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Abstract11

Learning to perform feedback control is critical for learning many real-world tasks that involve continuous12

control such as juggling or bike riding. However, most motor learning studies to date have investigated13

how humans learn feedforward but not feedback control, making it unclear whether people can learn new14

continuous feedback control policies. Using a manual tracking task, we explicitly examined whether people15

could learn to counter either a 90◦ visuomotor rotation or mirror-reversal using feedback control. We16

analyzed participants’ performance using a frequency domain system identification approach which revealed17

two distinct components of learning: 1) adaptation of baseline control, which was present only under the18

rotation, and 2) de novo learning of a continuous feedback control policy, which was present under both19

rotation and mirror reversal. Our results demonstrate for the first time that people are capable of acquiring20

a new, continuous feedback controller via de novo learning.21

Introduction22

Many real-world motor tasks require continuous feedback control in order to perform skillfully. For example,23

when one is riding a bicycle, one must assess the environment and the state of the body to inform future24

motor commands that will minimize the chance one will topple off the bicycle. But when one learns how25

to ride a bicycle, does one learn a new feedback control policy to do so? Most studies investigate motor26

learning within the context of discrete, point-to-point movements which can be executed by predominantly27

using feedforward control. Therefore, while it may seem intuitive that one should be able to learn a new28

feedback controller, little is known about whether this is actually the case.29

Humans can learn to perform new motor tasks through a variety of learning processes [1]. One of the most30

well-characterized mechanisms is adaptation, an error-driven learning process by which task performance is31

improved by experiencing and subsequently reducing sensory prediction errors [2–4]. Adaptation is known32

to support learning in a variety of laboratory settings including under imposed visuomotor rotations [5–7],33

prism goggles [8,9], split-belt treadmills [10,11], and force fields [12,13]. However, adaptation is known to be34

limited in the extent to which it can change behavior [6,14–16], suggesting that it cannot account for learning35

more complex motor skills. It has therefore been suggested that more complex skills must be learned by36

building a new control policy from scratch, a process termed de novo learning (Figure 1A) [17–19]. However,37

the exact mechanisms and properties of de novo learning remain unclear.38

A simple visuomotor perturbation that is thought to require de novo learning is a mirror reversal of39

visual feedback. After having learned to compensate for mirror-reversed feedback, participants do not exhibit40

2

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.15.906545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.906545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Adaptation

De novo learning

CP 1
u = f(xt ,t,θ)

CP: control policy
u: motor commands
x: current state of plant
t: time
θ: adaptation parameter

CP 1
u = f(xt ,t,θ)

CP 1'
u = f(xt ,t,θ')

CP 2
u = g(xt ,t,θ)

CP 1
u = f(xt ,t,θ)

A B

C Hand Cursor

90° Visuomotor
Rotation

Mirror
Reversal

Point-to-Point
(150 reaches)

Tracking
(~6 min)

D

Baseline Early Late Post

Perturbation On

Figure 1. Conceptual overview and experimental design. A. We conceptualize adaptation as a parametric
change to an existing control policy (changing θ to θ′) and de novo learning as building a new control policy
(g) to replace the baseline control policy (f). B. Participants performed planar movements with their right
hand while targets were presented to them on a mirror-reversed display. In these tasks, there is a visual target
(yellow) that participants are asked to track with their cursor (blue). C. Participants learned to control
the cursor under one of two visuomotor perturbations: a 90◦ visuomotor rotation, or a mirror reversal. D.
Participants were trained on their respective perturbation in both a point-to-point reaching task (1 block
= 150 reaches) and a sum-of-sinusoids tracking task (1 block = ∼6 mins), the latter of which allowed us
to assess their feedback control capabilities. We first measured baseline performance on both tasks under
veridical feedback (blue), followed by interleaved tracking and point-to-point blocks with perturbed feedback
from early learning (orange) to late learning (yellow). We removed the perturbations post-learning to assess
aftereffects (purple).

aftereffects [20, 21] that are characteristic of adaptation [13, 22, 23], suggesting that learning occurs through41

a qualitatively distinct mechanism. Furthermore, work in patient populations has suggested a dissociable42

neural basis for these two types of learning, with cerebellar dysfunction impairing learning in adaptation-43

based tasks (e.g., visuomotor rotations) but not de novo tasks (e.g. mirror reversal) and vice versa for basal44

ganglia disorders [20,24–26].45

To date, de novo learning has only been examined in point-to-point movements [18, 27], and the extent46

to which learning to counter a mirror reversal genuinely reflects learning of a new feedback control policy47

is unclear. Reaching to static targets under a mirror reversal could be achieved without learning any new48

control policy by simply re-aiming one’s movements to a surrogate target opposite the mirroring axis [7].49

Indeed, while people can easily learn to make accurate point-to-point movements under mirror-reversed50

feedback, they remain unable to generate appropriate feedback corrections during movement [18, 28, 29]. In51

contrast, adaptation to rotated visual feedback generalizes strongly to online feedback corrections [18,30,31].52
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To compensate for mirror reversal, are participants capable of learning a new feedback control policy de53

novo, or do they primarily rely on a feedforward re-aiming strategy?54

Here, we used a manual tracking task to more comprehensively assess whether participants could learn to55

continuously control a cursor under either a visuomotor rotation (engaging adaptation) or a mirror reversal56

(requiring de novo learning). Participants were primarily exposed to the perturbation during point-to-point57

movements but, in periodic assessment blocks, were asked to track a target moving in a pseudorandom sum-of-58

sinusoids trajectory (Figure 1B-C) [32–36]. The fact that the target moved continuously and unpredictably59

precluded participants from engaging in time-consuming deliberate planning of the kind associated with60

strategic re-aiming [6, 37–39]. Participants instead had to continuously send motor output to track the61

target from moment to moment. We found that participants were capable of tracking the target under the62

mirror reversal and their feedback control performance improved with learning. Moreover, by analyzing63

different frequencies of hand movement, we found that these participants exhibited qualitatively different64

behavior from those who learned a visuomotor rotation. Ultimately, our results suggest humans are capable65

of acquiring new feedback control policies via de novo learning.66

Results67

Trajectory-based analyses68

We recruited twenty participants for this study. Participants used their right hand to manipulate an on-69

screen cursor under either a 90◦ visuomotor rotation (n = 10) or a mirror reversal (n = 10) about an oblique70

