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Abstract— Observability is a formal property of a system that
ensures the ability to estimate the system’s states from output
measurements and knowledge of the inputs. In engineering,
sensors are typically designed and deployed to guarantee ob-
servability irrespective of the control input, thereby simplifying
control systems design. Here, we consider a class of nonlinear
sensors that require ‘persistently exciting’ control inputs to
maintain observability. This choice of sensor models is mo-
tivated by biological sensing systems which ‘adapt’ to constant
stimuli, giving them a very high dynamic range, but leading
to a phenomenon known as perceptual fading. To prevent
perceptual fading, animals employ active sensing in the form
of time-varying motor commands that continually stimulate
sensory receptors. To capture this phenomenon, we introduce
a simplified sensor model that requires active sensing inputs to
maintain observability. Under certain assumptions, the input-
output characteristics of the active sensing system is shown to be
equivalent to an observable linear time-invariant (LTI) system.
Using the framework of Harmonic Transfer Functions, the
equivalent system is identified by (1) modulating the system via
a sinusoidal active input, (2) demodulating the resulting output,
and (3) low-pass filtering. This relatively simple framework for
active sensing may pave the way for the design and deployment
of adaptive sensory systems for engineering applications.

I. INTRODUCTION

The dominant paradigm in feedback control theory is to
decouple the problems of control and state estimation. This
is called the separation principle. For example, for a linear
plant corrupted with Gaussian noise a Kalman filter can be
used for optimal state estimation, which can then be used
to drive a linear-quadratic regulator (LQR). The separation
principle allows us to design the Kalman filter and controller
independently of one another; i.e., the Kalman filter does not
depend on the LQR cost function, and the LQR gains do not
depend on the sensory and process noise covariances.

However, for a general nonlinear plant, the separation
principle does not hold. So, in order to facilitate the design
of independent observers and controllers it may—or may
not—be a good idea to start with linearization. For example,
for a simple static nonlinearity in the vector field or output
map, it may be a good idea to linearize the system around
its equilibrium. However, certain categories of nonlinearities
may preclude linear separability even if the system is both
(nonlinearly) controllable and observable.

Indeed, we suspect that this paradigm (linearization as the
first step in control design) does not apply to many biological
control systems in animals. Biological sensory systems often
stop responding to persistent (i.e. “DC”) stimuli, a process
known as “adaptation” in the neuroscience literature. Sen-
sory adaptation makes asymptotically exact set-point control
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impossible due to the imperceptibility of large, slow drifts
in the signal of interest. Animals often use a strategy known
as active sensing [1]-[3] in which the organism generates
potentially costly movements that do not necessarily directly
serve a motor goal but improve sensory feedback and prevent
perceptual fading [4]. Indeed, any searching behavior is
a form of active sensing and many species of animals
perform such behaviors. This paper focuses on developing a
framework to use such active sensing movements to recover
the observability for a simple biologically inspired nonlinear
system. Since this is fundamentally a sensing / observability
problem, we focus on linear plant dynamics with a nonlinear
output, resulting in an overall nonlinear system.

II. ACTIVE SENSING
A. Active Sensing in Biology and Engineering

Active sensing can be broadly defined as a feedback
controlled system that expends energy to sense its surround-
ings [1], [2]. Active sensing is most commonly associated
with species that generate and emit sensing signals, such
as echolocation in bats [5], [6] or active electroreception
in certain species of fish [7]. However, a more general
form of active sensing involves energy expenditure via the
system’s own active movements [8]-[17]. Some examples
of movement-based active sensing are movements of weakly
electric fish [3], [18]-[21], active sensing in vision [22]-[24],
whisking [25]-[29], active touch [30]-[33], sniffing [34]-
[36] and hydrodynamic imaging [37]-[39].

During such movement-based active sensing, the animal’s
motor behavior does not linearly relate to its task-level goal
and is often routinely changed in relation to the sensory
demands [40]-[46]. This suggests that the animal’s move-
ment might be stimulating/altering the sensory signals it is
receiving in order to better excite its sensors and downstream
neural circuits, thereby improve task-level performance [3].

The fundamental goal of our work is to examine how
active movements of a system, even if not directly related
to the task, can nevertheless be used to improve the task-
level performance in achieving a motor goal. Similar ideas
have been explored in previous engineering work [47]—
[52]. For the nonholonomic planar unicycle, for example,
a periodically exciting control system renders the system
nonlinearly observable, making it possible to design an
observer-based feedback control system despite the existence
of a “statically unobservable” submanifold [48]. Previous
work on differentially flat systems involves optimizing con-
trol inputs to maximize observability [49]. For multi-robot
systems, Mariottini et al. [S0] designed a switching active
control strategy to maintain formation control even when



all robots tend to move along non-observable paths, and for
UAVs, Lalish et al. [51] used oscillatory inputs to control a
system which is not small time locally controllable. Lastly,
Hinson et al. [52] showed that, for first-order nonholonomic
systems, active control actuation over at least two channels
is required to maintain observability.

