yield the angular trajectory

θ(t) = θtd +X t (15)

+Y (e−ζω̂0t cos(ωdt+ φ1 − φ2)− cos(φ1 − φ2)),

with X := 3ω − 2ωF/(r0ω̂
2
0) and Y := 2ωM/(r0ω̂0) de-

fined accodingly24.
The final step in completing the stance map requires

finding the time of liftoff. Since we do not allow explicit
control of the liftoff leg length, only the force based liftoff
condition24 is applicable in the context of the present pa-
per. Consequently, the liftoff time is solely determined
by vanishing point of the spring-damper force felt by the
toe with k(r0 − r(tlo)) − c ṙ(tlo) = 0, for which a suffi-
ciently accurate analytical approximation can be found
by noting that the compression and decompression times
are often roughly equal with e−ζω̂0tlo ≈ e−ζω̂02tb , where
tb denotes the bottom time, easily found by solving (13).
This assumption, of course, introduces inaccuracies since
stance trajectories for the damped spring are not sym-
metric with decompression times often slightly longer
than compression times. However, since we only approx-
imate the exponential term in (13), we still obtain a suffi-
ciently good approximation while maintaining conceptual
simplicity. We now have

tlo ≈ (2π−arccos(k(r0 − F/ω̂2
0)/(MMe−ζω̂02tb))

−φ1 − φ3)/ωd , (16)

with M̄ :=
√

k2 − 2kcω̂0 cosφ2 + c2ω̂2
0 and φ3 :=

arctan((cω̂0 sinφ2)/(cω̂0 cosφ2 − k)), resulting in the
stance map

Ps :









rlo
θlo
ṙlo
θ̇lo









=









r(tlo)
θ(tlo)
ṙ(tlo)

θ̇(tlo)









, (17)

where the right hand side is a function of touchdown
states.
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Note, however, the derivations of Ankaralı et al.24 that
we summarized above ignore the presence of the hip
torque. In the next section, we propose a new method to
incorporate the effects of both the hip torque and gravity
through a fixed correction28 on the angular momentum
value pθ.

D. Approximate Stance Map for the Forced TD-SLIP

Hip actuation in legged systems can serve a num-
ber of different purposes. Among both biological17 and
robotic20,21,43,44 systems, its most common uses involve
retraction of legs in flight and control of body posture
with legs in stance. Interestingly, the use of hip actuation
to provide thrust has not been studied as extensively in
the robotics literature. In addition to a few direct exper-
imental inquiries35,36 and indirect uses in multi-legged
platforms1,5,45, it has received limited attention in the
form of an active spring30. Recent research also indi-
cates that quadrupedal locomotion uses forward thrust
through the use of hip actuators to provide an impulsive
energy source46.
Our use of the hip torque as a means of energy in-

put instead of radial actuation strategies such as tun-
able springs47 or toe push-off prior to liftoff is primar-
ily motivated by the ease of incorporating hip actuators
within physical robot platforms1,5. Even though radial
actuation alternatives have been shown to provide bet-
ter efficiency for passive dynamic walking behaviors due
to their ability to minimize impact losses48, similar ben-
efits do not carry over to legs with compliance where
impact losses are less pronounced. Consequently, in the
present paper, we propose an open-loop hip actuation
regime that enforces the ramp torque profile

τ(t) =

{

τ0(1− t
tf
) if 0 ≤ t ≤ tf

0 if t > tf
(18)

during stance, with τ0 and tf chosen prior to touchdown.
This open-loop profile has three important advantages.
Firstly, its simple functional dependence on time allows
us to easily incorporate its effects into the derivations
of the previous section. Second, if we choose tf to be
the predicted liftoff time, we have τ(tlo) = 0, which pre-
vents premature leg liftoff due to the action of the hip
and ensures a structural match to the trajectories of the
unforced system. Such a match is not possible with the
constant hip torque profiles adopted by earlier work. Fi-
nally, the unidirectional action of our ramp torque pro-
file ensures that no negative work is done during stance,
ensuring locomotion efficiency. Since, by definition, the
limit cycles we study in subsequent sections require zero
net change in the total system energy and hence always
correspond to positive energy input from the hip torque,
our avoidance of negative work will not have any impact
on our stability results.
Inspection of the TD-SLIP dynamics of (2) shows that