45◦ axis (Figure 1). These perturbations were designed such that, in both cases, motion of the hand in71

the x direction was mapped to cursor motion in the y direction and vice versa. Each group first practiced72

moving under their respective perturbation in a point-to-point task, reaching towards targets that appeared73

at random locations on the screen (Figure 1D), and we quantified their performance using initial reach-74

direction error. For the rotation group, this error decreased as a function of training time and plateaued75

near 0◦, suggesting that participants successfully learned to compensate for the rotation (Figure 2A). For76

the mirror-reversal group, there was no clear learning curve using this simple measure, but performance was77

better than would be expected if participants had continued to use their baseline controller (which would78

manifest as reach errors spanning a range from −180◦ to 180◦), indicating learning. Thus, both groups of79

participants appeared to compensate for the perturbations during point-to-point movements, consistent with80

previous findings.81

To test the extent to which participants could learn a new feedback policy under these two perturba-82
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Figure 2. Performance in the point-to-point and tracking tasks. A. Performance in the point-to-point task,
as quantified by reach-direction error, is plotted for the rotation (top) and mirror-reversal groups (bottom).
The learning curves were smoothed by binning the trials into sets of 3 consecutive trials. Data from only the
last 51 reaches of the baseline point-to-point block are shown (trials 100-150). Trials 1-150 occurred between
the baseline and early tracking blocks, and trials 151-600 occurred between the early and late tracking
blocks. B. Example tracking trajectories from one participant in each group. Target trajectories are shown
in black while cursor trajectories are shown in brown. Each trajectory displays approximately 5 seconds
of movement. C. Performance in the tracking task as quantified by average mean-squared positional error
between the cursor and target during each trial. All error bars are SEM across participants.
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tions, we periodically assessed their performance in a tracking task with a continuously moving target. We83

administered this task before, during, and after blocks of practice of point-to-point movements under the84

perturbation. In the tracking task, participants followed a target that moved in a continuous sum-of-sinusoids85

trajectory at frequencies ranging between 0.1–2.15 Hz, with distinct frequencies used for x- and y-axis target86

movement. The resulting target motion appeared random. Furthermore, the target’s trajectory was altered87

every block by randomizing the phases of the component sinusoids, preventing participants from learning a88

specific target trajectory.89

As an initial assessment of learning, we measured the average mean-squared positional error (tracking90

error) between the target and cursor trajectories during every tracking trial. Example trajectories from91

single participants are presented in Figure 2B. Both groups of participants improved their tracking error92

over time (Figure 2C). Moreover, the tracking error was similar between both groups of participants by late93

learning.94

We estimated how participants translated target motion into hand motion by aligning the hand and95

target trajectories through a linear transformation that, when applied to the target trajectory, minimized96

the discrepancy between the hand and target trajectories. We also included provision for possible delays97

between the target and hand trajectories in this analysis (estimated at approximately 380 ms; see Methods98

for details). At baseline, this transformation matrix should resemble the identity matrix, as the hand99

trajectory should be well aligned with the target trajectory. Indeed, at baseline, the transformation matrices100

resembled identity matrices for both groups of participants (Figure 3A). After learning, the transformation101

matrix should resemble the inverse of the matrix representing the applied perturbation. Figure 3A shows102

the estimated transformation matrices for both groups at different time points during the experiment, along103

with a visualization of how they affected the unit x and y vectors. These transformation matrices began to104

resemble the ideal transformation by late learning for both groups.105

To analyze learning statistically, we focused on the off-diagonal elements of the matrices, which critically106

distinguish the different transformations from one another and from baseline. In late learning, both the107

rotation (linear mixed effects model: main effect of block (F (2, 36) = 220.78, p < 0.0001; Tukey’s range108

test: p < 0.0001) and mirror-reversal groups (Tukey’s range test: p < 0.0001) exhibited off-diagonal values109

that were significantly different from their baseline values (Figure 3B), and in the appropriate direction to110

compensate for their respective perturbations.111

From these matrices, we computed specific metrics associated with each perturbation to further charac-112

terize learning. For the rotation group, we estimated the angular compensation by fitting a pure rotation113

matrix to the estimated transformation matrices (Figure 3C) to obtain a compensation angle θ. At baseline,114

we found that θ = 2.3± 1.4◦, and this increased to θ = 69.6± 1.7◦ by late learning. For the mirror-reversal115
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Figure 3. Trajectory-alignment analysis of tracking task. A. Transformation matrices relating target and
hand movement. The top row illustrates the ideal transformation matrices at baseline or to successfully
compensate for each perturbation. The rotation (middle row) and mirror-reversal (bottom row) groups’
transformation matrices evolved during learning (averaged across participants). Each matrix can also be
visualized in terms of how it transforms the unit x and y vectors (equivalent to the columns of the matrix),
plotted below each matrix (x = green, y = purple).Unit x and y vectors are shown for scale. Shaded areas are
95% confidence ellipses across participants. B. The average of the two off-diagonal elements of the estimated
transformation matrices across all blocks of the experiment (baseline through post). Black lines indicate
individual participants, and circles and error bars indicate mean and SEM across participants. C. (Left:
rotation group) Angular compensation for the rotation, estimated by approximating each transformation
matrix with a pure rotation matrix. (Right: mirror-reversal group) Scaling factor orthogonal to the mirror
axis. In each plot, dashed lines depict ideal performance when the perturbation is (green) or is not (black)
applied. Black lines indicate individual participants and circles and error bars indicate mean and SEM across
participants.
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group, we computed the scaling of the target trajectory in the direction orthogonal to the mirror axis (Fig-116

ure 3C) to assess whether participants learned to flip the direction of their movements in response to target117

motion in this direction. This value was positive at baseline and negative by late learning, indicating that118

participants successfully inverted their hand trajectories relative to that of the target.119