B. The “Simplest” System Requiring Active Sensing

In this section we introduce a simple (perhaps the simplest)
biologically inspired sensory system that, when coupled
with a mechanical system, requires active sensing to ensure
observability. This model is motivated by ongoing stud-
ies of sensorimotor control in weakly electric knifefish in
the LIMBS Laboratory in a simple one-degree-of-freedom
refuge tracking behavior [3], [53]-[56].

Suppose x; is the position of the system and zo = 27 is
its velocity as it moves in one degree of freedom according
to the simple dynamics mxa + bxra = u as described for
weakly electric fish [54]. To formalize the notion of sensory
adaptation, we assume a receptor measures only the local
rate of change of a stimulus as the system moves relative to
a sensory scene s(z1), i.e., y = % s(z1). Defining g(z1) =
s'(x1), we arrive at the following model, which is nonlinear
due to the output y:

A B
y = g(z1)w2,

where m is the mass, b is the damping and the control input
u is the total external force acting on the system.

The linearization of (1) around any equilibrium, (z¥,0),
is given by (A4, B, C), where

C=[0 g(at)] 2)

Clearly, (A, C) is not observable irrespective of g(x). The
observability matrix of the system always loses rank due
to output being proportional to the velocity of the sensor,
making it impossible to infer its position (since the system
is translationally invariant).

However, a simple rank condition test on the Lie deriva-
tives of the system [57] shows that nonlinear observability
is guaranteed for nonzero velocities, zo # 0:

T = Ax + Bu,
y = g(w1)z2.

Note that, this is not a Gramian test for linear systems, but
rather a Jacobian rank condition test for nonlinear systems
since the output nonlinearity precludes a linear test.

The Lie derivatives of the system are given by

h = g(x1)x,,

b
Lih=g¢ — —.
f g (z1)z3 9($1)$2m

Following [57], we define the matrix G via

G _ h _ g(xl)xQ
Lgh] g (z1)23 — g(x1)w2 2
JG — g'(x1)w2
9" (x1)23 — g'(z1)z2 L 2¢ (x1)m2 — gla1) 2
For the system to be nonlinearly observable we require
that dG be full rank, which is guaranteed for nonzero

determinant:

25(2(g'(21))? — glz1)g" (21)) # 0. 3)

This simple result illustrates that control to a fixed position
(zo = 0) results in a loss of not just linear observability,
but also of nonlinear observability—i.e. it is a fundamental
system property and not an artifact of linearization. And thus,
to maintain observability, one must design a control input that
sufficiently excites the sensory system to enable estimation
of the states necessary for control.

9(x1) ] .

C. Our System with Active Sensing

In this section, we try to excite the sensory system
(“pumping” the system) with a time-periodic control signal
u*(t). Specifically, we linearize the system (1) around a
time varying equilibrium (2*(¢),uw*(t)) which results in
the following approximate linear time-varying (LTV) system
around the equilibrium (z*(¢), u*(t)):

0% = Adx + Bou,
oy = [Lrg(en)ze FLog(an)ea] _ o,
= [g'(aP)2}  g(af)]da.

Choosing ¥ = acos(wt) results in the equilibrium state
(2*(£), u* (1)) given by

0= 530 - [t
u*(t) = —amw? cos(wt) — abw sin(wt),

where m, b are the mass and damping of the system as
specified in (1). To simplify notation, we will henceforth
be representing du as u and the total input to the system as
Ugotal = U + u*. Therefore the LTP system now is,

6t = Adx + Bu,
dy = C(t)ox.
where A, B are given by (2) and
C(t) = —¢ (acos(wt)) awsin(wt) g (acos(wt)) |.

“4)

This LTP system is now further analyzed and simplified using
Harmonic Transfer Function (HTF) theory.

III. HARMONIC TRANSFER FUNCTIONS
A. Background

Transfer functions are an important tool in the analysis
of LTI systems. An analogous tool for the analysis of LTP
systems are Harmonic Transfer Functions (HTFs) [58]-[61].