the hip torque directly acts on the angular dynamics and

only indirectly effects radial motion. Consequently, we
hypothesize that an average correction to the constant
angular momentum pθ of Section IIC can capture the
effects of the hip torque on system trajectories. Nor-
mally, the instantaneous angular momentum around the
toe during stance can be formulated as

pθ(t) = pθ(0) +

∫ t

0

τ(η)dη+

∫ t

0

mgr(η) sin θ(η)dη, (19)

by direct integration of the angular dynamics. Similar
to previous work on gravity correction28, we compute a
corrected angular momentum

p̂θ = pθ(0) + ∆pτ +∆pg , (20)

where ∆pτ and ∆pg incorporate the time averaged effects
of the leg torque and gravitational acceleration, respec-
tively. Fortunately, our choice of the ramp torque profile
admits a very simple analytic solution for ∆pτ . Assum-
ing tf = tlo in (18), we have

∆pτ :=
1

tlo

∫ tlo

0

(
∫ η1

0

τ(η2)dη2

)

dη1 = τ0
tlo
3

. (21)

However, even with available analytic approximations,
derivation of an exact closed-form expression for ∆pg is
not feasible. Instead, we use a linear approximation to
the integrand r(η) sin θ(η) using its values at the touch-
down and liftoff, resulting in

∆pg :=
mgtlo
6

(2r0 sin θtd + rlo sin θlo) . (22)

Estimated values for the liftoff time tlo, leg angle θlo and
leg length rlo are provided by the unforced approxima-
tions of the previous section. Substituting p̂θ for the
constant angular momentum in all derivations of Sec-
tion IIC, we obtain a new approximation that takes into
account the effects of both the hip torque and gravity on
the stance trajectories.
Note that the corrections we propose have an iterative

character since both (21) and (22) use prior estimates
of tlo and θlo. Consequently, starting from the unforced
approximations, it is possible to iteratively apply these
corrections to obtain more accurate predictions at the
expense of analytic simplicity. Currently, we do not have
a global convergence proof similar to previous iterative
maps for conservative SLIP models19, but our simula-
tions have shown convergence for all but the most ex-
treme initial conditions such as the angle of attack being
very close to the touchdown leg angle, causing a bounce-
back. In any case, a single iteration usually yields suffi-
ciently accurate results for our purposes and we do not
rely on the iterative character of our approximations for
the rest of the present paper.

III. STABILITY OF UNCONTROLLED TD-SLIP

LOCOMOTION

The biological origins of the SLIP model primarily sup-
port its descriptive power for center of mass movements
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of running animals19. However, despite all the evidence
indicating a close match between steady-state trajecto-
ries generated by the SLIP model and those arising from
the complex neuromechanics of running animals11, it is
much less clear whether this correspondence generalizes
to transient behavior and how well this model can pre-
dict stability properties and modes of control associated
with running behaviors. This is a rather broad ques-
tion that requires a much deeper understanding of both
musculo-skeletal and neural mechanisms involved in run-
ning animals than what is currently known. Neverthe-
less, the study of inherent, open-loop stability properties
associated with locomotory models can provide both evi-
dence towards possible reasons behind their adoption by
biological runners as well as hypotheses which can be
explicitly verified by biomechanical experiments49. Pre-
vious investigations of SLIP self-stability exclusively rely
on conservation of energy and the resulting one dimen-
sional return map once energy and the cyclic horizontal
position variables are factored out26,50–52. For the TD-
SLIP model, however, energy is not necessarily conserved
from one apex to the next, necessitating the study of a
two-dimensional return map. In this section, we describe
a method to effectively isolate fixed points of this re-
turn map and subsequently characterize their stability
by means of an analytically formulated Jacobian.