At the end of the experiment, we tested for aftereffects by repeating the tracking task one more time, but120

with the perturbation removed (and with participants made explicitly aware of this). We again estimated121

transformation matrices for this block and found that the two visuomotor perturbations had different effects122

on participants (linear mixed effects model: 2-way interaction between group and block, F (2, 36) = 11.9686).123

The off-diagonal elements for the rotation group were significantly different from baseline (Tukey’s range124

test: p < 0.0001), indicating the presence of aftereffects. This corresponded to a compensation angle of125

θ = 21.7 ± 1.4◦, similar to the magnitude of aftereffects reported for visuomotor rotation in point-to-point126

tasks [16, 40]. For the mirror-reversal group, by contrast, the off-diagonal elements of the post-learning127

transformation matrix were not significantly different from baseline (Tukey’s range test: p = 0.6036; baseline128

range: −0.06–0.10; post-learning range: −0.06–0.14), suggesting negligible aftereffects.129

These data support the idea that participants were able to compensate for the applied perturbation in the130

more challenging tracking task, but achieved this via qualitatively different mechanisms for the two different131

perturbations.132

Frequency-domain analyses133

The transformation matrices estimated based on trajectory alignment suggest that the mirror-reversal group134

was capable of learning a feedback control policy. However, this analysis has limitations. One limitation is135

that the mean-squared tracking error we calculate is biased towards large-amplitude deviations of the target136

which occurred relatively slowly (at 0.1–0.65 Hz). This could potentially have allowed the tracking task to137

be solved through intermittent “catch-up” movements that were strategically planned similar to an explicit138

re-aiming strategy for point-to-point movements, rather than through establishing a new feedback control139

policy qualitatively similar to the one used at baseline. The design of the tracking task made it amenable140

to a more more fine-grained analysis of participants’ behavior using frequency-domain system identification,141

owing to the construction of the target trajectory as a sum of sinusoids at different frequencies.142

In order to apply system identification tools to analyze behavior, we first sought to validate whether143

behavior was approximately linear. We did so by examining the amplitude spectra of participants’ hand144

movement after transforming the time-domain data to the frequency domain using a discrete Fourier trans-145

form and comparing these amplitude spectra to that of the target. A linear relationship between hand and146
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Figure 4. Frequency responses of hand movements during the tracking task. A. Amplitude spectra of
x-hand (blue line) trajectories during different blocks of learning. In each plot, the amplitude and frequency
of x- and y-target motion is depicted as the upper row of black and white dots, respectively. The peaks of the
hand spectra at either the x- or y-target frequencies are connected by black lines for ease of visualization.
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Figure S1B. Error bars are SEM across participants.
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target movement would imply that the hand should move at the same frequencies as the target along each147

axis. Lastly, target trajectories were carefully constructed to allow potential nonlinearities (which would148

manifest as extraneous peaks in the output spectra) to be clearly discernible (see Methods for details).149

The amplitude spectra show clearly that, at baseline, both groups of participants moved almost exclusively150

at the frequencies of the target (Figure 4A: x-hand data, Figure S1: y-hand data). Furthermore, x-hand151

movements primarily occurred at x-target frequencies, not y-target frequencies. Likewise, y-hand movements152

primarily occurred at y-target frequencies. (Note that coupling across axes, which we observed at other stages153

of learning, would not indicate nonlinear behavior; rather it would indicate an imperfect though possibly154

linear sensorimotor mapping.) We further quantified how linear participants’ responses were by computing155

the spectral coherence between target and hand movement [41]. Although coherence was low during early156

learning, it was much closer to the maximum value of 1 at baseline, late learning, and post-learning (Figure157

4B). This is consistent with a linear relationship between target motion and hand motion. These data suggest158

that participants faithfully tracked the target throughout the experiment and provided validation for using159

linear, frequency-domain analysis to examine behavior.160

The introduction of the perturbation led to a broadband increase in amplitude across all frequencies161

for both groups (Figure 4A, “Early”), indicating some nonlinear behavior as one might expect, particularly162

early on in learning. However, the peaks at the target frequencies were still clearly identifiable, enabling163

the use of linear systems analysis to approximate the relationship between target motion and hand motion.164

These nonlinearities abated with practice (Figure 4A, “Late”) and remained modest after the perturbation165

was removed (Figure 4A, “Post”), again facilitating linear analysis.166

To perfectly compensate for either the rotation or the mirror reversal, movement at x-target frequencies167

needed to be remapped from x-hand movements to y-hand movements, and vice versa at y-target frequencies.168

During early learning, participants in the rotation group did produce x-hand movements in response to y-169

target frequencies, but also inappropriately continued to produce x-hand movements at x-target frequencies170

(Figure 4A). By late learning, the amplitude of x-hand movement further increased at y-target frequencies171

and decreased at x-target frequencies. Behavior for the mirror-reversal group followed a similar pattern,172

albeit with less pronounced peaks in the amplitude spectrum during early learning. Importantly, the extent173

of remapping responses at different frequencies was not uniform across the frequency spectrum, but appeared174

frequency-dependent.175

After the perturbation was removed (Post-learning), the rotation group exhibited x-hand movements176

at both x- and y-target frequencies, unlike baseline where movements were largely restricted to x-target177

frequencies (Figure 4A). This indicated that learning to compensate for a rotation led to aftereffects, corrob-178

orating our earlier analysis. In contrast, the mirror-reversal group’s x-hand movements were indistinguishable179
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baseline, confirming that any aftereffects were negligible. These features of the amplitude spectra, and the180

differences across groups, were qualitatively the same for y-hand movements (Figure S1).181

