
ME 530.676: Locomotion in Mechanical and Biological Systems

Problem Set 2

Instructor: Noah J. Cowan

Due: Friday, 14 Feb 2014

1. (a) Show that the linear time-invariant system given by

ẋ =

[
0 −1
1 0

]
x

has no limit cycles.

(b) Show that no linear system can have limit cycles.

2. For a (sufficiently smooth) function f : Rn → Rm, show that the central difference approximation of
∂f
∂x generally whips the pants off of the forward or backward difference approximation.

3. Khalil exercise 2.17, part (2), page 82.

4. Factorized return maps. Suppose that γ ⊂ Rn is a limit cycle of the nonlinear dynamical system

ẋ = f(x), x ∈ Rn, x(0) = x0,

where f is Lipschitz continuous over some neigborhood of γ (so, in a neighborhood of γ, solutions
are guaranteed to exist). Let S0, S1, and S2 be (distinct) sections, and Ui ⊂ Si, sufficiently small
neighborhoods of these sections.

(a) Carefully define the three functions gji : Ui → Sj , where j = (i + 1) mod 3 similarly to how a
return map is defined.

(b) Let gii : Ui → Si be the return map for the ith section, and prove that (for example)

g00 = g02 ◦ g21 ◦ g10 .

Note: for this problem, do not try to coordinatize each section, but rather consider each mapping
gji as a mapping from a subset Ui ⊂ Rn back into Sj ⊂ Rn.

(c) Show that the eigenvalues of the linearized return map gii are the same, i = 0, 1, 2. In other words,
prove that the stability properties are invariant to the choice of section.

5. For this problem, you will develop a matlab simulation of the Van der Pol oscillator:

ẋ1 = x2

ẋ2 = −x1 + ε(1− x21)x2
(1)

Select the positive x2 axis for a Poincaré section.

(a) Characterize any bifurcations that occur as function of ε.

(b) Using write a matlab implementation of the return map based on Matlab’s ODE solvers (e.g.
ode23, ode45); namely, given an initial condition on the section, your function should simulate
the dynamics (1) until the next section. Call this function vanderpolretmap2. It should take two
arguments, the initial condition on the x2 axis, and the parameter ε, callable, for e.g., with
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>> x2(1) = 3; x2(2) = vanderpolretmap2(x2(1), 0.2);

(c) Write vanderpolfp2 that takes two arguments, an initial guess and ε ∈ [−1, 1] and finds the fixed
point of the return map, e.g.

>> xfp = vanderpolfp2(2, 0.2);

NOTE: Use Newton’s method, and write your own implementation of this (don’t use, e.g., fmin-
search).

(d) Write vanderpoleig2 that uses central differencing compute the eigenvalue of the return map,
e.g.

>> eig = vanderpoleig2(xfp, 0.2);

(e) Tabulate the eigenvalues from ε = −1 to ε = 1 in increments of 0.1.

(f) Repeat (a-d) but using the positive x1 axis as the section. Call your functions vanderpolretmap1,
vanderpolfp1, vanderpoleig1. Verify that indeed the choice of section does not affect your
analysis of local stability, as proven in Problem 4.

For this problem, turn in a .zip or .tgz file that can be expanded and easily run as shown, as well
as turn in a printout of your table of eigenvalues. Your code should be readable and reasonably well
commented.
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