A. Equilibrium Points of the Uncontrolled Return Map

Recall that our choice of the hip torque in (18) incor-
porates two parameters: τ0 and tf . We have already ob-
served that choosing tf = tlo is advantageous in prevent-
ing early liftoff and ensuring structural correspondence of
system trajectories to our analytical approximation, leav-
ing only τ0 to be determined for a fully specified return
map. Earlier studies of vertically constrained hopping
revealed that the combination of constant energy input
with viscous damping in the leg yields global, asymp-
totic stability as a result of the associated unimodal re-
turn map18. Following a similar line of inquiry, we find
it most convenient to work in a new set of coordinates,
the apex height and the total mechanical energy, yielding
a new return map definition, a simple coordinate change
away from the map described in Section IIC, as

[

ya[k + 1]
Ea[k + 1]

]

= P̃

([

ya[k]
Ea[k]

])

. (23)

We have excluded the cyclic horizontal position variable
from this map since forward locomotion is expected to be
periodic in only the remaining variables. In the rest of
this section, we will study the stability properties of this
map under an open-loop strategy, with a constant touch-
down angle θtd = β and a fixed hip torque during stance
for each stride. For more general applicability, all of our
numerical results will be presented in non-dimensional

coordinates, defined as

ȳa := ya/r0 (24)
¯̇xa := ẋa/

√
gr0

Ēa := Ea/(mgr0)

k̄ := kr0/(mg)

ζ0 := c/(2
√
mk)

τ̄ := τ/(mgr0) .

Moreover, to make comparisons with earlier studies eas-
ier, we use kinematic and dynamic parameters that
roughly match those of an average human with m = 80kg
and r0 = 1m.

For the TD-SLIP system, the energy supplied by the
hip during stance is given by

Eτ = τ0

∫ tlo

0

(1− t

tlo
) θ̇(t)dt . (25)

The closest correspondence to Raibert’s runners20 and
the analysis of Koditschek et al.18 would have been ob-
tained if we were to use our approximations of Sec-
tion IID to obtain closed-form expressions for this energy
input and solve for τ0 that would have yielded a fixed en-
ergy input at every stride. Intuitively, since damping
losses monotonically increase with the total energy level
of the system, this constant energy input is likely to sta-
bilize the system around a fixed energy level. However,
in order to isolate self-stability properties of the uncon-
trolled TD-SLIP model, we use a much simpler, open-
loop strategy for the hip torque during stance with

τ0 =
C

θ̇td
, (26)

where C is an independent parameter with its dimension-
less counterpart defined as α := C/(mg

√
gr0) and θ̇td is

the angular velocity at touchdown, easily computed us-
ing ballistic flight trajectories. This choice corresponds
to a fixed power at touchdown, and roughly approximates
constant energy input during stance, resulting in a uni-
modal structure for the energy component of the apex
return map as shown in Fig. 4.a. In order to locate fixed
points of the return map P̃ , we first find apex energy lev-
els, E∗

a that are preserved by this return map for a given
height as the solutions to the equation

[ya[k + 1], E∗

a ] = P̃ ([ya[k], E
∗

a ]) . (27)

As a result of the unimodal structure of the energy return
map, this always yields a single solution. The resulting
constrained energy surface allows us to define a one di-
mensional cross section of the return map for the apex
height, whose zeroes correspond to the fixed points of P̃
as shown in Fig. 4.b for different values of α. More for-
mally, we define the apex height values preserved by the
return map, y∗a, as solutions to the equation

[y∗a, E
∗

a(y
∗

a)] = P̃ ([y∗a, E
∗

a(y
∗

a)]) , (28)
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FIG. 4. (a) Cross sections of the two-dimensional TD-SLIP return map along the energy axis for α = 1.5 and β = 26◦ plotted
for different apex height values ȳa[k]. (b) Cross sections of the return map constrained to energy solutions of (27) plotted for
different values of α. The red thick plot corresponds to the locus of the energy fixed points marked with red circles in the left
plot. (c) Fixed points of the apex height in the middle figure as a function of α. All axes are shown in dimensionless units as
defined in (24).

which is one dimensional and easily solved numerically to
identify all fixed points [y∗a, E

∗

a ] of the two dimensional

apex return map P̃ . Note that we have slightly abused
notation with E∗

a(y
∗

a), which is not a function because it
has multiple values corresponding to multiple fixed points
at a given apex height. However, it is still straightfor-
ward to numerically identify bifurcations in the behavior
of (27) (i.e. where the number of its fixed points change)
and then use multiple separate, continuous functions to
find associated fixed points. Fig. 4.c shows the depen-
dence of these fixed points on the constant touchdown
power α with the touchdown angle chosen as β = 26◦.