Amplitude spectra illustrate important features of learning, but do not carry information about the182

directionality of the response and thus do not distinguish learning of the two different perturbations; perfect183

compensation would lead to identical amplitude spectra for each perturbation. In order to distinguish these184

responses, we needed to determine not just the amplitude, but the direction of response along each axis,185

i.e. whether it was positive or negative. We used phase information to disambiguate the sign of the gain186

by assuming that the phase of the response at each frequency would remain similar to baseline throughout187

learning.188

In order to understand the potential frequency-dependence of participants’ compensation for the pertur-189

bation, we sought to estimate a series of transformation matrices describing participants’ behavior across190

different frequencies. To do so, we grouped pairs of neighboring x- and y-target frequencies to build seven191

2×2 signed gain matrices. These matrices represented how the transformation varied across the frequency192

spectrum, under the assumption that behavior was similar across neighboring pairs of frequencies. Similar193

to the trajectory-alignment analysis, participants should have a gain matrix close to the identity matrix at194

baseline while, under ideal compensation for each perturbation, each gain matrix should equal the inverse of195

the matrix describing the perturbation.196

We visualized these estimated frequency-dependent transformation matrices through their effect on the197

unit x and y vectors (the columns of the gain matrices; Figure 5A). At baseline, participants in both198

groups responded to x- and y-target motion by moving their hands in the x- and y-axes, respectively,199

across all target frequencies. For the rotation group, all vectors rotated clockwise during learning, although200

compensation appeared to be more complete at low frequencies (darker arrows) than at high frequencies201

(lighter arrows). For the mirror-reversal group, compensation during late learning occurred most successfully202

at low frequencies, apparent as the darker vectors flipping across the mirror axis relative to baseline. At203

high frequencies, however, responses failed to flip across the mirror axis and remained similar to baseline.204

To examine these observations statistically, we focus again on the off-diagonal elements of the gain matri-205

ces. The rotation group’s gain matrices were altered in the appropriate direction to counter the perturbation206

at all frequencies (Figure 5B; linear mixed effects model: 2-way interaction between block and frequency,207

F (12, 360) = 19.77, p < 0.0001; data split by frequency for post hoc Tukey’s range test: Bonferroni-adjusted208

p < 0.0001 for all frequencies). Although the mirror-reversal group’s low-frequency gain matrices were also209

altered in the appropriate direction (Tukey’s range test: Bonferroni-adjusted p < 0.0001 for lowest 3 fre-210

quencies), the high-frequency gain matrices were not significantly different from baseline (Tukey’s range test:211

Bonferroni-adjusted p > 0.7479 for highest 4 frequencies; baseline gain range: −0.03–0.06; late-learning gain212
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were (x then y frequencies reported in each parentheses in Hz): (0.1, 0.15), (0.25, 0.35), (0.55, 0.65),
(0.85, 0.95), (1.15, 1.45), (1.55, 1.85), (2.05, 2.15). A. Visualizations of the gain matrices (see Figure S4
for colormap illustration of the matrices). Green and purple arrows depict hand responses to x- and y-
target frequencies, respectively. Darker colors represent lower frequencies and lighter colors represent higher
frequencies. B. Average of the two off-diagonal values of the gain matrices at different blocks of learning.
Darker colors represent lower frequencies and lighter colors represent higher frequencies. Error bars are SEM
across participants. C. (Top) Angle of the pure rotation matrices fitted to the rotation group’s gain matrices.
(Bottom) Gain of the mirror-reversal group’s movements orthogonal to the mirror axis. Green and black
horizontal lines show ideal compensation when the perturbation is or is not applied, respectively. Error bars
are SEM across participants.
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range: 0.01–0.18).213

Fitting a rotation matrix to the rotation group’s gain matrix at each frequency revealed that participants’214

baseline compensation angle was close to 0◦ at all frequencies (Figure 5C). By late learning, compensation215

was nearly perfect at the lowest frequency and dropped off at higher frequencies. For the mirror-reversal216

group, the gains of participants’ low-frequency movements orthogonal to the mirror axis were positive at217

baseline and became negative during learning, appropriate to counter the perturbation. At high frequencies,218

by contrast, the gain reduced slightly during learning but never became negative. Taken together, these219

analyses suggest that both groups of participants were successful at compensating at low frequencies, but220

at high frequencies, the rotation group was only mildly successful and the mirror-reversal group was largely221

unsuccessful.222

Post-learning, the rotation group’s off-diagonal gains were significantly different from baseline for all223

frequencies except the lowest frequency (Figure 5B; post hoc linear mixed-effects models subset by frequency:224

2-way interaction between group and block, F (2, 36) > 6.36 for highest 6 frequencies; Tukey’s range test:225

Bonferroni-adjusted p < 0.0454 for highest 6 frequencies), indicating aftereffects. A similar trend was226

evident in participants’ estimated compensation angles (Figure 5C). By contrast, the mirror-reversal group’s227

matrices were not significantly different from baseline across all frequencies (Figure 5B; Tukey’s range test:228

Bonferroni-adjusted p > 1.50 for all frequencies; baseline gain range: −0.03–0.06; post-learning gain range:229

−0.03–0.12). The gains orthogonal to the mirror axis were also similar to baseline across all frequencies,230

confirming the lack of aftereffects (Figure 5C).231

Thus, compensation for mirror reversal was frequency-dependent and did not exhibit aftereffects. Com-232

pensation for visuomotor rotation was similarly frequency-dependent, but was augmented by an additional233

component of learning which was expressed similarly across frequencies and did result in aftereffects.234

In a final experiment, we tested the degree to which training in the point-to-point task was necessary235

for participants to learn a continuous feedback controller. Participants in this experiment experienced the236

rotation or mirror reversal primarily using the tracking task with minimal point-to-point practice (Figure237

S5A). The total amount of compensation participants expressed while learning the rotation was blunted in238

comparison to the main experiment, but this group did gradually improve throughout the experiment (Figure239

S5B-D). This result is consistent with previous work comparing the generalization of rotation learning from240

pointing to tracking tasks and vice versa [42]. However, mirror-reversal learning was severely blunted in241

comparison to the main experiment and did not improve past early learning. Thus, point-to-point practice242

was helpful in learning the rotation but was critical for learning the mirror reversal.243
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Discussion244