The analysis of LTI systems is simplified by the fact
that a sinusoidal input results in a sinusoidal output of the



same frequency. However, the frequency response of an LTP
system not only includes the input frequency, but also the
input frequency plus multiples of the fundamental (“pump-
ing”) frequency of the LTP system. Using the principle of
harmonic balance, Wereley and Hall [58] showed that input—
output relationship of a LTP system are determined by a
possibly infinite parallel series of frequency shifted LTI sub-
systems. The transfer functions of these LTI sub-systems are
called the HTFs of the LTP system.

B. State Space Representation of HTF
A generic LTP system can be defined as,
x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t).
For such a system, Wereley and Hall [58] derived the Har-
monic transfer functions using the state space representation

and the principle of Harmonic Balance, which we review
here. This representation is given by

(&)

H(s) =C[s] —(A-N)"'|B+D, (6)

where A, B, C ,D are the doubly infinite Toeplitz matrices
containing the Fourier coefficients of the system matrices
A(t), B(t), C(t), D(t) respectively. Wereley and Hall [58]
also showed that the elements H,, ,,(s) of #, and the transfer
functions of the LTI subsystems are related via H,, ,,,(s) =
H,_ (s + jmw).

C. HTF'’s for Our Active Sensing System

Equation (6), for the simplifying case of time-constant A,
B and time-varying C, reduces to the case of “LTI plant
with modulated output” as described in [58], and has the
following form:

Hpm(8) = Cpm (sl — A)"' B, (7)

where H,, ,,(s) are the elements of the doubly infinite #(s)
and CY’s are the Fourier coefficients of C'(t).

To find an analytical expressions for the harmonics, we
assume a simplified form for the sensory “scene,” s(-), being
observed by the system:

1
s(xq) = idle + eixq, ®)

> g(l‘l) = S/("El) = dlxl + €1,

where, d; and e; are arbitrary real coefficients.
Now for the system (4), the Fourier coefficients of Cj’s
of C(t) are given by

Co=[0 e ]| Cu=|[ tawih o]

2 2

This gives the following form for Hy, Hy, and H_1:

_adi(s £ jw)
Hiq(s) = 25(b + Ms) &)

€1

Ho(s) = b+ Ms

The output of the LTP system (4) can now be represented as

6y = ho *u+ (hy *u)e?" + (h_y xu)e ¥, (10)

where hg, hy, h_; are the time-domain representations of
Hy(s), H1(s), H—1(s) respectively.

Note that the sensory scene chosen in this work only
contains the zeroth and first harmonics. If the sensory scene
(8) were to contain higher harmonics, then (10) below would
only be an approximation of the original system (4) that
neglects the higher harmonics. Given our use of low-pass
filtering (Section IV) this approximation would nevertheless
prove useful for more general scenes.

Simplifying (10) using /! = cos(wt) + jsin(wt) and
the fact that h_; and h; are complex conjugates gives the
following:

8y = ho xu+ (hy xw)e! + [(hy = w)e’']"
= ho = u+ 2Re [(hy * u)ejwt] 7
and thus

(11

0y = ho*u+2[Re(hy) * u] cos(wt)—2 [Im(hy) * u] sin(wt).

(12)
Note that, from Equation (9), we have
«
Im(H,) = ——— 13
m(H) ms? + bs’ (13

where o = a(d;/2)w, has no pole-zero cancellations, while
both Hj and the real part of H; have a pole-zero cancella-
tion, a fact used in Section IV.

IV. FRAMEWORK FOR EXTRACTING IM(H;)

After deriving the HTFs for the active sensing system
under consideration in Section III, we noted that the imag-
inary part of first harmonic has no pole-zero cancellations
(resulting in an observable system). So, if we were able to
successfully extract it, we would be able to use it as the
output of an equivalent system which is observable. Indeed,
this is the crux of this paper. This section completes our
framework of modulation (described above), demodulation,
and low-pass filtering to extract the imaginary part of first
harmonic which furnishes a new (observable) LTI system
which is approximately equivalent to the original nonlinear
system. See Fig. 1.

A. Extracting the Observable Harmonic

As can be seen from the output Equation (12), the first
harmonic’s imaginary part is modulated by a sinusoidal
signal. So we demodulate (12) with a sinusoidal signal,
which results in the following equation:

0Ymod = Oy sinwt
= (ho * u) sinwt + (Re(hy) * u) sin 2wt
+ (cos 2wt — 1)Im(hy) * u
= —Im(hy) *u + (ho * u) sinwt
+ (Re(hq) * u) sin 2wt + (Im(hy) * u) cos 2wt.
(14

After demodulation, the output is contaminated by the re-
maining harmonics (modulated by sinusoids at w and 2w).
If we assume that hg * u, Re(hy) = u, and Im(hy) * u
are sufficiently band-limited signals, then it is possible, in



principle, to low-pass filter dy,04, thereby extracting the first
term Im(hq) * u, which is at the base band (unmodulated).
So, we pass the output from (14) through a low-pass filter,
and assume that the modulated signals are eliminated:

5ymod * hlpf
_h]pf * Im(hl) * U,

Suar =
Yal (15)

where hi,¢ represents the low-pass filter. Our system can now
be seen as the cascade of the “Simplified System”, Im(H;),
and a low pass filter, as shown in Fig. 1b.
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Fig. 1: Block diagrams.