B. Parameter Dependence and Stability of Fixed Points

Fig. 5.a and Fig. 5.b respectively illustrate apex height
and apex energy fixed points of uncontrolled TD-SLIP lo-
comotion as a function of both the constant touchdown
angle β ∈ [20◦, 32◦] and the constant touchdown power
α ∈ [0.5, 2.5], computed using the procedure described
above. The system generally has a single fixed point, ex-
cept a narrow parameter range where there are two stable
and one unstable fixed points, also shown in the right-
most plot of Fig. 4. Fixed points also become unstable
once the choice of touchdown angle β becomes either too
large or too small as illustrated by the dark green regions
in Fig. 5.
In order to characterize the stability of fixed points,

we have computed the eigenvalues of the associated Ja-
cobian through analytic differentiation of the approxi-
mate return map described in Section IID. Fig. 6.a and
Fig. 6.b illustrate the behaviors of the eigenvalue with
the maximum magnitude for two different settings of the
touchdown angle as a function of the touchdown power
α. The top plot clearly shows the presence of two saddle

node bifurcations at the boundaries of the middle section
with three fixed points. The left and right extremes of
the top plot also show how the single point loses stability
as the touchdown power goes outside the stable middle
region. The bottom plot shows a touchdown angle set-
ting where the region with three distinct fixed points is
no longer observed.

The most important feature of these results, however,
is the presence of two distinct regions for the stable fixed
points. The first region, marked with (i) in Fig. 6.a
and Fig. 4.c, is robustly stable with the maximum eigen-
value well below unity, but corresponds to very large apex
heights (almost twice the leg length) that are not com-
monly observed for biological or robotic systems. The
second one, marked with (ii) in the same two figures, cor-
responds to much more realistic apex heights and speeds,
but the associated eigenvalues are very close to unity,
making the corresponding fixed points vulnerable to in-
accuracies in our approximate map.

These observations are supported by the comparison of
exact plant simulations to the predictions of our approx-
imate map. Fig. 7 shows convergence behavior of a TD-
SLIP system started from different initial apex heights for
different values of α and simulated for up to 150 strides.
White regions in Fig. 7.a correspond to structural loco-
motion failures such as toe-stubbing, failure to liftoff or
reversal of locomotion direction. The large regions with
the light shade correspond to simulations which did not
converge within the 150 steps but did sustain locomo-
tion. In contrast, regions with darker shades of blue cor-
respond to initial conditions from which convergence to
the fixed point associated with the corresponding choice
of α was observed, with red dots indicating where the
exact system converged to. As our approximations pre-
dicted, fixed points with large apex heights are robustly
stable (despite the small discrepancy in the prediction
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FIG. 5. Dependence of (a) apex height and (b) apex energy fixed points and their stability for the uncontrolled TD-SLIP model
on the constant touchdown angle β and touchdown power α parameters. Dark green regions are unstable whereas light blue
regions are stable with the shade of blue corresponding to the maximum eigenvalue magnitude as shown by the scale to the
right.
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angles (a) β = 26◦ and (b) β = 32◦.

of the actual fixed point location), whereas the practi-
cally feasible, lower apex height fixed points exhibit only
marginal stability with an extremely small domain of
attraction. These results show that practically, purely
open-loop control of TD-SLIP locomotion is not very ro-
bust. In the next section, we propose a novel energy-
regulation scheme that partially preserves the open-loop
nature of our control strategy with an uncontrolled leg
placement angle, while substantially improving the ro-
bustness and stability of the resulting running behavior.