In the present study, we tested whether participants could learn to achieve continuous control over a cursor245

under either rotated or mirror-reversed visual feedback. Although previous work has established that partic-246

ipants can learn to compensate for such perturbations during point-to-point movements, this compensation247

could have been achievable using a simple re-aiming strategy rather than by constructing a novel, continuous248

feedback controller. We found that when participants performed a continuous tracking task, their behavior249

was close to linear (as quantified by spectral coherence), implying that they tracked the target continuously,250

rather than with intermittent catch-up movements. This pattern was preserved when participants learned251

to compensate for either a 90◦ visuomotor rotation or a mirror-reversal. As expected, we found that partici-252

pants who learned the visuomotor rotation exhibited strong aftereffects once the perturbation was removed,253

amounting to an approximately 25◦ rotation of hand motion relative to target motion—consistent with pre-254

vious findings in point-to-point tasks. In contrast, participants who learned a mirror-reversal showed no255

aftereffects, suggesting that they did not learn to compensate by adaptation of their existing controller, but256

by establishing a new feedback control policy de novo.257

Interestingly, we found that the pattern of compensation was frequency specific (Figure 5B) with the258

nature of compensation at high frequencies in particular revealing distinct signatures of adaptation and de259

novo learning. At low frequencies, both groups of participants successfully compensated for their perturba-260

tions. But at high frequencies, only the rotation group were able to apply any compensation; behavior for261

the mirror-reversal group at high frequencies was similar to baseline behavior. There were similarities, how-262

ever, in the overall time course and frequency dependence of learning under each perturbation (Figure 5B),263

with both groups exhibiting a steady increase in compensation over time, particularly at lower frequencies.264

Additionally, both groups’ compensation exhibited a similar gradation as a function of frequency, decreasing265

as frequency increased.266

We believe these results show that distinct learning processes drove two separate components of learning.267

One component, present only in the rotation group, was expressed uniformly at all frequencies and likely268

reflects a parametric adjustment of an existing baseline control policy, i.e., adaptation. This interpretation is269

consistent with studies demonstrating that adaptation of point-to-point movements generalizes to feedback270

corrections for unexpected perturbations [18,30,31], and is also consistent with the limited compensation of271

around 25◦ [6, 14–16], matching the extent of compensation we observed at high frequencies.272

A second component of learning—which was present in both groups of participants—contributed to273

compensation primarily at low frequencies, exhibited a gradation as a function of frequency, and was not as-274

sociated with aftereffects. We suggest this component corresponds to de novo learning. Based on the premise275
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that mirror-reversal learning is purely de novo, the mirror-reversal group’s behavior in Figure 5B demon-276

strates the frequency-dependent characteristics of de novo learning and how those characteristics evolve with277

training. Previous studies have demonstrated that participants are unable to generate appropriate feedback278

corrections at low-latency after learning to make point-to-point movements under mirror-reversed visual feed-279

back [18], paralleling our finding that the mirror-reversal group could not compensate at high-frequencies of280

target movement. On the other hand, the rotation group’s total compensation may be conceptualized as the281

superposition of the two components of learning. These data thus support previous suggestions that residual282

learning under a visuomotor rotation that cannot be attributed to implicit adaptation may rely on the same283

mechanisms as those used for de novo learning [1].284

The inability for either group to compensate at high frequencies (when tracking an unpredictable stimulus;285

see [33]) is likely attributable to delays in the feedback control loop; once delays become comparable to the286

period of oscillation, then it becomes impossible to exert precise control at that frequency. Our findings287

thus suggest the existence of two distinct control pathways, each capable of different forms of plasticity—one288

that is fast but can only be recalibrated through adaptation and one that is slower but can be reconfigured289

to implement arbitrary new control policies. One possibility is that these two pathways reflect feedforward290

control (generating motor output based purely on target motion) and feedback control (generating motor291

output based on the cursor location and/or distance between cursor and target). Feedback control is slower292

than feedforward control due to the additional delays associated with observing the effects of one’s prior293

motor commands on the current cursor position. The observed pattern of behavior may thus be due to a fast294

but inflexible feedforward controller that always expresses baseline behavior (although adjustable via implicit295

adaptation) interacting with a slow but easily reconfigurable feedback controller that learns to compensate296

for perturbed visual input. At low frequencies, the target may move slowly enough that any inappropriate297

feedforward control to track the target is masked by corrective feedback responses. But at high frequencies,298

the target may move too fast for feedback control to be exerted, leaving only inappropriate feedforward299

responses.300

An alternative explanation is that there may be multiple feedforward controllers (and/or feedback con-301

trollers) incurring different delays. A fast but inflexible baseline controller (amenable to recalibration through302

adaptation) might interact with a slower but more flexible controller. This organization parallels dual-process303

theories of learning and action selection [43–45] and raises the interesting possibility that the de novo learn-304

ing exhibited by our participants might be, in some sense, cognitive in nature. Re-aiming to compensate for305

visuomotor perturbations during point-to-point movements is generally presumed to be cognitive [45, 46].306

However, continuous feedback control would generally be considered to be beyond the scope of such cognitive307

compensation.308
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Cognitive compensation might typically be considered a time-consuming, deliberative process that would309

be too slow to account for behavior even at relatively low frequencies in our tasks. However, it is possible for310

action selection to occur quite rapidly but still be considered cognitive. For instance, it has been proposed311

that stimulus-response associations can be “cached” in working memory, enabling a cognitive response to be312

deployed rapidly and without deliberation [37]. However, the number of associations that can be stored in313

this way appears to be limited to just 2-7 [37, 47], raising doubts as to whether such a mechanism could314

support a continuous feedback controller. Nevertheless, recent theories have framed prefrontal cortex as a315

general-purpose network capable of learning to perform arbitrary computations on its inputs [48]. From this316

perspective, it does not seem infeasible that such a network could learn to implement an arbitrary feedback317

controller.318

It is important to note that we use the term “de novo learning” to refer to any mechanism, aside from319

implicit adaptation, that leads to the creation of a new control policy. We suggest that de novo learning320

is initially solved explicitly before becoming cached or automatized into a more procedural form. There321

are, however, a number of alternative mechanisms that could be engaged to establish a new control policy.322

