ME 530.676: Locomotion in Mechanical and Biological Systems Final Project

Instructor: Noah J. Cowan

Due: Thursday May 8 at 11:59:59 pm

The goal of this project is to generate a numerical approximation to a verticle hopper using Discrete-Time Harmonic Transfer Functions. Specifically, you will attempt to reproduce frequency response functions (FRFs) similar to [1], but with a smaller number of sections, and based on a technique that is different than in that paper. In that paper authors produce an HTF estimate based on input–output responses. Here, you'll estimate the dynamics

$$x[k+1] = A[k]x[k] + B[k]u[k]$$
$$y[k] = C[k]x[k]$$

where each of the matrices A, B, C are periodic in period T = 4.

The hopper code is a modification of the SLIP code, where hopping is purely in the vertical direction. Start with these parameters:

```
hopper_params.kc=1000;
                          %compression phase spring constant - N/m
hopper_params.kd=1000;
                          %decompression phase spring constant - N/m
                          %mass of the model - kg
hopper_params.m=3;
hopper_params.l_rest=1;
                         %the rest length of the spring - m
hopper_params.l_td = 1;
                          %touchdown leg length - m
hopper_params.l_lo = 1;
                          %liftoff leg length - m
hopper_params.gs=9.81;
                          %the gravitational accelaration during stance phase m/s2
hopper_params.gf=9.81;
                          %the gravitational accelaration during flight phase m/s2
hopper_params.Bc=5;
                          %compression phase damping constant Ns/m
hopper_params.Bd=5;
                          %decompression phase damping constant Ns/m
hopper_params.td_angle=0.0; %Touchdown angle
hopper_params.u0 = [2 2 0 0];
```

What you will do:

- 1. Find the limit cycle.
- 2. Use central difference to estimate section maps and the apex return map. Show that the product (in the right order!) of the 4 section maps equals the return map.
- 3. Use central difference approximation to compute linearized B and C matrices.
- 4. Find the HTFs from these.
- 5. Use Bode Plots to show that these agree with Mert's results (I'll provide stub code to help).
- 6. Turn in a single report and code to me. The report should be 5 or so pages with figures, and should explain your work. It should be typed up and clear.

References

 M. M. Ankarali and N. J. Cowan. System identification of rhythmic hybrid dynamical systems via discrete time harmonic transfer functions. In *Submitted to IEEE International Conference on Decision* and Control (CDC), December 2014.