IV. STABILITY OF AN ENERGY-REGULATED TD-SLIP

A. Compensation of Damping Losses

In this section, we describe a new method to use the
hip torque to compensate for all dissipative effects within
a single step, ensuring conservation of energy in the apex
return map and hence reducing its dimension by one.
Our consideration of energy as a controlled variable is
similar in spirit to previous passive stability experiments
conducted on the ARL Monopod-II robot platform40.

Note that the total energy dissipated within a single
TD-SLIP step is given by

Eloss = Ec + Ek , (29)

where Ec represents damping losses with

Ec :=

∫ tlo

0

cṙ2(η) dη , (30)

and Ek := (rlo − r0)
2/2 captures the leftover energy in

the leg spring when it lifts off before it is fully extended
due to damping. Fortunately, our analytic approxima-
tions provide closed form expressions for both of these
components. In particular, damping losses can be ap-
proximately computed as

Ec =
−c/M2ω̂0

4ζ
(ζ cos(2(φ1 + φ2) + φ3) + 1 (31)

− e−2ζω̂0tlo(ζ cos(2ωdtlo + 2(φ1 + φ2) + φ3) + 1)) ,

while Ek only depends on the previously computed rlo
and φ1, φ2 and φ3 defined as in Section IIC.
In contrast, the energy supplied by the hip torque is

given by (25), for which our analytical approximations
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can also be used to obtain closed-form expressions. Since
both (29) and (25) can be obtained in closed form as a
function of initial conditions and the choice of touchdown
angle θtd, we can find the desired torque magnitude τ0
by solving

Eτ = Eloss . (32)

As noted above, this choice of torque results in succes-
sive apex states having the same energy, at least while
working within our approximate apex return map. Nat-
urally, additional corrections are needed to apply these
ideas to the exact plant model since inaccuracies of our
approximations would invalidate this conservation. Nev-
ertheless, we use this active compensation regime to re-
duce the dimension of our analytic apex return map, al-
lowing us to easily identify its equilibrium points and
characterize their stability.

B. Equilibrium Points with a Fixed Leg Placement Policy

In this section, we use our analytic approximations to
identify and characterize equilibrium points of the one
dimensional “energy-regulated” return map on the apex
height ya arising from the use of a fixed touchdown angle
policy with θtd = β and the energy-regulating hip torque
described in Section IVA. Fig. 8 shows two families of
return maps for β = 22◦ (top) and β = 30◦ (bottom),
together with the dependence of equilibrium points on
the energy level of the system in the right plots. These
results show that the TD-SLIP still exhibits asymptot-
ically stable behavior under the fixed touchdown angle,
energy-regulated regime, with the location of the equilib-
rium point depending on the chosen energy level. In con-
trast to the fully uncontrolled system, the range of fixed
points obtained under the energy-regulation correspond
to much more realistic apex states and exhibit strong sta-
bility as shown by the associated eigenvalue magnitudes
in Fig. 9 and fast convergence times (at most 8 steps for
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ȳa [k]
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most initial conditions) observed in exact plant simula-
tions of Fig. 10.

We can also observe that as the fixed touchdown an-
gle β increases, the energy range for which stable fixed
points exist increases as well. This is rather natural since
the torque actuation at the hip can only supply energy
through the angular momentum, which directly increases
the angular span during stance. Increasing the touch-
down angle admits a larger angular span for stance, al-
lowing stable fixed points to form at higher energy levels
as well.

Having established the presence of stable equilibrium

points for the energy compensated TD-SLIP model,
Fig. 10 shows a comparison of fixed points predicted by
our analytic approximations, with those that arise within
simulations of the exact TD-SLIP model in apex height
and apex speed coordinates. In order to make direct com-
parisons possible, we started TD-SLIP simulations from
a large range of initial ya and Ea values, with a fixed
touchdown angle and an energy regulation controller sim-
ilar to the one presented Section IVA, but now taking
the energy level of the very first step as an overall regu-
lation goal. This modification was necessary since using
the approximations to locally enforce energy conserva-
tion at every step would slowly cause prediction errors to
accumulate, either draining all energy out of the system,
or causing it to diverge. We then checked whether the
system converges to a stable equilibrium point in apex
coordinates after 50 steps up to a tolerance of 10−4. The
blue regions in both plots illustrate the resulting domain
of attraction with lighter shades having longer conver-
gence times, while the red line in the same plot illustrates
the associated set of fixed points.
The domain of attraction exhibited by the simulation