One proposal is that de novo learning occurs by simultaneously updating forward and inverse models by323

simple gradient descent [49]. Another possibility is that a new policy could be learned through reinforcement324

learning. In motor learning tasks, reinforcement has been demonstrated to engage a learning mechanism that325

is independent of implicit adaptation [50–52] potentially via basal-ganglia-dependent mechanisms [53, 54].326

Such reinforcement could provide a basis for forming a new control policy. Although prior work on motor327

learning has focused on point-to-point movements, theoretical frameworks for reinforcement learning have328

been extended to continuous time and space to learn continuous control policies for robotics [55–58].329

One additional interesting finding is that when participants exhibited phase lags relative to the target of330

180◦, they still tracked the target with non-zero gain (Figure S3). All participants exhibited this behavior,331

even at baseline. When the hand is phase lagged by 90◦–270◦ at a particular frequency, the optimal gain332

to minimize the distance between the hand and target at that frequency is zero [33]. This peculiarity of333

human manual tracking behavior has been demonstrated before [59], suggesting that this was not a spurious334

finding. A potential explanation for this result is that participants may be relying on some strategy that335

is incompatible with this particular notion of optimality (e.g. reproducing the target trajectory instead of336

minimizing distance from the target). Alternatively, it could be that participants were unable to assess337

the error associated with these out-of-phase movements at high frequencies because the stimulus is masked338

within an inherently unpredictable stimulus; other studies have indicated that when only a (“predictable”)339

single-sine component is presented, the nervous system makes a rational judgement to reduce the amplitude340

of tracking movements when there are large phase lags [33,59], likely because the predictable stimulus makes341
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it easier for the nervous system to ascertain the cost of making extraneous movements.342

Ultimately, our goal is to understand real-world skill learning. We believe that studying learning in343

continuous tracking tasks can help bring us closer to this goal since a critical component of many skills is the344

ability to continuously control an effector. Tasks like juggling and riding a bike rely heavily on the ability to345

perform feedback corrections at low latency in response to external events. Studies of well-practiced human346

behavior in continuous control tasks has a long history, such as those examining the dynamics of pilot and347

vehicle interactions [60]. However, most existing paradigms for studying motor learning have examined only348

point-to-point movements and, although mid-movement perturbations have been used to assess learning of349

feedback control [18,29], very few studies have sought to examine how we learn to continuously manipulate350

an effector in response to a continuously changing goal.351

Although we have described the mirror-reversal task as requiring de novo learning, we acknowledge that352

there are many types of learning which might be described as de novo learning that this task does not353

capture. For example, many skills, such as playing the cello, challenge one to learn how to execute new354

movement patterns that one has never executed before [17]. This is not the case in the tracking task which355

only challenges one to select movements one already knows how to execute. Also, in many cases, one must356

learn to use information from new sensory modalities for control [61, 62], such as adjusting one’s action357

based on auditory feedback while playing the cello. Our task, by contrast, uses only very familiar visual358

cues. Nevertheless, we believe that learning a new controller, even with already well-practiced actions and359

familiar sensory feedback, is a critical part of learning many skills and represents an important aspect of any360

de novo learning. The tracking task presented here offers a simple but powerful approach for characterizing361

how we learn a new continuous feedback controller and, as such, provides an important new direction for362

studying skill learning.363

Our characterization of learning made use of frequency-based system identification, a powerful tool that364

has been extensively used to study biological motor control such as insect flight [35, 63], electric fish refuge365

tracking [34, 64], human posture [36, 65], and human reaching [59]. Although measuring feedback responses366

to a step perturbation can be considered a form of system identification, frequency-based methods constitute367

an approach that is substantially more powerful [66], as well as being considerably more time-efficient in368

comparison to imposing intermittent target jumps on a subset of trials. However, to our knowledge, the369

frequency-based approach has not previously been applied to investigate motor learning. Here, we have370

demonstrated that a system identification approach can not only recapitulate the results of previous studies371

but also extend these results to identify distinct components of control. Our approach is also very general372

as it can be applied to assess learning of any linear visuomotor mapping (e.g., 15◦ rotation, bimanual373

perturbations). Under previous approaches, quantifying feedback responses under different types of learned374
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mappings (rotation, mirror-reversal) require different ad hoc analyses that cannot be directly compared375

[18]. In contrast, our frequency-based approach provides a general method to characterize behavior under376

rotations, mirror-reversals, or any linear mapping from effectors to a cursor.377

The primary goal of our frequency-based analysis was to establish how participants mapped target motion378

into hand motion at different stages of learning. However, frequency-based system identification yields even379

more information than this; in principle, it provides complete knowledge of a linear control system in the380

sense that knowing how the system responds to sinusoidal input at different frequencies enables one to predict381

how the system will respond to arbitrary inputs. The full frequency-domain data, including both phase and382

gain information across all frequencies, can be used to formally compare different possible control system383

architectures [59] supporting learning. We intend to pursue this approach in future work to obtain a more384

algorithmic understanding of how the sensorimotor control system changes during different forms of learning.385

Methods386

Participants. 20 right-handed, healthy participants over 18 years of age were recruited for this study387

(23.55 ± 4.95 years old; 10 male, 10 female). All participants had no history of neurological disorders. All388

methods were approved by the Johns Hopkins School of Medicine Institutional Review Board.389

Tasks390

Participants made planar movements with their right arm—which was supported by a frictionless air sled on a391

table—to control a cursor on an LCD monitor (60 Hz). Participants viewed the cursor on a horizontal mirror392

which reflected the monitor (Figure 1B). Hand movement was monitored with a Flock of Birds magnetic393

tracker (Ascension Technology, VT, USA) at 130 Hz. The cursor was controlled under three different hand-394

to-cursor mappings: 1) veridical, 2) 90◦ visuomotor rotation, and 3) mirror reversal about a 45◦ oblique395

axis. The participants were divided evenly into two groups, one that experienced the visuomotor rotation396