B. Simulation

In order to compare the LTI system approximation and the
complete (nonlinear) active sensing system, we simulate in
MATLAB both the systems using an LQG controller.

1) System and Filter Parameters: The sensory scene is
given by s(z) = %dle + ejx, introducing two parameters.
Furthermore, the LTP plant model (4) in Section II has three
parameters (m, b, and w). The system ratio % has been
chosen based on the ratios of a weakly electric fish system
[54], which has inspired this work. A 5th_order Butterworth
filter [62] with 0.5 Hz as a cut-off frequency has been used
as the low-pass filter in (15).

2) State Estimation and Control: Since our equivalent LTI
system is observable (no pole-zero cancellations), we can use
the output for a state estimator. We implemented a Kalman
filter (KF) [63] for this purpose. The initial covariance
matrices for the KF are given in Table I. The estimated
state is now fed through an infinite-horizon linear quadratic
regulator (LQR) controller to try to control the system to a
fixed goal position. The parameters used in our simulations
are given in Table L.

C. Results

1) System Identification of Nonlinear System: To show
that the developed LTI system and the nonlinear active
sensing system are approximately equivalent, we compare
the Bode plots of both systems in Fig. 2. Although these
plots match each other at most frequencies, we note that
at 1 Hz (which is half the “pumping” frequency) there is
a mismatch between the Bode plots of the approximate
LTI system and the nonlinear system. This is likely due

Parameter Description Value Units
m System mass 1 kg
b System damping 1.7 N-s-m~!
w Pumping frequency 4 rad-s—!
dq scene coefficient 3 m—2
el scene coefficient 5 m—1
Process Covariance (KF) 107450
Measurement Noise (KF) 0
State weights (LQR) 212 %2
control weight (LQR) 1

TABLE I: System and sensory scene parameters.

to harmonic interactions between the control signal and the
system’s own harmonics. At higher frequencies, the Bode
plots do not match due to interactions of higher harmonics
and the control signal leaking through the low-pass filter.
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Fig. 2: The Bode plot of the complete (nonlinear) system
agrees closely with that of the approximately equivalent
linear system. Parameters in Table I.

2) LOG Control: To further validate our framework,
we simulated the LQG system in Section IV-B. Fig. 3(a)
c/lgmonstrates that the Kalman state estimate of position,
dz1(t), of the approximately equivalent LTI system closely
matches the relative position of the nonlinear active sensing
system about the ‘“active” movements of the system, i.e.
dx1(t) = x1(t) — ¥ (t). The velocity state estimate also
matches well (Fig. 3(b)). We also compare the output signal
from the equivalent LTI system and to the dyg from the
simulation of the nonlinear active sensing system in Fig.
3(c). Fig. 3(d) plots the position of the system along with it’s
active movements. This figure also shows how the sensory
scene being observed by the system varies with time.

V. CONCLUSION

We developed a framework to recover observability via
active sensing using HTF theory. Our central idea is that
the higher harmonics of an active sensing system render
the system observable. To illustrate this, we developed a
biologically inspired active sensing system, where the output
is a high-pass-filtered point measurement of the sensory
scene. Controlling this system to a fixed point is shown
to render it nonlinearly unobservable. The proposed active
sensing framework involves modulation, demodulation, and
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Fig. 3: Simulation and comparison of system states and outputs to validate the developed framework. Note that for this
regime, the linear simulations closely matches the nonlinear system. The example shown in panels (a-c) start from an initial
position, dz; = —4.5 to dx; = 0.36 relative to the equilibrium (zF,z3) = (coswt, —wsinwt), using the Kalman position
estimate from the approximately equivalent observable system. (a) Comparison of position of linear and nonlinear system.
(b) Comparison of velocity of linear and nonlinear system. (c) Comparison between the demodulated, filtered output signal
from the nonlinear system and that of the simulated linear approximation. (d) Position of the nonlinear system. The gray map
along the y-axis depicts the intensity of the sensory scene at an instant and the gray-map above the graph shows the scene
intensity observed by the sensor at each time instant; recall that the sensor then high-pass filters this intensity measurement
as the sensor output.
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