almost exactly covers the region between the unstable
and stable fixed points predicted by our approximations.
There is also an almost exact match between the fixed
points predicted by our approximations and those ob-
tained from simulation except regions very close to the
saddle node bifurcation at low energy levels. The cavi-
ties to the right of the region of attraction arise from the
presence of the “gap” region in the return map, resulting
from kinematic constraints that require the apex height
to be sufficiently large to allow leg placement. The reason
for this can be clearly seen in both right plots of Fig. 8,
where parts of the return map overlap with the kinemat-
ically infeasible gray region on the bottom. This means
that some initial conditions at high energy levels will lead
to apex states for which leg placement at an angle of β
is impossible. This gap was also observed by previous
studies26, and is reproduced by both our analytical ap-
proximations, and the simulated plant. Finally, we also
note that apex speeds associated with the fixed points of
the system are physically realistic (¯̇xa = 1.5 corresponds
to roughly ẋa = 4.7m/s for an average sized human) and
both coordinates in the apex return map are accurately
predicted by our approximations.

C. Parameter Dependence of Equilibrium Points

Equilibrium points that arise from our fixed touchdown
angle, energy-regulated regime naturally depend on the
kinematic and dynamic parameter choices. Fig. 11 illus-
trates the dependence of stable fixed points on each in-
dividual parameter (the touchdown angle β, the dimen-
sionless leg stiffness k̄ or leg damping ζ0) with the re-
maining two parameters kept constant. Compatible with
our observations of the previous section, the range of sta-
ble energy levels increase with larger touchdown angles
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(i.e. for β = 20◦, Ēa ∈ [1.1, 3.4] whereas for β = 30◦,
Ēa ∈ [3.45, 11.9]), as illustrated by Fig. 11 where we
marked the endpoints of each curve with a small circle
for visibility.

The dependence of equilibrium points on the leg stiff-
ness, illustrated in the middle figure shows that increas-
ing spring constants cause an increase in the range of sta-
ble energy levels. This is also natural since an increased
stiffness corresponds to shorter stance times, resulting in
decreased damping losses and a corresponding decrease
in the necessary torque input. Finally, we observe that
the impact of the damping coefficients on the equilib-
rium points is not as pronounced, providing evidence that
our compensation strategy successfully balances damping
losses. Nevertheless, increasing the amount of damping
causes a slight decrease in the range of stable energy lev-

els.

D. Correspondence of the Model to Biological Data

A recent quantitative comparison of ground reaction
force data from a variety of running animals to those pre-
dicted by a simple, passive spring-mass model shows that
despite the very good correspondence of vertical force
components between biological data and the idealized
SLIP model, there are some discrepancies in how well
horizontal forces can be predicted53. In this section, we
report on an interesting property of the torque-actuated
TD-SLIP morphology: It seems to be capable of quali-
tatively reproducing ground reaction force profiles very
similar to those observed in biological systems.
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FIG. 12. Center-of-mass trajectories and directions of stance ground reaction forces of (a) human running, (b) TD-SLIP
running and (c) SLIP running at approximately 3m/s across a single stride with m = 65.4kg and r0 = 1m. Data for the left
plot was extracted from Kram et al.54, while the middle and right plots were obtained using TD-SLIP and SLIP simulations,
respectively. Green lines show the directions of ground reaction forces during stance as in Srinivasan et al.53.

Fig. 12 illustrates body center of mass (COM) trajecto-
ries for a single stride of steady-state running for (a) hu-
man running, (b) running with the TD-SLIP model and
(c) running with the conservative SLIP model, together
with a depiction of “virtual footfalls” in the direction
of instantaneous ground reaction force vectors through-
out the stance phase as proposed by Srinivasan et al.53.
COM trajectories associated with human running were
extracted from ground reaction force data in Kram et
al.54 through integration and filtering by assuming peri-
odicity of motion in both position and velocity variables
together with the average locomotion velocity, standard
techniques in biomechanics for recovering positional tra-
jectories from force-plate measurements. Dynamic pa-
rameters for both the TD-SLIP and SLIP data in the
middle and right figures were manually tuned to obtain
COM trajectories and an average locomotion speed close
to those associated with human data.