(n = 10) and one that experienced the mirror reversal (n = 10). Both groups were exposed to the perturbed397

cursors while performing two different tasks: 1) the point-to-point task, and 2) the tracking task.398

Point-to-point task. To start a trial, participants were required to move their cursor (circle of radius 2.5399

mm) into a target (circle of radius 10 mm) that appeared in the center of the screen. After 500 ms, the400

target appeared 12 cm away from the starting location in a random direction. Participants were explicitly401

instructed to move in a straight line, as quickly and accurately as possible to the new target. Once the cursor402

remained stationary (speed < 0.065 m/s) in the new target for 1 sec, the target appeared in a new location403
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12 cm away, but constrained to lie within a 20 cm × 20 cm workspace. Each block used different, random404

target locations from other blocks. Blocks in the main experiment consisted of 150 reaches while blocks in405

the control experiment consisted of 15 reaches. To encourage participants to move quickly to each target,406

we provided feedback at the end of each trial about the peak velocity they attained during their reaches,407

giving positive feedback (a pleasant tone and the target turning yellow) if the peak velocity exceeded roughly408

0.39 m/s and negative feedback (no tone and the target turning blue) if the peak velocity was below that409

threshold.410

Tracking task. At the start of each trial, a motionless target (circle of radius 8 mm) appeared in the411

center of the screen, and the trial was initiated when the participant’s cursor (circle of radius 2.5 mm)412

was stationary (speed < 0.065 m/s) in the target. From then, the target began to move for 46 seconds in413

a continuous, pseudo-random trajectory. The first 5 seconds was a ramp period where the amplitude of414

the cursor increased linearly from 0 to its full value, and for the remaining 41 seconds, the target moved415

at full amplitude. The target moved in a two-dimensional, sum-of-sinusoids trajectory; seven sinusoids416

of different frequencies, amplitudes and phases were summed to determine target movement in the x-axis417

(frequencies (Hz): 0.1, 0.25, 0.55, 0.85, 1.15, 1.55, 2.05; amplitudes (cm): 2.31, 2.31, 2.31, 1.76, 1.30, 0.97,418

0.73, respectively), and the same procedure was repeated for target movement in the y-axis but with different419

frequencies (frequencies (Hz): 0.15, 0.35, 0.65, 0.95, 1.45, 1.85, 2.15; amplitudes (cm): 2.31, 2.31, 2.31, 1.58,420

1.03, 0.81, 0.70, respectively). Different frequencies were used for the x- and y-axes so that hand movement421

responses at a given frequency could be attributed to either x- or y-axis target movements. All frequencies422

were prime multiples of a base frequency of 0.05 Hz (base period of 20 s) to ensure that the harmonics of423

any target frequency would not overlap with any other target frequency. Additionally, the amplitudes of the424

sinusoids for all but the lowest frequencies were proportional to the inverse of their frequency to ensure that425

each individual sinusoid had similar peak velocity. We set a ceiling amplitude for low frequencies in order to426

prevent target movements that were too large for participants to comfortably track. Note that due to the427

construction of the input signal, there were no low-order harmonic relations between any of the component428

sinusoids on the input, making it likely that nonlinearities in the tracking dynamics would manifest as easily429

discernible harmonic interactions (i.e. extraneous peaks in the output spectra). Moreover, care was taken430

to avoid “frequency leakage” by designing discrete Fourier transform windows that were integer multiples of431

the base period, improving our ability to detect such nonlinearities.432

For the entire 46-second target trajectory, participants were explicitly instructed to try to keep their433

cursor inside the target for as long as possible during the trial. These specific instructions were provided to434

encourage participants to track the target, as opposed to replicating the target’s trajectory. We also changed435
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the target’s color to yellow anytime the cursor was inside the target to provide feedback for their success.436

After 46 seconds had elapsed, the trial ended. One block of the tracking task consisted of eight, 46-second437

trials (6 min 6 seconds of tracking per block), and the same target trajectory was used for every trial within a438

block. For different blocks, we randomized the phases, but not the frequencies, of target sinusoids to produce439

different trajectories. We produced 5 different target trajectories for participants to track in the 6 tracking440

blocks. The trajectory used for baseline and post-learning were the same to allow a better comparison for441

aftereffects. All participants tracked the same 5 target trajectories, but we randomized the order in which442

they experienced these trajectories in order to minimize any phase-dependent learning effects.443

Experiment. We first assessed the baseline control of both groups of participants by having them perform444

one block of the tracking task followed by one block of the point-to-point task under veridical cursor feedback.445

We then applied either the VMR or MR to the cursor, and used the tracking task to measure their control446

capabilities during early learning. Afterwards, we alternated three times between blocks of point-to-point447

training and blocks of tracking. In total, each participant received 450 point-to-point reaches of training448

under perturbed cursor feedback. Finally, we measured aftereffects post-learning by returning to the veridical449

mapping and using the tracking task.450

Data Analysis451

Analyses were performed using MATLAB (The Mathworks, Natick, MA, USA) and RStudio (RStudio, Inc.,452

Boston, MA, USA) [67–71]. Figures were generated using Adobe Illustrator (Adobe Inc., San Jose, CA,453

USA).454

Trajectory-based analysis. In the point-to-point task, we assessed performance by calculating the an-455

gular error between the cursor’s initial movement direction and the target direction relative to the start456

position. To determine the cursor’s initial movement direction, we computed the direction of the cursor’s457

instantaneous velocity vector roughly 150 ms after the time of movement initiation. Movement initiation458

was defined as the time when the cursor left the start circle on a given trial.459