The commonly used lossless SLIP model was previ-
ously found to be incapable of capturing the backward
bias in the horizontal ground reaction forces observed in
human running data53. However, as a result of the ramp
torque profile we use for supplying energy to the system,
TD-SLIP locomotion does result in large backward hor-
izontal forces introduced in the beginning of the stance
phase, with associated virtual footfalls appearing behind
the actual toe location. Towards the end of the stance
phase, the hip torque approaches zero and brings the
virtual footfall and actual toe locations together. This
qualitative structure is observed for all steady-state tra-
jectories of the TD-SLIP model and is remarkably con-
sistent with data from human locomotion. Even though
we do not yet have any quantitative basis in which any
predictive claims can be made, we think that this corre-
spondence may provide evidence towards both the pres-
ence of significant damping, and the use of hip torque as
an additional source of energy used by biological runners,
improving the predictive accuracy and utility of dynamic
models of running.

V. APPLICATION: FEEDBACK CONTROL OF TD-SLIP

RUNNING

A. Deadbeat Control by Inversion of the Apex Return

Map

The presence of a sufficiently accurate analytic formu-
lation of the apex return map naturally motivates its in-
version to obtain a controller for actively stabilizing the
system around a desired operating point [y∗a, ẋ

∗

a] in apex
state coordinates. A similar approach was adopted in
a number of studies22,33,55, but never in the context of
a lossy model or torque actuation. In this section, we
describe a deadbeat gait controller for TD-SLIP as an
application of our approximations, and show that it is
capable of very accurately regulating the apex states of
a running TD-SLIP and improves on both the accuracy
and stability of previous attempts to control a similar,
torque-actuated model36.
An explicitly specified desired apex state will require a

nonzero change in the energy level of the system. Using
a strategy similar to the energy-conserving torque con-
troller of Section IVA, we will use the hip torque to sup-
ply the requested energy input to the system in a single
step. Similar to (32), this energy is given by

Eτ =
1

2
m((ẋ∗

a)
2 − ẋ2

a) +mg(y∗a − ya) + Eloss , (33)

which can easily be solved to determine the ramp torque
magnitude τ0, assuming, once again, that tf = tlo.
Once the desired torque profile is determined, the re-

turn map has only one remaining degree of control free-
dom: the touchdown angle θtd, no longer kept constant
across subsequent strides. A deadbeat controller can be
formulated as a one dimensional minimization problem
in the form

θtd = argmin
−π
2

< θ <−π
2

(ẋ∗

a − ( πẋa
◦ P (θtd, [ya, ẋa]k) ))

2 ,(34)
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whose numerical solution is trivial due to the availability
of our analytic approximation for the return map P . This
yields an effective, one-step deadbeat controller for the
regulation of forward speed and hopping height for the
TD-SLIP model.

B. Controller Performance and Comparison

As noted before, there are very few in depth studies of
how hip torque actuation can be used to achieve stable
locomotion. Among notable exceptions is recent work on
locomotion over mildly rough terrain36 where the authors
use TD-SLIP equations of motion to derive an approx-
imate energy controller to regulate hopping height, and
a PD-based torque policy to regulate forward speed. In
this section, we present a comparison of this controller
with the new controller we described in Section VA. In
order to maintain consistency with our previous stabil-
ity results, we use the same kinematic and dynamic pa-
rameters with Section IVB, roughly corresponding to an
average human morphology. Note that parameters used
by Papadopoulos et al.36 were also not substantially dif-
ferent from ours when converted to dimensionless units.
All simulations were run in Matlab using a fourth order
Runge-Kutta integrator together with accurate detection
of transition events. Each run consisted of 50 steps, at
the end of which we determined whether there was con-
vergence to a fixed point in apex coordinates.