To obtain cleaner estimates of hand trajectories in the tracking task, we averaged the trajectories across460

all trials within each block, doing this separately for each participant. We assessed performance by measuring461

the average mean-squared error between the hand and target positions on every trial for each participant. We462

subsequently averaged this error across participants. For the trajectory-alignment analysis, we first aligned463

the hand and target trajectories in time by delaying all target trajectories by approximately 380 ms relative464

to their respective hand trajectories. We determined this delay by identifying the average delay which would465
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minimize the mean-squared error at baseline across all participants. We then fit a transformation matrix466

for each participant, for each block, based on minimizing the mean-squared error between the average hand467

and target trajectories:468

argmin
a,b,c,d

{−−−→HandX
−−−→
HandY

−
a b

c d


−−−−→TargetX
−−−−→
TargetY

} (1)

This matrix was averaged across participants to generate the transformation matrices shown in Figure 3A.469

The transformation matrices were visualized by plotting the matrices’ column vectors.470

The off-diagonal elements of each participant’s transformation matrix was used to calculate the cross-axis471

scaling:472

Scalerotation =
−b+ d

2
Scalemirror =

b+ d

2
(2)

Rotation angles for the rotation group’s transformation matrices were found by identifying the angle which473

generated pure rotation matrices that best fit the transformation matrices according to an L2 norm. Finally,474

for the mirror-reversal group, the scaling orthogonal to the mirror axis was found by computing how the475

matrix transformed the unit vector along the orthogonal axis:476

Scaleorthogonal = 0.5

[1 −1
]a b

c d


 1

−1


 (3)

Frequency-domain analysis. To analyze trajectories in the frequency domain, we applied the discrete477

Fourier transform to the target and hand trajectories in every tracking trial. This produced a set of complex478

numbers representing the amplitude and phase of the signal at every frequency. We only analyzed the first 40479

seconds of the trajectory that followed the 5-second ramp period so that our analysis period was equivalent480

to an integer multiple of the base period (20 s). This ensured that we would obtain clean estimates of the481

sinusoids at each target frequency. Amplitude spectra were generated by taking double the modulus of the482

Fourier-transformed hand trajectories at positive frequencies.483

Spectral coherence was calculated between the target and hand trajectories. To do so, we evaluated the484

multiple (i.e., multi-input multi-output) coherence at every frequency of target motion, determining how485

target motion in one axis elicited hand movement in both axes. We chose to compute the multiple coherence486

as this best captured the linearity of participants’ behavior; using hand movement in only one axis for487

the analysis would only partially capture participants’ responses to target movement at a given frequency.488

Calculations were performed using a 1040-sample Blackman-Harris window.489
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In order to estimate the frequency-dependent 2×2 transformation between target and hand movement,490

we assumed that a matrix, A, could capture how the sensorimotor system transformed target movement into491

hand movement for each participant at given frequency:492

Handx
Handy

 = A

Targetx
Targety

 A =

axx axy

ayx ayy

 (4)

Hand and Target are vectors of complex sinusoids corresponding to the time-domain trajectories in the x-493

and y-axes. Since the target only moved at a discrete set of frequencies, which were different for the x- and494

y- axes, we paired neighboring x- and y-frequencies to assess the target-to-hand transformation in a small495

bandwidth, assuming that behavior would be approximately the same across neighboring frequencies. Each496

element of A therefore represents the transformation of target motion along a particular axis to hand motion497

in a particular axis; the first subscript represents the hand-movement axis and the second subscript represents498

the target-movement axis. To obtain A, we first computed the ratios between the complex sinusoids of hand499

movement and target movement at each frequency of movement. These ratios are known as phasors, complex500

numbers which relate the sinusoids in terms of gain and phase [33,59]. Target movement at a given frequency,501

which only moves in one axis, can elicit movement in both axes. Therefore, for each x- target frequency,502

we computed a phasor for x-hand responses and a phasor for y-hand responses. We performed similar503

calculations for each y-target frequency. For a given block of learning, the two phasors for each frequency504

of movement were paired together to form fourteen phasor pairs. Pairs describing behavior from the same505

frequency were grouped together across all six blocks of learning.506

Gain and phase data are inherently redundant—a positive gain with a phase of π is indistinguishable507

from a negative gain with a phase of 0. Conventionally, this redundancy is resolved by assuming that gain is508

positive. In our task, however, the sign of the gain was crucial to disambiguate the directionality of the hand509

responses (e.g. whether the hand moved left or right in response to upward target motion). We used phase510

information to disambiguate positive from negative gains, assuming that the phase of the hand response at511

a given frequency would be similar throughout the experiment. To do so, we introduced template phasors,512

with a fixed gain of 1, to capture the assumed invariant phase of the response at a given frequency. We513

estimated these template phasors based on behavior in the baseline block and assumed that this phase would514

be preserved across different axes of movement and across subsequent blocks. Therefore, we only needed to515

fit a scalar (potentially negative) gain a:516

argmin
axx,ayx

{ψxx

ψyx

−
axxψtemplate1

ayxψtemplate1

} argmin
axy,ayy

{ψxy

ψyy

−
axyψtemplate2

ayyψtemplate2

} (5)
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Here, ψ indicates an individual phasor. We therefore a set of template phasors (template 1 for the lowest517

frequency, template 2 for the second lowest frequency, etc.), and a set of gains a, which were assumed to518

vary from block to block. By pairing neighboring x- and y-frequencies, we obtained a set of seven A matrices519

describing the signed gain relating target movement to hand movement across frequencies ranging from low520

to high. Visualizations of these gain matrices, cross-axis gain, rotation angle, and gain orthogonal to the521

mirroring axis were calculated in the same way as in the transformation matrix analysis.522

Statistics523

The statistical tests for the transformation and gain matrix analyses were performed using linear mixed-524

effects models. The parameters of our models were the perturbation type (rotation or mirror reversal), block525

of learning, and element of the matrices. In both analyses, we hypothesized that there would be interactions526

between all three parameters. We followed the initial statistical modeling by performing post-hoc tests where527

we split the data by the element of the transformation/gain matrix being analyzed. Pairwise comparisons528

were performed using Tukey’s range test. Error bars were equal to the standard error of the mean. Confidence529

ellipses were approximately double the standard error of the mean.530
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