0

5

10

15

20

 

 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

2

4

6

8

10

Proposed Controller
Papadopoulos et al.34

¯̇x
∗
a

10
0
|ẋ
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Fig. 13 illustrates tracking performances of both con-
trollers for apex speed and height variables in terms of
normalized percentage error measures. Note that our
controller based on an accurate analytic model for the dy-
namics of TD-SLIP significantly increases the range of ve-

locity goals that can be achieved without losing stability.
Moreover, improvements can be observed in the tracking
accuracy for both the apex speed and height variables.
Finally, our controller does not require any feedback or
sensory measurements during stance, but relies only on
accurate measurement of apex states. This makes practi-
cal implementations much more feasible compared to the
active PD control strategy since high-bandwidth feed-
back is usually very challenging for fast legged robots.

VI. CONCLUSION

In this paper, we presented a novel method to obtain
analytical approximations to the stance trajectories of a
dissipative, torque actuated planar spring-mass hopper.
We have successfully used our approximations to first
investigate stability properties of uncontrolled locomo-
tion with this system with both the touchdown angle and
stance torque profile control inputs kept constant across
all strides. We established that the uncontrolled system
possesses self-stabilizing limit cycles across a large range
of parameter settings, but observed that those that cor-
respond to physically realistic gaits have only marginal
stability with very small domains of attraction and hence
may not persist in the presence of modeling noise.
Subsequently, we proposed an energy-regulation con-

troller for the hip torque that can accurately compen-
sate for the effects of damping within a stride, allow-
ing us to obtain a one-dimensional return map under a
fixed angle leg placement policy, also substantially im-
proving on the stability of resulting limit cycles. Once
again, we were able to use our approximations to an-
alyze stability properties of the model under this new
energy-regulation scheme, identifying and characterizing
its equilibrium points. The predictive accuracy of our
analytical approximations was confirmed by a very close
match to fixed points and their domains of attraction ob-
tained through numerical simulations of the exact plant
model. We have also demonstrated the utility of our ap-
proximations through their use in designing a gait con-
troller.
It is important to note that neither the energy regu-

lating hip torque controller, nor the subsequent stability
analysis would have been possible in the absence of our
analytical approximations. Consequently, we believe this
paper presents the first careful study of stability proper-
ties of running in the presence of non-negligible damping
and hip torque actuation. In this context, we believe that
the incorporation of damping as a significant component
in the dynamical model substantially increases the ap-
plicability of associated analytical tools and controllers
to practical robot platforms in which dissipative effects
will always be present and may sometimes be a domi-
nant factor particularly if compliance is achieved through
composite materials. In the future, we hope to demon-
strate the practical utility of our approximations by ex-
perimental verification of their predictions with respect
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to a physical monopedal runner.
Our choice of hip torque as the primary source of en-

ergy input to the system was motivated by the difficulty
of implementing radial actuation in physical robot plat-
forms, and the simplicity and success of existing robot
platforms with similar actuation mechanisms1,5. We have
also further simplified our model by assuming a fixed
body angle that may be justified by morphologies in
which additional legs on the front and back of the body
provide a stabilizing effect, or where the body link is
explicitly constrained by an experimental setup35,36. In
this context, we discovered an interesting correspondence
between the ground reaction force profiles resulting from
the use of a hip torque and biological data presented
in53, leading to a possible explanation for the inability of
the original SLIP model in reproducing horizontal force
components during running and a very preliminary hy-
pothesis that hip torque may be playing a previously un-
addressed important role in the control of legged loco-
motion. In the future, we hope to generalize our results
to a freely rotating body link, making the results appli-
cable to less constrained morphologies such as bipeds.
For example, one of the interesting possibilities is how
forward-bending body posture and the resulting gravi-
tational torque can be used to balance the torque input
from the hip, making it possible to both have a freely ro-
tating body, while using the hip torque to provide thrust.
This seems to be one of the ways in which ideas similar
to those used for passive dynamic walking can be applied
to efficient bipedal running and we hope to extend our
results in this paper to such scenarios.
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